Search (149 results, page 1 of 8)

  • × theme_ss:"Visualisierung"
  1. Hook, P.A.; Gantchev, A.: Using combined metadata sources to visualize a small library (OBL's English Language Books) (2017) 0.18
    0.18031615 = product of:
      0.22539519 = sum of:
        0.07213905 = weight(_text_:list in 3870) [ClassicSimilarity], result of:
          0.07213905 = score(doc=3870,freq=2.0), product of:
            0.25191793 = queryWeight, product of:
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.04859849 = queryNorm
            0.2863593 = fieldWeight in 3870, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3870)
        0.02177373 = weight(_text_:of in 3870) [ClassicSimilarity], result of:
          0.02177373 = score(doc=3870,freq=22.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.28651062 = fieldWeight in 3870, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3870)
        0.07679317 = weight(_text_:subject in 3870) [ClassicSimilarity], result of:
          0.07679317 = score(doc=3870,freq=10.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.4418043 = fieldWeight in 3870, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3870)
        0.054689247 = product of:
          0.109378494 = sum of:
            0.109378494 = weight(_text_:headings in 3870) [ClassicSimilarity], result of:
              0.109378494 = score(doc=3870,freq=6.0), product of:
                0.23569997 = queryWeight, product of:
                  4.849944 = idf(docFreq=940, maxDocs=44218)
                  0.04859849 = queryNorm
                0.46405816 = fieldWeight in 3870, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  4.849944 = idf(docFreq=940, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3870)
          0.5 = coord(1/2)
      0.8 = coord(4/5)
    
    Abstract
    Data from multiple knowledge organization systems are combined to provide a global overview of the content holdings of a small personal library. Subject headings and classification data are used to effectively map the combined book and topic space of the library. While harvested and manipulated by hand, the work reveals issues and potential solutions when using automated techniques to produce topic maps of much larger libraries. The small library visualized consists of the thirty-nine, digital, English language books found in the Osama Bin Laden (OBL) compound in Abbottabad, Pakistan upon his death. As this list of books has garnered considerable media attention, it is worth providing a visual overview of the subject content of these books - some of which is not readily apparent from the titles. Metadata from subject headings and classification numbers was combined to create book-subject maps. Tree maps of the classification data were also produced. The books contain 328 subject headings. In order to enhance the base map with meaningful thematic overlay, library holding count data was also harvested (and aggregated from duplicates). This additional data revealed the relative scarcity or popularity of individual books.
  2. Spero, S.: LCSH is to thesaurus as doorbell is to mammal : visualizing structural problems in the Library of Congress Subject Headings (2008) 0.13
    0.12673344 = product of:
      0.21122238 = sum of:
        0.022282438 = weight(_text_:of in 2659) [ClassicSimilarity], result of:
          0.022282438 = score(doc=2659,freq=36.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.2932045 = fieldWeight in 2659, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=2659)
        0.038854614 = weight(_text_:subject in 2659) [ClassicSimilarity], result of:
          0.038854614 = score(doc=2659,freq=4.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.22353725 = fieldWeight in 2659, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03125 = fieldNorm(doc=2659)
        0.15008533 = sum of:
          0.12374763 = weight(_text_:headings in 2659) [ClassicSimilarity], result of:
            0.12374763 = score(doc=2659,freq=12.0), product of:
              0.23569997 = queryWeight, product of:
                4.849944 = idf(docFreq=940, maxDocs=44218)
                0.04859849 = queryNorm
              0.52502185 = fieldWeight in 2659, product of:
                3.4641016 = tf(freq=12.0), with freq of:
                  12.0 = termFreq=12.0
                4.849944 = idf(docFreq=940, maxDocs=44218)
                0.03125 = fieldNorm(doc=2659)
          0.026337698 = weight(_text_:22 in 2659) [ClassicSimilarity], result of:
            0.026337698 = score(doc=2659,freq=2.0), product of:
              0.17018363 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04859849 = queryNorm
              0.15476047 = fieldWeight in 2659, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2659)
      0.6 = coord(3/5)
    
