Search (113 results, page 1 of 6)

  • × type_ss:"x"
  1. Li, Z.: ¬A domain specific search engine with explicit document relations (2013) 0.17
    0.17355756 = product of:
      0.23141009 = sum of:
        0.08726498 = weight(_text_:web in 1210) [ClassicSimilarity], result of:
          0.08726498 = score(doc=1210,freq=18.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.5408555 = fieldWeight in 1210, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1210)
        0.06598687 = weight(_text_:search in 1210) [ClassicSimilarity], result of:
          0.06598687 = score(doc=1210,freq=8.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.3840117 = fieldWeight in 1210, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1210)
        0.07815824 = product of:
          0.15631647 = sum of:
            0.15631647 = weight(_text_:engine in 1210) [ClassicSimilarity], result of:
              0.15631647 = score(doc=1210,freq=8.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.59104156 = fieldWeight in 1210, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1210)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    The current web consists of documents that are highly heterogeneous and hard for machines to understand. The Semantic Web is a progressive movement of the Word Wide Web, aiming at converting the current web of unstructured documents to the web of data. In the Semantic Web, web documents are annotated with metadata using standardized ontology language. These annotated documents are directly processable by machines and it highly improves their usability and usefulness. In Ericsson, similar problems occur. There are massive documents being created with well-defined structures. Though these documents are about domain specific knowledge and can have rich relations, they are currently managed by a traditional search engine, which ignores the rich domain specific information and presents few data to users. Motivated by the Semantic Web, we aim to find standard ways to process these documents, extract rich domain specific information and annotate these data to documents with formal markup languages. We propose this project to develop a domain specific search engine for processing different documents and building explicit relations for them. This research project consists of the three main focuses: examining different domain specific documents and finding ways to extract their metadata; integrating a text search engine with an ontology server; exploring novel ways to build relations for documents. We implement this system and demonstrate its functions. As a prototype, the system provides required features and will be extended in the future.
    Theme
    Semantic Web
  2. Farazi, M.: Faceted lightweight ontologies : a formalization and some experiments (2010) 0.11
    0.11160877 = product of:
      0.1488117 = sum of:
        0.065435804 = product of:
          0.1963074 = sum of:
            0.1963074 = weight(_text_:3a in 4997) [ClassicSimilarity], result of:
              0.1963074 = score(doc=4997,freq=2.0), product of:
                0.41914827 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.049439456 = queryNorm
                0.46834838 = fieldWeight in 4997, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4997)
          0.33333334 = coord(1/3)
        0.050382458 = weight(_text_:web in 4997) [ClassicSimilarity], result of:
          0.050382458 = score(doc=4997,freq=6.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.3122631 = fieldWeight in 4997, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4997)
        0.032993436 = weight(_text_:search in 4997) [ClassicSimilarity], result of:
          0.032993436 = score(doc=4997,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.19200584 = fieldWeight in 4997, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4997)
      0.75 = coord(3/4)
    
    Abstract
    While classifications are heavily used to categorize web content, the evolution of the web foresees a more formal structure - ontology - which can serve this purpose. Ontologies are core artifacts of the Semantic Web which enable machines to use inference rules to conduct automated reasoning on data. Lightweight ontologies bridge the gap between classifications and ontologies. A lightweight ontology (LO) is an ontology representing a backbone taxonomy where the concept of the child node is more specific than the concept of the parent node. Formal lightweight ontologies can be generated from their informal ones. The key applications of formal lightweight ontologies are document classification, semantic search, and data integration. However, these applications suffer from the following problems: the disambiguation accuracy of the state of the art NLP tools used in generating formal lightweight ontologies from their informal ones; the lack of background knowledge needed for the formal lightweight ontologies; and the limitation of ontology reuse. In this dissertation, we propose a novel solution to these problems in formal lightweight ontologies; namely, faceted lightweight ontology (FLO). FLO is a lightweight ontology in which terms, present in each node label, and their concepts, are available in the background knowledge (BK), which is organized as a set of facets. A facet can be defined as a distinctive property of the groups of concepts that can help in differentiating one group from another. Background knowledge can be defined as a subset of a knowledge base, such as WordNet, and often represents a specific domain.
    Content
    PhD Dissertation at International Doctorate School in Information and Communication Technology. Vgl.: https%3A%2F%2Fcore.ac.uk%2Fdownload%2Fpdf%2F150083013.pdf&usg=AOvVaw2n-qisNagpyT0lli_6QbAQ.
  3. Haveliwala, T.: Context-Sensitive Web search (2005) 0.09
    0.08958365 = product of:
      0.1791673 = sum of:
        0.0735883 = weight(_text_:web in 2567) [ClassicSimilarity], result of:
          0.0735883 = score(doc=2567,freq=20.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.45608947 = fieldWeight in 2567, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=2567)
        0.105578996 = weight(_text_:search in 2567) [ClassicSimilarity], result of:
          0.105578996 = score(doc=2567,freq=32.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.6144187 = fieldWeight in 2567, product of:
              5.656854 = tf(freq=32.0), with freq of:
                32.0 = termFreq=32.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=2567)
      0.5 = coord(2/4)
    
    Abstract
    As the Web continues to grow and encompass broader and more diverse sources of information, providing effective search facilities to users becomes an increasingly challenging problem. To help users deal with the deluge of Web-accessible information, we propose a search system which makes use of context to improve search results in a scalable way. By context, we mean any sources of information, in addition to any search query, that provide clues about the user's true information need. For instance, a user's bookmarks and search history can be considered a part of the search context. We consider two types of context-based search. The first type of functionality we consider is "similarity search." In this case, as the user is browsing Web pages, URLs for pages similar to the current page are retrieved and displayed in a side panel. No query is explicitly issued; context alone (i.e., the page currently being viewed) is used to provide the user with useful related information. The second type of functionality involves taking search context into account when ranking results to standard search queries. Web search differs from traditional information retrieval tasks in several major ways, making effective context-sensitive Web search challenging. First, scalability is of critical importance. With billions of publicly accessible documents, the Web is much larger than traditional datasets. Similarly, with millions of search queries issued each day, the query load is much higher than for traditional information retrieval systems. Second, there are no guarantees on the quality ofWeb pages, with Web-authors taking an adversarial, rather than cooperative, approach in attempts to inflate the rankings of their pages. Third, there is a significant amount of metadata embodied in the link structure corresponding to the hyperlinks between Web pages that can be exploitedduring the retrieval process. In this thesis, we design a search system, using the Stanford WebBase platform, that exploits the link structure of the Web to provide scalable, context-sensitive search.
  4. Vocht, L. De: Exploring semantic relationships in the Web of Data : Semantische relaties verkennen in data op het web (2017) 0.07
    0.06504209 = product of:
      0.13008419 = sum of:
        0.05817665 = weight(_text_:web in 4232) [ClassicSimilarity], result of:
          0.05817665 = score(doc=4232,freq=32.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.36057037 = fieldWeight in 4232, product of:
              5.656854 = tf(freq=32.0), with freq of:
                32.0 = termFreq=32.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4232)
        0.07190753 = weight(_text_:search in 4232) [ClassicSimilarity], result of:
          0.07190753 = score(doc=4232,freq=38.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.41846704 = fieldWeight in 4232, product of:
              6.164414 = tf(freq=38.0), with freq of:
                38.0 = termFreq=38.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4232)
      0.5 = coord(2/4)
    
    Abstract
    After the launch of the World Wide Web, it became clear that searching documentson the Web would not be trivial. Well-known engines to search the web, like Google, focus on search in web documents using keywords. The documents are structured and indexed to ensure keywords match documents as accurately as possible. However, searching by keywords does not always suice. It is oen the case that users do not know exactly how to formulate the search query or which keywords guarantee retrieving the most relevant documents. Besides that, it occurs that users rather want to browse information than looking up something specific. It turned out that there is need for systems that enable more interactivity and facilitate the gradual refinement of search queries to explore the Web. Users expect more from the Web because the short keyword-based queries they pose during search, do not suffice for all cases. On top of that, the Web is changing structurally. The Web comprises, apart from a collection of documents, more and more linked data, pieces of information structured so they can be processed by machines. The consequently applied semantics allow users to exactly indicate machines their search intentions. This is made possible by describing data following controlled vocabularies, concept lists composed by experts, published uniquely identifiable on the Web. Even so, it is still not trivial to explore data on the Web. There is a large variety of vocabularies and various data sources use different terms to identify the same concepts.
    This PhD-thesis describes how to effectively explore linked data on the Web. The main focus is on scenarios where users want to discover relationships between resources rather than finding out more about something specific. Searching for a specific document or piece of information fits in the theoretical framework of information retrieval and is associated with exploratory search. Exploratory search goes beyond 'looking up something' when users are seeking more detailed understanding, further investigation or navigation of the initial search results. The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. Queries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research. Our first technique focuses on the interactive visualization of search results. Linked data resources can be brought in relation with each other at will. This leads to complex and diverse graphs structures. Our technique facilitates navigation and supports a workflow starting from a broad overview on the data and allows narrowing down until the desired level of detail to then broaden again. To validate the flow, two visualizations where implemented and presented to test-users. The users judged the usability of the visualizations, how the visualizations fit in the workflow and to which degree their features seemed useful for the exploration of linked data.
    The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. eries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research.
    Our first technique focuses on the interactive visualization of search results. Linked data resources can be brought in relation with each other at will. This leads to complex and diverse graphs structures. Our technique facilitates navigation and supports a workflow starting from a broad overview on the data and allows narrowing down until the desired level of detail to then broaden again. To validate the flow, two visualizations where implemented and presented to test-users. The users judged the usability of the visualizations, how the visualizations fit in the workflow and to which degree their features seemed useful for the exploration of linked data. There is a difference in the way users interact with resources, visually or textually, and how resources are represented for machines to be processed by algorithms. This difference complicates bridging the users' intents and machine executable queries. It is important to implement this 'translation' mechanism to impact the search as favorable as possible in terms of performance, complexity and accuracy. To do this, we explain a second technique, that supports such a bridging component. Our second technique is developed around three features that support the search process: looking up, relating and ranking resources. The main goal is to ensure that resources in the results are as precise and relevant as possible. During the evaluation of this technique, we did not only look at the precision of the search results but also investigated how the effectiveness of the search evolved while the user executed certain actions sequentially.