    Abstract
    The Library of Congress Subject Headings (LCSH) has been developed over the course of more than a century, predating the semantic web by some time. Until the 1986, the only concept-toconcept relationship available was an undifferentiated "See Also" reference, which was used for both associative (RT) and hierarchical (BT/NT) connections. In that year, in preparation for the first release of the headings in machine readable MARC Authorities form, an attempt was made to automatically convert these "See Also" links into the standardized thesaural relations. Unfortunately, the rule used to determine the type of reference to generate relied on the presence of symmetric links to detect associatively related terms; "See Also" references that were only present in one of the related terms were assumed to be hierarchical. This left the process vulnerable to inconsistent use of references in the pre-conversion data, with a marked bias towards promoting relationships to hierarchical status. The Library of Congress was aware that the results of the conversion contained many inconsistencies, and intended to validate and correct the results over the course of time. Unfortunately, twenty years later, less than 40% of the converted records have been evaluated. The converted records, being the earliest encountered during the Library's cataloging activities, represent the most basic concepts within LCSH; errors in the syndetic structure for these records affect far more subordinate concepts than those nearer the periphery. Worse, a policy of patterning new headings after pre-existing ones leads to structural errors arising from the conversion process being replicated in these newer headings, perpetuating and exacerbating the errors. As the LCSH prepares for its second great conversion, from MARC to SKOS, it is critical to address these structural problems. As part of the work on converting the headings into SKOS, I have experimented with different visualizations of the tangled web of broader terms embedded in LCSH. This poster illustrates several of these renderings, shows how they can help users to judge which relationships might not be correct, and shows just exactly how Doorbells and Mammals are related.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  3. Julien, C.-A.; Tirilly, P.; Dinneen, J.D.; Guastavino, C.: Reducing subject tree browsing complexity (2013) 0.10
    0.10106573 = product of:
      0.16844288 = sum of:
        0.020760437 = weight(_text_:of in 1102) [ClassicSimilarity], result of:
          0.020760437 = score(doc=1102,freq=20.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.27317715 = fieldWeight in 1102, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1102)
        0.10302885 = weight(_text_:subject in 1102) [ClassicSimilarity], result of:
          0.10302885 = score(doc=1102,freq=18.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.5927426 = fieldWeight in 1102, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1102)
        0.044653583 = product of:
          0.08930717 = sum of:
            0.08930717 = weight(_text_:headings in 1102) [ClassicSimilarity], result of:
              0.08930717 = score(doc=1102,freq=4.0), product of:
                0.23569997 = queryWeight, product of:
                  4.849944 = idf(docFreq=940, maxDocs=44218)
                  0.04859849 = queryNorm
                0.3789019 = fieldWeight in 1102, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.849944 = idf(docFreq=940, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1102)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Many large digital collections are currently organized by subject; although useful, these information organization structures are large and complex and thus difficult to browse. Current online tools and visualization prototypes show small, localized subsets and do not provide the ability to explore the predominant patterns of the overall subject structure. This study describes subject tree modifications that facilitate browsing for documents by capitalizing on the highly uneven distribution of real-world collections. The approach is demonstrated on two large collections organized by the Library of Congress Subject Headings (LCSH) and Medical Subject Headings (MeSH). Results show that the LCSH subject tree can be reduced to 49% of its initial complexity while maintaining access to 83% of the collection, and the MeSH tree can be reduced to 45% of its initial complexity while maintaining access to 97% of the collection. A simple solution to negate the loss of access is discussed. The visual impact is demonstrated by using traditional outline views and a slider control allowing searchers to change the subject structure dynamically according to their needs. This study has implications for the development of information organization theory and human-information interaction techniques for subject trees.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.11, S.2201-2223
  4. Visual thesaurus (2005) 0.09
    0.09124039 = product of:
      0.15206732 = sum of:
        0.09995879 = weight(_text_:list in 1292) [ClassicSimilarity], result of:
          0.09995879 = score(doc=1292,freq=6.0), product of:
            0.25191793 = queryWeight, product of:
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.04859849 = queryNorm
            0.3967911 = fieldWeight in 1292, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.03125 = fieldNorm(doc=1292)
        0.024634166 = weight(_text_:of in 1292) [ClassicSimilarity], result of:
          0.024634166 = score(doc=1292,freq=44.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.3241498 = fieldWeight in 1292, product of:
              6.6332498 = tf(freq=44.0), with freq of:
                44.0 = termFreq=44.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=1292)
        0.02747436 = weight(_text_:subject in 1292) [ClassicSimilarity], result of:
          0.02747436 = score(doc=1292,freq=2.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.15806471 = fieldWeight in 1292, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03125 = fieldNorm(doc=1292)
      0.6 = coord(3/5)
    