    When we speak about finding relationships between resources, it is necessary to dive deeper in the structure. The graph structure of linked data where the semantics give meaning to the relationships between resources enable the execution of pathfinding algorithms. The assigned weights and heuristics are base components of such algorithms and ultimately define (the order) which resources are included in a path. These paths explain indirect connections between resources. Our third technique proposes an algorithm that optimizes the choice of resources in terms of serendipity. Some optimizations guard the consistence of candidate-paths where the coherence of consecutive connections is maximized to avoid trivial and too arbitrary paths. The implementation uses the A* algorithm, the de-facto reference when it comes to heuristically optimized minimal cost paths. The effectiveness of paths was measured based on common automatic metrics and surveys where the users could indicate their preference for paths, generated each time in a different way. Finally, all our techniques are applied to a use case about publications in digital libraries where they are aligned with information about scientific conferences and researchers. The application to this use case is a practical example because the different aspects of exploratory search come together. In fact, the techniques also evolved from the experiences when implementing the use case. Practical details about the semantic model are explained and the implementation of the search system is clarified module by module. The evaluation positions the result, a prototype of a tool to explore scientific publications, researchers and conferences next to some important alternatives.
    Theme
    Semantic Web
  5. Ziemba, L.: Information retrieval with concept discovery in digital collections for agriculture and natural resources (2011) 0.06
    0.060696527 = product of:
      0.080928706 = sum of:
        0.023270661 = weight(_text_:web in 4728) [ClassicSimilarity], result of:
          0.023270661 = score(doc=4728,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.14422815 = fieldWeight in 4728, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=4728)
        0.026394749 = weight(_text_:search in 4728) [ClassicSimilarity], result of:
          0.026394749 = score(doc=4728,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.15360467 = fieldWeight in 4728, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=4728)
        0.031263296 = product of:
          0.06252659 = sum of:
            0.06252659 = weight(_text_:engine in 4728) [ClassicSimilarity], result of:
              0.06252659 = score(doc=4728,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.23641664 = fieldWeight in 4728, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4728)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    The amount and complexity of information available in a digital form is already huge and new information is being produced every day. Retrieving information relevant to address a particular need becomes a significant issue. This work utilizes knowledge organization systems (KOS), such as thesauri and ontologies and applies information extraction (IE) and computational linguistics (CL) techniques to organize, manage and retrieve information stored in digital collections in the agricultural domain. Two real world applications of the approach have been developed and are available and actively used by the public. An ontology is used to manage the Water Conservation Digital Library holding a dynamic collection of various types of digital resources in the domain of urban water conservation in Florida, USA. The ontology based back-end powers a fully operational web interface, available at http://library.conservefloridawater.org. The system has demonstrated numerous benefits of the ontology application, including accurate retrieval of resources, information sharing and reuse, and has proved to effectively facilitate information management. The major difficulty encountered with the approach is that large and dynamic number of concepts makes it difficult to keep the ontology consistent and to accurately catalog resources manually. To address the aforementioned issues, a combination of IE and CL techniques, such as Vector Space Model and probabilistic parsing, with the use of Agricultural Thesaurus were adapted to automatically extract concepts important for each of the texts in the Best Management Practices (BMP) Publication Library--a collection of documents in the domain of agricultural BMPs in Florida available at http://lyra.ifas.ufl.edu/LIB. A new approach of domain-specific concept discovery with the use of Internet search engine was developed. Initial evaluation of the results indicates significant improvement in precision of information extraction. The approach presented in this work focuses on problems unique to agriculture and natural resources domain, such as domain specific concepts and vocabularies, but should be applicable to any collection of texts in digital format. It may be of potential interest for anyone who needs to effectively manage a collection of digital resources.
  6. Bertram, J.: Informationen verzweifelt gesucht : Enterprise Search in österreichischen Großunternehmen (2011) 0.06
    0.05548736 = product of:
      0.11097472 = sum of:
        0.08729243 = weight(_text_:search in 2657) [ClassicSimilarity], result of:
          0.08729243 = score(doc=2657,freq=14.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.5079997 = fieldWeight in 2657, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2657)
        0.02368229 = product of:
          0.04736458 = sum of:
            0.04736458 = weight(_text_:22 in 2657) [ClassicSimilarity], result of:
              0.04736458 = score(doc=2657,freq=4.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.27358043 = fieldWeight in 2657, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2657)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Die Arbeit geht dem Status quo der unternehmensweiten Suche in österreichischen Großunternehmen nach und beleuchtet Faktoren, die darauf Einfluss haben. Aus der Analyse des Ist-Zustands wird der Bedarf an Enterprise-Search-Software abgeleitet und es werden Rahmenbedingungen für deren erfolgreiche Einführung skizziert. Die Untersuchung stützt sich auf eine im Jahr 2009 durchgeführte Onlinebefragung von 469 österreichischen Großunternehmen (Rücklauf 22 %) und daran anschließende Leitfadeninterviews mit zwölf Teilnehmern der Onlinebefragung. Der theoretische Teil verortet die Arbeit im Kontext des Informations- und Wissensmanagements. Der Fokus liegt auf dem Ansatz der Enterprise Search, ihrer Abgrenzung gegenüber der Suche im Internet und ihrem Leistungsspektrum. Im empirischen Teil wird zunächst aufgezeigt, wie die Unternehmen ihre Informationen organisieren und welche Probleme dabei auftreten. Es folgt eine Analyse des Status quo der Informati-onssuche im Unternehmen. Abschließend werden Bekanntheit und Einsatz von Enterprise-Search-Software in der Zielgruppe untersucht sowie für die Einführung dieser Software nötige Rahmenbedingungen benannt. Defizite machen die Befragten insbesondere im Hinblick auf die übergreifende Suche im Unternehmen und die Suche nach Kompetenzträgern aus. Hier werden Lücken im Wissensmanagement offenbar. 29 % der Respondenten der Onlinebefragung geben zu-dem an, dass es in ihren Unternehmen gelegentlich bis häufig zu Fehlentscheidungen infolge defizitärer Informationslagen kommt. Enterprise-Search-Software kommt in 17 % der Unternehmen, die sich an der Onlinebefragung beteiligten, zum Einsatz. Die durch Enterprise-Search-Software bewirkten Veränderungen werden grundsätzlich posi-tiv beurteilt. Alles in allem zeigen die Ergebnisse, dass Enterprise-Search-Strategien nur Erfolg haben können, wenn man sie in umfassende Maßnahmen des Informations- und Wissensmanagements einbettet.