    Abstract
    A visual thesaurus system and method for displaying a selected term in association with its one or more meanings, other words to which it is related, and further relationship information. The results of a search are presented in a directed graph that provides more information than an ordered list. When a user selects one of the results, the display reorganizes around the user's search allowing for further searches, without the interruption of going to additional pages.
    Content
    Traditional print reference guides often have two methods of finding information: an order (alphabetical for dictionaries and encyclopedias, by subject hierarchy in the case of thesauri) and indices (ordered lists, with a more complete listing of words and concepts, which refers back to original content from the main body of the book). A user of such traditional print reference guides who is looking for information will either browse through the ordered information in the main body of the reference book, or scan through the indices to find what is necessary. The advent of the computer allows for much more rapid electronic searches of the same information, and for multiple layers of indices. Users can either search through information by entering a keyword, or users can browse through the information through an outline index, which represents the information contained in the main body of the data. There are two traditional user interfaces for such applications. First, the user may type text into a search field and in response, a list of results is returned to the user. The user then selects a returned entry and may page through the resulting information. Alternatively, the user may choose from a list of words from an index. For example, software thesaurus applications, in which a user attempts to find synonyms, antonyms, homonyms, etc. for a selected word, are usually implemented using the conventional search and presentation techniques discussed above. The presentation of results only allows for a one-dimensional order of data at any one time. In addition, only a limited number of results can be shown at once, and selecting a result inevitably leads to another page-if the result is not satisfactory, the users must search again. Finally, it is difficult to present information about the manner in which the search results are related, or to present quantitative information about the results without causing confusion. Therefore, there exists a need for a multidimensional graphical display of information, in particular with respect to information relating to the meaning of words and their relationships to other words. There further exists a need to present large amounts of information in a way that can be manipulated by the user, without the user losing his place. And there exists a need for more fluid, intuitive and powerful thesaurus functionality that invites the exploration of language.
  5. Yi, K.; Chan, L.M.: ¬A visualization software tool for Library of Congress Subject Headings (2008) 0.09
    0.08852586 = product of:
      0.1475431 = sum of:
        0.023634095 = weight(_text_:of in 2503) [ClassicSimilarity], result of:
          0.023634095 = score(doc=2503,freq=18.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.3109903 = fieldWeight in 2503, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2503)
        0.058281917 = weight(_text_:subject in 2503) [ClassicSimilarity], result of:
          0.058281917 = score(doc=2503,freq=4.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.33530587 = fieldWeight in 2503, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.046875 = fieldNorm(doc=2503)
        0.06562709 = product of:
          0.13125418 = sum of:
            0.13125418 = weight(_text_:headings in 2503) [ClassicSimilarity], result of:
              0.13125418 = score(doc=2503,freq=6.0), product of:
                0.23569997 = queryWeight, product of:
                  4.849944 = idf(docFreq=940, maxDocs=44218)
                  0.04859849 = queryNorm
                0.55686975 = fieldWeight in 2503, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  4.849944 = idf(docFreq=940, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2503)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Content
    The aim of this study is to develop a software tool, VisuaLCSH, for effective searching, browsing, and maintenance of LCSH. This tool enables visualizing subject headings and hierarchical structures implied and embedded in LCSH. A conceptual framework for converting the hierarchical structure of headings in LCSH to an explicit tree structure is proposed, described, and implemented. The highlights of VisuaLCSH are summarized below: 1) revealing multiple aspects of a heading; 2) normalizing the hierarchical relationships in LCSH; 3) showing multi-level hierarchies in LCSH sub-trees; 4) improving the navigational function of LCSH in retrieval; and 5) enabling the implementation of generic search, i.e., the 'exploding' feature, in searching LCSH.
    Source
    Culture and identity in knowledge organization: Proceedings of the Tenth International ISKO Conference 5-8 August 2008, Montreal, Canada. Ed. by Clément Arsenault and Joseph T. Tennis
  6. Hajdu Barát, A.: Usability and the user interfaces of classical information retrieval languages (2006) 0.07
    0.067702025 = product of:
      0.1128367 = sum of:
        0.020551786 = weight(_text_:of in 232) [ClassicSimilarity], result of:
          0.020551786 = score(doc=232,freq=10.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.2704316 = fieldWeight in 232, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=232)
        0.04808013 = weight(_text_:subject in 232) [ClassicSimilarity], result of:
          0.04808013 = score(doc=232,freq=2.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.27661324 = fieldWeight in 232, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0546875 = fieldNorm(doc=232)
        0.04420479 = product of:
          0.08840958 = sum of:
            0.08840958 = weight(_text_:headings in 232) [ClassicSimilarity], result of:
              0.08840958 = score(doc=232,freq=2.0), product of:
                0.23569997 = queryWeight, product of:
                  4.849944 = idf(docFreq=940, maxDocs=44218)
                  0.04859849 = queryNorm
                0.37509373 = fieldWeight in 232, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.849944 = idf(docFreq=940, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=232)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    This paper examines some traditional information searching methods and their role in Hungarian OPACs. What challenges are there in the digital and online environment? How do users work with them and do they give users satisfactory results? What kinds of techniques are users employing? In this paper I examine the user interfaces of UDC, thesauri, subject headings etc. in the Hungarian library. The key question of the paper is whether a universal system or local solutions is the best approach for searching in the digital environment.
    Source
    Knowledge organization for a global learning society: Proceedings of the 9th International ISKO Conference, 4-7 July 2006, Vienna, Austria. Hrsg.: G. Budin, C. Swertz u. K. Mitgutsch
  7. Wu, I.-C.; Vakkari, P.: Effects of subject-oriented visualization tools on search by novices and intermediates (2018) 0.06
    0.064760454 = product of:
      0.10793408 = sum of:
        0.014679846 = weight(_text_:of in 4573) [ClassicSimilarity], result of:
          0.014679846 = score(doc=4573,freq=10.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.19316542 = fieldWeight in 4573, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4573)
        0.07679317 = weight(_text_:subject in 4573) [ClassicSimilarity], result of:
          0.07679317 = score(doc=4573,freq=10.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.4418043 = fieldWeight in 4573, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4573)
        0.016461061 = product of:
          0.032922123 = sum of:
            0.032922123 = weight(_text_:22 in 4573) [ClassicSimilarity], result of:
              0.032922123 = score(doc=4573,freq=2.0), product of:
                0.17018363 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04859849 = queryNorm
                0.19345059 = fieldWeight in 4573, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4573)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    This study explores how user subject knowledge influences search task processes and outcomes, as well as how search behavior is influenced by subject-oriented information visualization (IV) tools. To enable integrated searches, the proposed WikiMap + integrates search functions and IV tools (i.e., a topic network and hierarchical topic tree) and gathers information from Wikipedia pages and Google Search results. To evaluate the effectiveness of the proposed interfaces, we design subject-oriented tasks and adopt extended evaluation measures. We recruited 48 novices and 48 knowledgeable users, that is, intermediates, for the evaluation. Our results show that novices using the proposed interface demonstrate better search performance than intermediates using Wikipedia. We therefore conclude that our tools help close the gap between novices and intermediates in information searches. The results also show that intermediates can take advantage of the search tool by leveraging the IV tools to browse subtopics, and formulate better queries with less effort. We conclude that embedding the IV and the search tools in the interface can result in different search behavior but improved task performance. We provide implications to design search systems to include IV features adapted to user levels of subject knowledge to help them achieve better task performance.
    Date
    9.12.2018 16:22:25
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.12, S.1428-1445
  8. Hoeber, O.; Yang, X.D.: HotMap : supporting visual exploration of Web search results (2009) 0.06
    0.059076168 = product of:
      0.14769042 = sum of:
        0.12494849 = weight(_text_:list in 2700) [ClassicSimilarity], result of:
          0.12494849 = score(doc=2700,freq=6.0), product of:
            0.25191793 = queryWeight, product of:
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.04859849 = queryNorm
            0.49598888 = fieldWeight in 2700, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2700)
        0.022741921 = weight(_text_:of in 2700) [ClassicSimilarity], result of:
          0.022741921 = score(doc=2700,freq=24.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.2992506 = fieldWeight in 2700, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2700)
      0.4 = coord(2/5)
    
    Abstract
    Although information retrieval techniques used by Web search engines have improved substantially over the years, the results of Web searches have continued to be represented in simple list-based formats. Although the list-based representation makes it easy to evaluate a single document for relevance, it does not support the users in the broader tasks of manipulating or exploring the search results as they attempt to find a collection of relevant documents. HotMap is a meta-search system that provides a compact visual representation of Web search results at two levels of detail, and it supports interactive exploration via nested sorting of Web search results based on query term frequencies. An evaluation of the search results for a set of vague queries has shown that the re-sorted search results can provide a higher portion of relevant documents among the top search results. User studies show an increase in speed and effectiveness and a reduction in missed documents when comparing HotMap to the list-based representation used by Google. Subjective measures were positive, and users showed a preference for the HotMap interface. These results provide evidence for the utility of next-generation Web search results interfaces that promote interactive search results exploration.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.1, S.90-110
  9. Zhang, J.; Mostafa, J.; Tripathy, H.: Information retrieval by semantic analysis and visualization of the concept space of D-Lib® magazine (2002) 0.06
    0.05849369 = product of:
      0.097489476 = sum of:
        0.051010005 = weight(_text_:list in 1211) [ClassicSimilarity], result of:
          0.051010005 = score(doc=1211,freq=4.0), product of:
            0.25191793 = queryWeight, product of:
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.04859849 = queryNorm
            0.2024866 = fieldWeight in 1211, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.01953125 = fieldNorm(doc=1211)
        0.016737599 = weight(_text_:of in 1211) [ClassicSimilarity], result of:
          0.016737599 = score(doc=1211,freq=52.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.22024246 = fieldWeight in 1211, product of:
              7.2111025 = tf(freq=52.0), with freq of:
                52.0 = termFreq=52.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.01953125 = fieldNorm(doc=1211)
        0.029741868 = weight(_text_:subject in 1211) [ClassicSimilarity], result of:
          0.029741868 = score(doc=1211,freq=6.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.17111006 = fieldWeight in 1211, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.01953125 = fieldNorm(doc=1211)
      0.6 = coord(3/5)
    