    Date
    22. 1.2016 20:40:31
  7. Shala, E.: ¬Die Autonomie des Menschen und der Maschine : gegenwärtige Definitionen von Autonomie zwischen philosophischem Hintergrund und technologischer Umsetzbarkeit (2014) 0.05
    0.047262065 = product of:
      0.09452413 = sum of:
        0.065435804 = product of:
          0.1963074 = sum of:
            0.1963074 = weight(_text_:3a in 4388) [ClassicSimilarity], result of:
              0.1963074 = score(doc=4388,freq=2.0), product of:
                0.41914827 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.049439456 = queryNorm
                0.46834838 = fieldWeight in 4388, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4388)
          0.33333334 = coord(1/3)
        0.029088326 = weight(_text_:web in 4388) [ClassicSimilarity], result of:
          0.029088326 = score(doc=4388,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.18028519 = fieldWeight in 4388, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4388)
      0.5 = coord(2/4)
    
    Footnote
    Vgl. unter: https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwizweHljdbcAhVS16QKHXcFD9QQFjABegQICRAB&url=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F271200105_Die_Autonomie_des_Menschen_und_der_Maschine_-_gegenwartige_Definitionen_von_Autonomie_zwischen_philosophischem_Hintergrund_und_technologischer_Umsetzbarkeit_Redigierte_Version_der_Magisterarbeit_Karls&usg=AOvVaw06orrdJmFF2xbCCp_hL26q.
  8. Gabler, S.: Vergabe von DDC-Sachgruppen mittels eines Schlagwort-Thesaurus (2021) 0.05
    0.047262065 = product of:
      0.09452413 = sum of:
        0.065435804 = product of:
          0.1963074 = sum of:
            0.1963074 = weight(_text_:3a in 1000) [ClassicSimilarity], result of:
              0.1963074 = score(doc=1000,freq=2.0), product of:
                0.41914827 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.049439456 = queryNorm
                0.46834838 = fieldWeight in 1000, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1000)
          0.33333334 = coord(1/3)
        0.029088326 = weight(_text_:web in 1000) [ClassicSimilarity], result of:
          0.029088326 = score(doc=1000,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.18028519 = fieldWeight in 1000, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1000)
      0.5 = coord(2/4)
    
    Content
    Master thesis Master of Science (Library and Information Studies) (MSc), Universität Wien. Advisor: Christoph Steiner. Vgl.: https://www.researchgate.net/publication/371680244_Vergabe_von_DDC-Sachgruppen_mittels_eines_Schlagwort-Thesaurus. DOI: 10.25365/thesis.70030. Vgl. dazu die Präsentation unter: https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=web&cd=&ved=0CAIQw7AJahcKEwjwoZzzytz_AhUAAAAAHQAAAAAQAg&url=https%3A%2F%2Fwiki.dnb.de%2Fdownload%2Fattachments%2F252121510%2FDA3%2520Workshop-Gabler.pdf%3Fversion%3D1%26modificationDate%3D1671093170000%26api%3Dv2&psig=AOvVaw0szwENK1or3HevgvIDOfjx&ust=1687719410889597&opi=89978449.
  9. Huo, W.: Automatic multi-word term extraction and its application to Web-page summarization (2012) 0.04
    0.044953533 = product of:
      0.089907065 = sum of:
        0.06981198 = weight(_text_:web in 563) [ClassicSimilarity], result of:
          0.06981198 = score(doc=563,freq=8.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.43268442 = fieldWeight in 563, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=563)
        0.02009509 = product of:
          0.04019018 = sum of:
            0.04019018 = weight(_text_:22 in 563) [ClassicSimilarity], result of:
              0.04019018 = score(doc=563,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.23214069 = fieldWeight in 563, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=563)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    In this thesis we propose three new word association measures for multi-word term extraction. We combine these association measures with LocalMaxs algorithm in our extraction model and compare the results of different multi-word term extraction methods. Our approach is language and domain independent and requires no training data. It can be applied to such tasks as text summarization, information retrieval, and document classification. We further explore the potential of using multi-word terms as an effective representation for general web-page summarization. We extract multi-word terms from human written summaries in a large collection of web-pages, and generate the summaries by aligning document words with these multi-word terms. Our system applies machine translation technology to learn the aligning process from a training set and focuses on selecting high quality multi-word terms from human written summaries to generate suitable results for web-page summarization.