    Abstract
    In this article we present a method for retrieving documents from a digital library through a visual interface based on automatically generated concepts. We used a vocabulary generation algorithm to generate a set of concepts for the digital library and a technique called the max-min distance technique to cluster them. Additionally, the concepts were visualized in a spring embedding graph layout to depict the semantic relationship among them. The resulting graph layout serves as an aid to users for retrieving documents. An online archive containing the contents of D-Lib Magazine from July 1995 to May 2002 was used to test the utility of an implemented retrieval and visualization system. We believe that the method developed and tested can be applied to many different domains to help users get a better understanding of online document collections and to minimize users' cognitive load during execution of search tasks. Over the past few years, the volume of information available through the World Wide Web has been expanding exponentially. Never has so much information been so readily available and shared among so many people. Unfortunately, the unstructured nature and huge volume of information accessible over networks have made it hard for users to sift through and find relevant information. To deal with this problem, information retrieval (IR) techniques have gained more intensive attention from both industrial and academic researchers. Numerous IR techniques have been developed to help deal with the information overload problem. These techniques concentrate on mathematical models and algorithms for retrieval. Popular IR models such as the Boolean model, the vector-space model, the probabilistic model and their variants are well established.
    From the user's perspective, however, it is still difficult to use current information retrieval systems. Users frequently have problems expressing their information needs and translating those needs into queries. This is partly due to the fact that information needs cannot be expressed appropriately in systems terms. It is not unusual for users to input search terms that are different from the index terms information systems use. Various methods have been proposed to help users choose search terms and articulate queries. One widely used approach is to incorporate into the information system a thesaurus-like component that represents both the important concepts in a particular subject area and the semantic relationships among those concepts. Unfortunately, the development and use of thesauri is not without its own problems. The thesaurus employed in a specific information system has often been developed for a general subject area and needs significant enhancement to be tailored to the information system where it is to be used. This thesaurus development process, if done manually, is both time consuming and labor intensive. Usage of a thesaurus in searching is complex and may raise barriers for the user. For illustration purposes, let us consider two scenarios of thesaurus usage. In the first scenario the user inputs a search term and the thesaurus then displays a matching set of related terms. Without an overview of the thesaurus - and without the ability to see the matching terms in the context of other terms - it may be difficult to assess the quality of the related terms in order to select the correct term. In the second scenario the user browses the whole thesaurus, which is organized as in an alphabetically ordered list. The problem with this approach is that the list may be long, and neither does it show users the global semantic relationship among all the listed terms.
    Nevertheless, because thesaurus use has shown to improve retrieval, for our method we integrate functions in the search interface that permit users to explore built-in search vocabularies to improve retrieval from digital libraries. Our method automatically generates the terms and their semantic relationships representing relevant topics covered in a digital library. We call these generated terms the "concepts", and the generated terms and their semantic relationships we call the "concept space". Additionally, we used a visualization technique to display the concept space and allow users to interact with this space. The automatically generated term set is considered to be more representative of subject area in a corpus than an "externally" imposed thesaurus, and our method has the potential of saving a significant amount of time and labor for those who have been manually creating thesauri as well. Information visualization is an emerging discipline and developed very quickly in the last decade. With growing volumes of documents and associated complexities, information visualization has become increasingly important. Researchers have found information visualization to be an effective way to use and understand information while minimizing a user's cognitive load. Our work was based on an algorithmic approach of concept discovery and association. Concepts are discovered using an algorithm based on an automated thesaurus generation procedure. Subsequently, similarities among terms are computed using the cosine measure, and the associations among terms are established using a method known as max-min distance clustering. The concept space is then visualized in a spring embedding graph, which roughly shows the semantic relationships among concepts in a 2-D visual representation. The semantic space of the visualization is used as a medium for users to retrieve the desired documents. In the remainder of this article, we present our algorithmic approach of concept generation and clustering, followed by description of the visualization technique and interactive interface. The paper ends with key conclusions and discussions on future work.
    Content
    The JAVA applet is available at <http://ella.slis.indiana.edu/~junzhang/dlib/IV.html>. A prototype of this interface has been developed and is available at <http://ella.slis.indiana.edu/~junzhang/dlib/IV.html>. The D-Lib search interface is available at <http://www.dlib.org/Architext/AT-dlib2query.html>.
  10. Rolling, L.: ¬The role of graphic display of concept relationships in indexing and retrieval vocabularies (1985) 0.05
    0.051838163 = product of:
      0.08639693 = sum of:
        0.022282438 = weight(_text_:of in 3646) [ClassicSimilarity], result of:
          0.022282438 = score(doc=3646,freq=36.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.2932045 = fieldWeight in 3646, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=3646)
        0.038854614 = weight(_text_:subject in 3646) [ClassicSimilarity], result of:
          0.038854614 = score(doc=3646,freq=4.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.22353725 = fieldWeight in 3646, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03125 = fieldNorm(doc=3646)
        0.02525988 = product of:
          0.05051976 = sum of:
            0.05051976 = weight(_text_:headings in 3646) [ClassicSimilarity], result of:
              0.05051976 = score(doc=3646,freq=2.0), product of:
                0.23569997 = queryWeight, product of:
                  4.849944 = idf(docFreq=940, maxDocs=44218)
                  0.04859849 = queryNorm
                0.21433927 = fieldWeight in 3646, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.849944 = idf(docFreq=940, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3646)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    The use of diagrams to express relationships in classification is not new. Many classificationists have used this approach, but usually in a minor display to make a point or for part of a difficult relational situation. Ranganathan, for example, used diagrams for some of his more elusive concepts. The thesaurus in particular and subject headings in general, with direct and indirect crossreferences or equivalents, need many more diagrams than normally are included to make relationships and even semantics clear. A picture very often is worth a thousand words. Rolling has used directed graphs (arrowgraphs) to join terms as a practical method for rendering relationships between indexing terms lucid. He has succeeded very weIl in this endeavor. Four diagrams in this selection are all that one needs to explain how to employ the system; from initial listing to completed arrowgraph. The samples of his work include illustration of off-page connectors between arrowgraphs. The great advantage to using diagrams like this is that they present relations between individual terms in a format that is easy to comprehend. But of even greater value is the fact that one can use his arrowgraphs as schematics for making three-dimensional wire-and-ball models, in which the relationships may be seen even more clearly. In fact, errors or gaps in relations are much easier to find with this methodology. One also can get across the notion of the threedimensionality of classification systems with such models. Pettee's "hand reaching up and over" (q.v.) is not a figment of the imagination. While the actual hand is a wire or stick, the concept visualized is helpful in illuminating the three-dimensional figure that is latent in all systems that have cross-references or "broader," "narrower," or, especially, "related" terms. Classification schedules, being hemmed in by the dimensions of the printed page, also benefit from such physical illustrations. Rolling, an engineer by conviction, was the developer of information systems for the Cobalt Institute, the European Atomic Energy Community, and European Coal and Steel Community. He also developed and promoted computer-aided translation at the Commission of the European Communities in Luxembourg. One of his objectives has always been to increase the efficiency of mono- and multilingual thesauri for use in multinational information systems.
    Footnote
    Original in: Classification research: Proceedings of the Second International Study Conference held at Hotel Prins Hamlet, Elsinore, Denmark, 14th-18th Sept. 1964. Ed.: Pauline Atherton. Copenhagen: Munksgaard 1965. S.295-310.
    Source
    Theory of subject analysis: a sourcebook. Ed.: L.M. Chan, et al
  11. Tang, M.-C.: Browsing and searching in a faceted information space : a naturalistic study of PubMed users' interaction with a display tool (2007) 0.05
    0.05136773 = product of:
      0.08561288 = sum of:
        0.019695079 = weight(_text_:of in 617) [ClassicSimilarity], result of:
          0.019695079 = score(doc=617,freq=18.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.25915858 = fieldWeight in 617, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=617)
        0.034342952 = weight(_text_:subject in 617) [ClassicSimilarity], result of:
          0.034342952 = score(doc=617,freq=2.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.19758089 = fieldWeight in 617, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=617)
        0.03157485 = product of:
          0.0631497 = sum of:
            0.0631497 = weight(_text_:headings in 617) [ClassicSimilarity], result of:
              0.0631497 = score(doc=617,freq=2.0), product of:
                0.23569997 = queryWeight, product of:
                  4.849944 = idf(docFreq=940, maxDocs=44218)
                  0.04859849 = queryNorm
                0.2679241 = fieldWeight in 617, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.849944 = idf(docFreq=940, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=617)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    The study adopts a naturalistic approach to investigate users' interaction with a browsable MeSH (medical subject headings) display designed to facilitate query construction for the PubMed bibliographic database. The purpose of the study is twofold: first, to test the usefulness of a browsable interface utilizing the principle of faceted classification; and second, to investigate users' preferred query submission methods in different problematic situations. An interface that incorporated multiple query submission methods - the conventional single-line query box as well as methods associated the faceted classification display was constructed. Participants' interactions with the interface were monitored remotely over a period of 10 weeks; information about their problematic situations and information retrieval behaviors were also collected during this time. The traditional controlled experiment was not adequate in answering the author's research questions; hence, the author provides his rationale for a naturalistic approach. The study's findings show that there is indeed a selective compatibility between query submission methods provided by the MeSH display and users' problematic situations. The query submission methods associated with the display were found to be the preferred search tools when users' information needs were vague and the search topics unfamiliar. The findings support the theoretical proposition that users engaging in an information retrieval process with a variety of problematic situations need different approaches. The author argues that rather than treat the information retrieval system as a general purpose tool, more attention should be given to the interaction between the functionality of the tool and the characteristics of users' problematic situations.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.13, S.1998-2006
  12. Boyack, K.W.; Wylie, B.N.; Davidson, G.S.: Domain visualization using VxInsight®) [register mark] for science and technology management (2002) 0.04
    0.039289746 = product of:
      0.098224364 = sum of:
        0.081616014 = weight(_text_:list in 5244) [ClassicSimilarity], result of:
          0.081616014 = score(doc=5244,freq=4.0), product of:
            0.25191793 = queryWeight, product of:
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.04859849 = queryNorm
            0.32397857 = fieldWeight in 5244, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.03125 = fieldNorm(doc=5244)
        0.01660835 = weight(_text_:of in 5244) [ClassicSimilarity], result of:
          0.01660835 = score(doc=5244,freq=20.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.21854173 = fieldWeight in 5244, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=5244)
      0.4 = coord(2/5)
    