    Date
    10. 1.2013 19:22:47
  10. Líska, M.: Evaluation of mathematics retrieval (2013) 0.04
    0.043457236 = product of:
      0.08691447 = sum of:
        0.04072366 = weight(_text_:web in 1653) [ClassicSimilarity], result of:
          0.04072366 = score(doc=1653,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.25239927 = fieldWeight in 1653, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1653)
        0.046190813 = weight(_text_:search in 1653) [ClassicSimilarity], result of:
          0.046190813 = score(doc=1653,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.2688082 = fieldWeight in 1653, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1653)
      0.5 = coord(2/4)
    
    Abstract
    The thesis deals with the evaluation of mathematics information retrieval (IR). It gives an overview of the history of regular IR evaluation, initiatives that are engaged in this field of research as well as most common methods and measures used for evaluation. The findings are applied to the specifics of mathematics retrieval. This thesis also summarizes the state-of-the-art of MIaS math search system, which is already being used in an international web portal. Latest developments aiming towards the second version of the system are described. In addition to participating in the international evaluation conference and workshop, MIaS is tested for effectiveness and efficiency in this work. Measured performance indicators are evaluated and future work is suggested accordingly.
  11. Eckert, K.: Thesaurus analysis and visualization in semantic search applications (2007) 0.04
    0.04286944 = product of:
      0.08573888 = sum of:
        0.046659768 = weight(_text_:search in 3222) [ClassicSimilarity], result of:
          0.046659768 = score(doc=3222,freq=4.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.27153727 = fieldWeight in 3222, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3222)
        0.03907912 = product of:
          0.07815824 = sum of:
            0.07815824 = weight(_text_:engine in 3222) [ClassicSimilarity], result of:
              0.07815824 = score(doc=3222,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.29552078 = fieldWeight in 3222, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3222)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The use of thesaurus-based indexing is a common approach for increasing the performance of information retrieval. In this thesis, we examine the suitability of a thesaurus for a given set of information and evaluate improvements of existing thesauri to get better search results. On this area, we focus on two aspects: 1. We demonstrate an analysis of the indexing results achieved by an automatic document indexer and the involved thesaurus. 2. We propose a method for thesaurus evaluation which is based on a combination of statistical measures and appropriate visualization techniques that support the detection of potential problems in a thesaurus. In this chapter, we give an overview of the context of our work. Next, we briefly outline the basics of thesaurus-based information retrieval and describe the Collexis Engine that was used for our experiments. In Chapter 3, we describe two experiments in automatically indexing documents in the areas of medicine and economics with corresponding thesauri and compare the results to available manual annotations. Chapter 4 describes methods for assessing thesauri and visualizing the result in terms of a treemap. We depict examples of interesting observations supported by the method and show that we actually find critical problems. We conclude with a discussion of open questions and future research in Chapter 5.
  12. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.04
    0.042629164 = product of:
      0.08525833 = sum of:
        0.052348644 = product of:
          0.15704593 = sum of:
            0.15704593 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.15704593 = score(doc=701,freq=2.0), product of:
                0.41914827 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.049439456 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
        0.032909684 = weight(_text_:web in 701) [ClassicSimilarity], result of:
          0.032909684 = score(doc=701,freq=4.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.2039694 = fieldWeight in 701, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
      0.5 = coord(2/4)
    
    Abstract
    By the explosion of possibilities for a ubiquitous content production, the information overload problem reaches the level of complexity which cannot be managed by traditional modelling approaches anymore. Due to their pure syntactical nature traditional information retrieval approaches did not succeed in treating content itself (i.e. its meaning, and not its representation). This leads to a very low usefulness of the results of a retrieval process for a user's task at hand. In the last ten years ontologies have been emerged from an interesting conceptualisation paradigm to a very promising (semantic) modelling technology, especially in the context of the Semantic Web. From the information retrieval point of view, ontologies enable a machine-understandable form of content description, such that the retrieval process can be driven by the meaning of the content. However, the very ambiguous nature of the retrieval process in which a user, due to the unfamiliarity with the underlying repository and/or query syntax, just approximates his information need in a query, implies a necessity to include the user in the retrieval process more actively in order to close the gap between the meaning of the content and the meaning of a user's query (i.e. his information need). This thesis lays foundation for such an ontology-based interactive retrieval process, in which the retrieval system interacts with a user in order to conceptually interpret the meaning of his query, whereas the underlying domain ontology drives the conceptualisation process. In that way the retrieval process evolves from a query evaluation process into a highly interactive cooperation between a user and the retrieval system, in which the system tries to anticipate the user's information need and to deliver the relevant content proactively. Moreover, the notion of content relevance for a user's query evolves from a content dependent artefact to the multidimensional context-dependent structure, strongly influenced by the user's preferences. This cooperation process is realized as the so-called Librarian Agent Query Refinement Process. In order to clarify the impact of an ontology on the retrieval process (regarding its complexity and quality), a set of methods and tools for different levels of content and query formalisation is developed, ranging from pure ontology-based inferencing to keyword-based querying in which semantics automatically emerges from the results. Our evaluation studies have shown that the possibilities to conceptualize a user's information need in the right manner and to interpret the retrieval results accordingly are key issues for realizing much more meaningful information retrieval systems.
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
    Theme
    Semantic Web
  13. Xiong, C.: Knowledge based text representations for information retrieval (2016) 0.04
    0.039371695 = product of:
      0.07874339 = sum of:
        0.052348644 = product of:
          0.15704593 = sum of:
            0.15704593 = weight(_text_:3a in 5820) [ClassicSimilarity], result of:
              0.15704593 = score(doc=5820,freq=2.0), product of:
                0.41914827 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.049439456 = queryNorm
                0.3746787 = fieldWeight in 5820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5820)
          0.33333334 = coord(1/3)
        0.026394749 = weight(_text_:search in 5820) [ClassicSimilarity], result of:
          0.026394749 = score(doc=5820,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.15360467 = fieldWeight in 5820, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
      0.5 = coord(2/4)
    
    Abstract
    The successes of information retrieval (IR) in recent decades were built upon bag-of-words representations. Effective as it is, bag-of-words is only a shallow text understanding; there is a limited amount of information for document ranking in the word space. This dissertation goes beyond words and builds knowledge based text representations, which embed the external and carefully curated information from knowledge bases, and provide richer and structured evidence for more advanced information retrieval systems. This thesis research first builds query representations with entities associated with the query. Entities' descriptions are used by query expansion techniques that enrich the query with explanation terms. Then we present a general framework that represents a query with entities that appear in the query, are retrieved by the query, or frequently show up in the top retrieved documents. A latent space model is developed to jointly learn the connections from query to entities and the ranking of documents, modeling the external evidence from knowledge bases and internal ranking features cooperatively. To further improve the quality of relevant entities, a defining factor of our query representations, we introduce learning to rank to entity search and retrieve better entities from knowledge bases. In the document representation part, this thesis research also moves one step forward with a bag-of-entities model, in which documents are represented by their automatic entity annotations, and the ranking is performed in the entity space.
    Content
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Language and Information Technologies. Vgl.: https%3A%2F%2Fwww.cs.cmu.edu%2F~cx%2Fpapers%2Fknowledge_based_text_representation.pdf&usg=AOvVaw0SaTSvhWLTh__Uz_HtOtl3.
  14. Verwer, K.: Freiheit und Verantwortung bei Hans Jonas (2011) 0.04
    0.039261483 = product of:
      0.15704593 = sum of:
        0.15704593 = product of:
          0.47113776 = sum of:
            0.47113776 = weight(_text_:3a in 973) [ClassicSimilarity], result of:
              0.47113776 = score(doc=973,freq=2.0), product of:
                0.41914827 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.049439456 = queryNorm
                1.1240361 = fieldWeight in 973, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.09375 = fieldNorm(doc=973)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Content
    Vgl.: http%3A%2F%2Fcreativechoice.org%2Fdoc%2FHansJonas.pdf&usg=AOvVaw1TM3teaYKgABL5H9yoIifA&opi=89978449.
  15. Kara, S.: ¬An ontology-based retrieval system using semantic indexing (2012) 0.04
    0.037249055 = product of:
      0.07449811 = sum of:
        0.03490599 = weight(_text_:web in 3829) [ClassicSimilarity], result of:
          0.03490599 = score(doc=3829,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.21634221 = fieldWeight in 3829, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3829)
        0.03959212 = weight(_text_:search in 3829) [ClassicSimilarity], result of:
          0.03959212 = score(doc=3829,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.230407 = fieldWeight in 3829, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=3829)
      0.5 = coord(2/4)
    
    Abstract
    In this thesis, we present an ontology-based information extraction and retrieval system and its application to soccer domain. In general, we deal with three issues in semantic search, namely, usability, scalability and retrieval performance. We propose a keyword-based semantic retrieval approach. The performance of the system is improved considerably using domain-specific information extraction, inference and rules. Scalability is achieved by adapting a semantic indexing approach. The system is implemented using the state-of-the-art technologies in SemanticWeb and its performance is evaluated against traditional systems as well as the query expansion methods. Furthermore, a detailed evaluation is provided to observe the performance gain due to domain-specific information extraction and inference. Finally, we show how we use semantic indexing to solve simple structural ambiguities.
    Theme
    Semantic Web
  16. Hannech, A.: Système de recherche d'information étendue basé sur une projection multi-espaces (2018) 0.04
    0.036250904 = product of:
      0.07250181 = sum of:
        0.032909684 = weight(_text_:web in 4472) [ClassicSimilarity], result of:
          0.032909684 = score(doc=4472,freq=16.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.2039694 = fieldWeight in 4472, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.015625 = fieldNorm(doc=4472)
        0.03959212 = weight(_text_:search in 4472) [ClassicSimilarity], result of:
          0.03959212 = score(doc=4472,freq=18.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.230407 = fieldWeight in 4472, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.015625 = fieldNorm(doc=4472)
      0.5 = coord(2/4)
    
    Abstract
    Depuis son apparition au début des années 90, le World Wide Web (WWW ou Web) a offert un accès universel aux connaissances et le monde de l'information a été principalement témoin d'une grande révolution (la révolution numérique). Il est devenu rapidement très populaire, ce qui a fait de lui la plus grande et vaste base de données et de connaissances existantes grâce à la quantité et la diversité des données qu'il contient. Cependant, l'augmentation et l'évolution considérables de ces données soulèvent d'importants problèmes pour les utilisateurs notamment pour l'accès aux documents les plus pertinents à leurs requêtes de recherche. Afin de faire face à cette explosion exponentielle du volume de données et faciliter leur accès par les utilisateurs, différents modèles sont proposés par les systèmes de recherche d'information (SRIs) pour la représentation et la recherche des documents web. Les SRIs traditionnels utilisent, pour indexer et récupérer ces documents, des mots-clés simples qui ne sont pas sémantiquement liés. Cela engendre des limites en termes de la pertinence et de la facilité d'exploration des résultats. Pour surmonter ces limites, les techniques existantes enrichissent les documents en intégrant des mots-clés externes provenant de différentes sources. Cependant, ces systèmes souffrent encore de limitations qui sont liées aux techniques d'exploitation de ces sources d'enrichissement. Lorsque les différentes sources sont utilisées de telle sorte qu'elles ne peuvent être distinguées par le système, cela limite la flexibilité des modèles d'exploration qui peuvent être appliqués aux résultats de recherche retournés par ce système. Les utilisateurs se sentent alors perdus devant ces résultats, et se retrouvent dans l'obligation de les filtrer manuellement pour sélectionner l'information pertinente. S'ils veulent aller plus loin, ils doivent reformuler et cibler encore plus leurs requêtes de recherche jusqu'à parvenir aux documents qui répondent le mieux à leurs attentes. De cette façon, même si les systèmes parviennent à retrouver davantage des résultats pertinents, leur présentation reste problématique. Afin de cibler la recherche à des besoins d'information plus spécifiques de l'utilisateur et améliorer la pertinence et l'exploration de ses résultats de recherche, les SRIs avancés adoptent différentes techniques de personnalisation de données qui supposent que la recherche actuelle d'un utilisateur est directement liée à son profil et/ou à ses expériences de navigation/recherche antérieures. Cependant, cette hypothèse ne tient pas dans tous les cas, les besoins de l'utilisateur évoluent au fil du temps et peuvent s'éloigner de ses intérêts antérieurs stockés dans son profil.