    Abstract
    Boyack, Wylie, and Davidson developed VxInsight which transforms information from documents into a landscape representation which conveys information on the implicit structure of the data as context for queries and exploration. From a list of pre-computed similarities it creates on a plane an x,y location for each item, or can compute its own similarities based on direct and co-citation linkages. Three-dimensional overlays are then generated on the plane to show the extent of clustering at particular points. Metadata associated with clustered objects provides a label for each peak from common words. Clicking on an object will provide citation information and answer sets for queries run will be displayed as markers on the landscape. A time slider allows a view of terrain changes over time. In a test on the microsystems engineering literature a review article was used to provide seed terms to search Science Citation Index and retrieve 20,923 articles of which 13,433 were connected by citation to at least one other article in the set. The citation list was used to calculate similarity measures and x.y coordinates for each article. Four main categories made up the landscape with 90% of the articles directly related to one or more of the four. A second test used five databases: SCI, Cambridge Scientific Abstracts, Engineering Index, INSPEC, and Medline to extract 17,927 unique articles by Sandia, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory, with text of abstracts and RetrievalWare 6.6 utilized to generate the similarity measures. The subsequent map revealed that despite some overlap the laboratories generally publish in different areas. A third test on 3000 physical science journals utilized 4.7 million articles from SCI where similarity was the un-normalized sum of cites between journals in both directions. Physics occupies a central position, with engineering, mathematics, computing, and materials science strongly linked. Chemistry is farther removed but strongly connected.
    Source
    Journal of the American Society for Information Science and Technology. 53(2002) no.9, S.764-774
  13. Aletras, N.; Baldwin, T.; Lau, J.H.; Stevenson, M.: Evaluating topic representations for exploring document collections (2017) 0.04
    0.036283102 = product of:
      0.09070775 = sum of:
        0.07213905 = weight(_text_:list in 3325) [ClassicSimilarity], result of:
          0.07213905 = score(doc=3325,freq=2.0), product of:
            0.25191793 = queryWeight, product of:
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.04859849 = queryNorm
            0.2863593 = fieldWeight in 3325, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3325)
        0.0185687 = weight(_text_:of in 3325) [ClassicSimilarity], result of:
          0.0185687 = score(doc=3325,freq=16.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.24433708 = fieldWeight in 3325, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3325)
      0.4 = coord(2/5)
    
    Abstract
    Topic models have been shown to be a useful way of representing the content of large document collections, for example, via visualization interfaces (topic browsers). These systems enable users to explore collections by way of latent topics. A standard way to represent a topic is using a term list; that is the top-n words with highest conditional probability within the topic. Other topic representations such as textual and image labels also have been proposed. However, there has been no comparison of these alternative representations. In this article, we compare 3 different topic representations in a document retrieval task. Participants were asked to retrieve relevant documents based on predefined queries within a fixed time limit, presenting topics in one of the following modalities: (a) lists of terms, (b) textual phrase labels, and (c) image labels. Results show that textual labels are easier for users to interpret than are term lists and image labels. Moreover, the precision of retrieved documents for textual and image labels is comparable to the precision achieved by representing topics using term lists, demonstrating that labeling methods are an effective alternative topic representation.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.1, S.154-167
  14. Zhang, J.; Nguyen, T.: WebStar: a visualization model for hyperlink structures (2005) 0.04
    0.035598524 = product of:
      0.088996306 = sum of:
        0.017615816 = weight(_text_:of in 1056) [ClassicSimilarity], result of:
          0.017615816 = score(doc=1056,freq=10.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.23179851 = fieldWeight in 1056, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1056)
        0.07138049 = weight(_text_:subject in 1056) [ClassicSimilarity], result of:
          0.07138049 = score(doc=1056,freq=6.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.41066417 = fieldWeight in 1056, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.046875 = fieldNorm(doc=1056)
      0.4 = coord(2/5)
    