    Dans d'autres cas, le profil de l'utilisateur peut être mal exploité pour extraire ou inférer ses nouveaux besoins en information. Ce problème est beaucoup plus accentué avec les requêtes ambigües. Lorsque plusieurs centres d'intérêt auxquels est liée une requête ambiguë sont identifiés dans le profil de l'utilisateur, le système se voit incapable de sélectionner les données pertinentes depuis ce profil pour répondre à la requête. Ceci a un impact direct sur la qualité des résultats fournis à cet utilisateur. Afin de remédier à quelques-unes de ces limitations, nous nous sommes intéressés dans ce cadre de cette thèse de recherche au développement de techniques destinées principalement à l'amélioration de la pertinence des résultats des SRIs actuels et à faciliter l'exploration de grandes collections de documents. Pour ce faire, nous proposons une solution basée sur un nouveau concept d'indexation et de recherche d'information appelé la projection multi-espaces. Cette proposition repose sur l'exploitation de différentes catégories d'information sémantiques et sociales qui permettent d'enrichir l'univers de représentation des documents et des requêtes de recherche en plusieurs dimensions d'interprétations. L'originalité de cette représentation est de pouvoir distinguer entre les différentes interprétations utilisées pour la description et la recherche des documents. Ceci donne une meilleure visibilité sur les résultats retournés et aide à apporter une meilleure flexibilité de recherche et d'exploration, en donnant à l'utilisateur la possibilité de naviguer une ou plusieurs vues de données qui l'intéressent le plus. En outre, les univers multidimensionnels de représentation proposés pour la description des documents et l'interprétation des requêtes de recherche aident à améliorer la pertinence des résultats de l'utilisateur en offrant une diversité de recherche/exploration qui aide à répondre à ses différents besoins et à ceux des autres différents utilisateurs. Cette étude exploite différents aspects liés à la recherche personnalisée et vise à résoudre les problèmes engendrés par l'évolution des besoins en information de l'utilisateur. Ainsi, lorsque le profil de cet utilisateur est utilisé par notre système, une technique est proposée et employée pour identifier les intérêts les plus représentatifs de ses besoins actuels dans son profil. Cette technique se base sur la combinaison de trois facteurs influents, notamment le facteur contextuel, fréquentiel et temporel des données. La capacité des utilisateurs à interagir, à échanger des idées et d'opinions, et à former des réseaux sociaux sur le Web, a amené les systèmes à s'intéresser aux types d'interactions de ces utilisateurs, au niveau d'interaction entre eux ainsi qu'à leurs rôles sociaux dans le système. Ces informations sociales sont abordées et intégrées dans ce travail de recherche. L'impact et la manière de leur intégration dans le processus de RI sont étudiés pour améliorer la pertinence des résultats.
    Since its appearance in the early 90's, the World Wide Web (WWW or Web) has provided universal access to knowledge and the world of information has been primarily witness to a great revolution (the digital revolution). It quickly became very popular, making it the largest and most comprehensive database and knowledge base thanks to the amount and diversity of data it contains. However, the considerable increase and evolution of these data raises important problems for users, in particular for accessing the documents most relevant to their search queries. In order to cope with this exponential explosion of data volume and facilitate their access by users, various models are offered by information retrieval systems (IRS) for the representation and retrieval of web documents. Traditional SRIs use simple keywords that are not semantically linked to index and retrieve these documents. This creates limitations in terms of the relevance and ease of exploration of results. To overcome these limitations, existing techniques enrich documents by integrating external keywords from different sources. However, these systems still suffer from limitations that are related to the exploitation techniques of these sources of enrichment. When the different sources are used so that they cannot be distinguished by the system, this limits the flexibility of the exploration models that can be applied to the results returned by this system. Users then feel lost to these results, and find themselves forced to filter them manually to select the relevant information. If they want to go further, they must reformulate and target their search queries even more until they reach the documents that best meet their expectations. In this way, even if the systems manage to find more relevant results, their presentation remains problematic. In order to target research to more user-specific information needs and improve the relevance and exploration of its research findings, advanced SRIs adopt different data personalization techniques that assume that current research of user is directly related to his profile and / or previous browsing / search experiences.