    Abstract
    The authors introduce an information visualization model, WebStar, for hyperlink-based information systems. Hyperlinks within a hyperlink-based document can be visualized in a two-dimensional visual space. All links are projected within a display sphere in the visual space. The relationship between a specified central document and its hyperlinked documents is visually presented in the visual space. In addition, users are able to define a group of subjects and to observe relevance between each subject and all hyperlinked documents via movement of that subject around the display sphere center. WebStar allows users to dynamically change an interest center during navigation. A retrieval mechanism is developed to control retrieved results in the visual space. Impact of movement of a subject on the visual document distribution is analyzed. An ambiguity problem caused by projection is discussed. Potential applications of this visualization model in information retrieval are included. Future research directions on the topic are addressed.
  15. Golub, K.; Ziolkowski, P.M.; Zlodi, G.: Organizing subject access to cultural heritage in Swedish online museums (2022) 0.03
    0.034200933 = product of:
      0.08550233 = sum of:
        0.024067784 = weight(_text_:of in 688) [ClassicSimilarity], result of:
          0.024067784 = score(doc=688,freq=42.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.31669703 = fieldWeight in 688, product of:
              6.4807405 = tf(freq=42.0), with freq of:
                42.0 = termFreq=42.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=688)
        0.06143454 = weight(_text_:subject in 688) [ClassicSimilarity], result of:
          0.06143454 = score(doc=688,freq=10.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.35344344 = fieldWeight in 688, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03125 = fieldNorm(doc=688)
      0.4 = coord(2/5)
    
    Abstract
    Purpose The study aims to paint a representative picture of the current state of search interfaces of Swedish online museum collections, focussing on search functionalities with particular reference to subject searching, as well as the use of controlled vocabularies, with the purpose of identifying which improvements of the search interfaces are needed to ensure high-quality information retrieval for the end user. Design/methodology/approach In the first step, a set of 21 search interface criteria was identified, based on related research and current standards in the domain of cultural heritage knowledge organization. Secondly, a complete set of Swedish museums that provide online access to their collections was identified, comprising nine cross-search services and 91 individual museums' websites. These 100 websites were each evaluated against the 21 criteria, between 1 July and 31 August 2020. Findings Although many standards and guidelines are in place to ensure quality-controlled subject indexing, which in turn support information retrieval of relevant resources (as individual or full search results), the study shows that they are not broadly implemented, resulting in information retrieval failures for the end user. The study also demonstrates a strong need for the implementation of controlled vocabularies in these museums. Originality/value This study is a rare piece of research which examines subject searching in online museums; the 21 search criteria and their use in the analysis of the complete set of online collections of a country represents a considerable and unique contribution to the fields of knowledge organization and information retrieval of cultural heritage. Its particular value lies in showing how the needs of end users, many of which are documented and reflected in international standards and guidelines, should be taken into account in designing search tools for these museums; especially so in subject searching, which is the most complex and yet the most common type of search. Much effort has been invested into digitizing cultural heritage collections, but access to them is hindered by poor search functionality. This study identifies which are the most important aspects to improve.
    Source
    Journal of documentation. 78(2022) no.7, S.211-247
  16. Koch, T.; Golub, K.; Ardö, A.: Users browsing behaviour in a DDC-based Web service : a log analysis (2006) 0.03
    0.03103163 = product of:
      0.07757907 = sum of:
        0.019297158 = weight(_text_:of in 2234) [ClassicSimilarity], result of:
          0.019297158 = score(doc=2234,freq=12.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.25392252 = fieldWeight in 2234, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2234)
        0.058281917 = weight(_text_:subject in 2234) [ClassicSimilarity], result of:
          0.058281917 = score(doc=2234,freq=4.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.33530587 = fieldWeight in 2234, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.046875 = fieldNorm(doc=2234)
      0.4 = coord(2/5)
    
    Abstract
    This study explores the navigation behaviour of all users of a large web service, Renardus, using web log analysis. Renardus provides integrated searching and browsing access to quality-controlled web resources from major individual subject gateway services. The main navigation feature is subject browsing through the Dewey Decimal Classification (DDC) based on mapping of classes of resources from the distributed gateways to the DDC structure. Among the more surprising results are the hugely dominant share of browsing activities, the good use of browsing support features like the graphical fish-eye overviews, rather long and varied navigation sequences, as well as extensive hierarchical directory-style browsing through the large DDC system.
  17. Oh, D.G.: Revision of the national classification system through cooperative efforts : a case of Korean Decimal Classification 6th Edition (KDC 6) (2018) 0.03
    0.030261297 = product of:
      0.07565324 = sum of:
        0.02757311 = weight(_text_:of in 4646) [ClassicSimilarity], result of:
          0.02757311 = score(doc=4646,freq=18.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.36282203 = fieldWeight in 4646, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4646)
        0.04808013 = weight(_text_:subject in 4646) [ClassicSimilarity], result of:
          0.04808013 = score(doc=4646,freq=2.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.27661324 = fieldWeight in 4646, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4646)
      0.4 = coord(2/5)
    
    Abstract
    The general characteristics of the sixth edition of Korean Decimal Classification (KDC 6), maintained and published by the Korean Library Association (KLA), are described in detail. The processes and procedures of the revision are analyzed with special regard to various cooperative efforts of the editorial committee with the National Library of Korea, with various groups of classification researchers, library practitioners, and specialists from subject areas, and with the headquarters of the KLA and editorial publishing team. Some ideas and recommendations for future research and development for national classification systems are suggested.
  18. Julien, C.-A.; Leide, J.E.; Bouthillier, F.: Controlled user evaluations of information visualization interfaces for text retrieval : literature review and meta-analysis (2008) 0.03
    0.027400738 = product of:
      0.068501845 = sum of:
        0.027290303 = weight(_text_:of in 1718) [ClassicSimilarity], result of:
          0.027290303 = score(doc=1718,freq=24.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.3591007 = fieldWeight in 1718, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1718)
        0.041211538 = weight(_text_:subject in 1718) [ClassicSimilarity], result of:
          0.041211538 = score(doc=1718,freq=2.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.23709705 = fieldWeight in 1718, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.046875 = fieldNorm(doc=1718)
      0.4 = coord(2/5)
    
    Abstract
    This review describes experimental designs (users, search tasks, measures, etc.) used by 31 controlled user studies of information visualization (IV) tools for textual information retrieval (IR) and a meta-analysis of the reported statistical effects. Comparable experimental designs allow research designers to compare their results with other reports, and support the development of experimentally verified design guidelines concerning which IV techniques are better suited to which types of IR tasks. The studies generally use a within-subject design with 15 or more undergraduate students performing browsing to known-item tasks on sets of at least 1,000 full-text articles or Web pages on topics of general interest/news. Results of the meta-analysis (N = 8) showed no significant effects of the IV tool as compared with a text-only equivalent, but the set shows great variability suggesting an inadequate basis of comparison. Experimental design recommendations are provided which would support comparison of existing IV tools for IR usability testing.
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.6, S.1012-1024
  19. Howarth, L.C.: Mapping the world of knowledge : cartograms and the diffusion of knowledge 0.03
    0.027400738 = product of:
      0.068501845 = sum of:
        0.027290303 = weight(_text_:of in 3550) [ClassicSimilarity], result of:
          0.027290303 = score(doc=3550,freq=24.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.3591007 = fieldWeight in 3550, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3550)
        0.041211538 = weight(_text_:subject in 3550) [ClassicSimilarity], result of:
          0.041211538 = score(doc=3550,freq=2.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.23709705 = fieldWeight in 3550, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.046875 = fieldNorm(doc=3550)
      0.4 = coord(2/5)
    
    Abstract
    Displaying aspects of "aboutness" by means of non-verbal representations, such as notations, symbols, or icons, or through rich visual displays, such as those of topic maps, can facilitate meaning-making, putting information in context, and situating it relative to other information. As the design of displays of web-enabled information has struggled to keep pace with a bourgeoning body of digital content, increasingly innovative approaches to organizing search results have warranted greater attention. Using Worldmapper as an example, this paper examines cartograms - a derivative of the data map which adds dimensionality to the geographic positioning of information - as one approach to representing and managing subject content, and to tracking the diffusion of knowledge across place and time.
    Source
    Paradigms and conceptual systems in knowledge organization: Proceedings of the Eleventh International ISKO conference, Rome, 23-26 February 2010, ed. Claudio Gnoli, Indeks, Frankfurt M
  20. Slavic, A.: Interface to classification : some objectives and options (2006) 0.03
    0.025938256 = product of:
      0.06484564 = sum of:
        0.023634095 = weight(_text_:of in 2131) [ClassicSimilarity], result of:
          0.023634095 = score(doc=2131,freq=18.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.3109903 = fieldWeight in 2131, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2131)
        0.041211538 = weight(_text_:subject in 2131) [ClassicSimilarity], result of:
          0.041211538 = score(doc=2131,freq=2.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.23709705 = fieldWeight in 2131, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.046875 = fieldNorm(doc=2131)
      0.4 = coord(2/5)
    
    Abstract
    This is a preprint to be published in the Extensions & Corrections to the UDC. The paper explains the basic functions of browsing and searching that need to be supported in relation to analytico-synthetic classifications such as Universal Decimal Classification (UDC), irrespective of any specific, real-life implementation. UDC is an example of a semi-faceted system that can be used, for instance, for both post-coordinate searching and hierarchical/facet browsing. The advantages of using a classification for IR, however, depend on the strength of the GUI, which should provide a user-friendly interface to classification browsing and searching. The power of this interface is in supporting visualisation that will 'convert' what is potentially a user-unfriendly indexing language based on symbols, to a subject presentation that is easy to understand, search and navigate. A summary of the basic functions of searching and browsing a classification that may be provided on a user-friendly interface is given and examples of classification browsing interfaces are provided.

Years

Languages

  • e 141
  • d 7
  • a 1
  • More… Less…

Types

  • a 126
  • el 28
  • m 12
  • x 6
  • s 2
  • b 1
  • p 1
  • r 1
  • More… Less…

Subjects

Classifications