    However, this assumption does not hold in all cases, the needs of the user evolve over time and can move away from his previous interests stored in his profile. In other cases, the user's profile may be misused to extract or infer new information needs. This problem is much more accentuated with ambiguous queries. When multiple POIs linked to a search query are identified in the user's profile, the system is unable to select the relevant data from that profile to respond to that request. This has a direct impact on the quality of the results provided to this user. In order to overcome some of these limitations, in this research thesis, we have been interested in the development of techniques aimed mainly at improving the relevance of the results of current SRIs and facilitating the exploration of major collections of documents. To do this, we propose a solution based on a new concept and model of indexing and information retrieval called multi-spaces projection. This proposal is based on the exploitation of different categories of semantic and social information that enrich the universe of document representation and search queries in several dimensions of interpretations. The originality of this representation is to be able to distinguish between the different interpretations used for the description and the search for documents. This gives a better visibility on the results returned and helps to provide a greater flexibility of search and exploration, giving the user the ability to navigate one or more views of data that interest him the most. In addition, the proposed multidimensional representation universes for document description and search query interpretation help to improve the relevance of the user's results by providing a diversity of research / exploration that helps meet his diverse needs and those of other different users. This study exploits different aspects that are related to the personalized search and aims to solve the problems caused by the evolution of the information needs of the user. Thus, when the profile of this user is used by our system, a technique is proposed and used to identify the interests most representative of his current needs in his profile. This technique is based on the combination of three influential factors, including the contextual, frequency and temporal factor of the data. The ability of users to interact, exchange ideas and opinions, and form social networks on the Web, has led systems to focus on the types of interactions these users have at the level of interaction between them as well as their social roles in the system. This social information is discussed and integrated into this research work. The impact and how they are integrated into the IR process are studied to improve the relevance of the results.
  17. Witschel, H.F.: Global and local resources for peer-to-peer text retrieval (2008) 0.03
    0.033678904 = product of:
      0.06735781 = sum of:
        0.04000242 = weight(_text_:search in 127) [ClassicSimilarity], result of:
          0.04000242 = score(doc=127,freq=6.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.23279473 = fieldWeight in 127, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.02734375 = fieldNorm(doc=127)
        0.027355384 = product of:
          0.05471077 = sum of:
            0.05471077 = weight(_text_:engine in 127) [ClassicSimilarity], result of:
              0.05471077 = score(doc=127,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.20686457 = fieldWeight in 127, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=127)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This thesis is organised as follows: Chapter 2 gives a general introduction to the field of information retrieval, covering its most important aspects. Further, the tasks of distributed and peer-to-peer information retrieval (P2PIR) are introduced, motivating their application and characterising the special challenges that they involve, including a review of existing architectures and search protocols in P2PIR. Finally, chapter 2 presents approaches to evaluating the e ectiveness of both traditional and peer-to-peer IR systems. Chapter 3 contains a detailed account of state-of-the-art information retrieval models and algorithms. This encompasses models for matching queries against document representations, term weighting algorithms, approaches to feedback and associative retrieval as well as distributed retrieval. It thus defines important terminology for the following chapters. The notion of "multi-level association graphs" (MLAGs) is introduced in chapter 4. An MLAG is a simple, graph-based framework that allows to model most of the theoretical and practical approaches to IR presented in chapter 3. Moreover, it provides an easy-to-grasp way of defining and including new entities into IR modeling, such as paragraphs or peers, dividing them conceptually while at the same time connecting them to each other in a meaningful way. This allows for a unified view on many IR tasks, including that of distributed and peer-to-peer search. Starting from related work and a formal defiition of the framework, the possibilities of modeling that it provides are discussed in detail, followed by an experimental section that shows how new insights gained from modeling inside the framework can lead to novel combinations of principles and eventually to improved retrieval effectiveness.
    Chapter 5 empirically tackles the first of the two research questions formulated above, namely the question of global collection statistics. More precisely, it studies possibilities of radically simplified results merging. The simplification comes from the attempt - without having knowledge of the complete collection - to equip all peers with the same global statistics, making document scores comparable across peers. Chapter 5 empirically tackles the first of the two research questions formulated above, namely the question of global collection statistics. More precisely, it studies possibilities of radically simplified results merging. The simplification comes from the attempt - without having knowledge of the complete collection - to equip all peers with the same global statistics, making document scores comparable across peers. What is examined, is the question of how we can obtain such global statistics and to what extent their use will lead to a drop in retrieval effectiveness. In chapter 6, the second research question is tackled, namely that of making forwarding decisions for queries, based on profiles of other peers. After a review of related work in that area, the chapter first defines the approaches that will be compared against each other. Then, a novel evaluation framework is introduced, including a new measure for comparing results of a distributed search engine against those of a centralised one. Finally, the actual evaluation is performed using the new framework.
  18. Korves, J.: Seiten bewerten : Googles PageRank (2005) 0.03
    0.030299235 = product of:
      0.06059847 = sum of:
        0.023270661 = weight(_text_:web in 866) [ClassicSimilarity], result of:
          0.023270661 = score(doc=866,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.14422815 = fieldWeight in 866, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=866)
        0.03732781 = weight(_text_:search in 866) [ClassicSimilarity], result of:
          0.03732781 = score(doc=866,freq=4.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.21722981 = fieldWeight in 866, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=866)
      0.5 = coord(2/4)
    
    Abstract
    Mit der Entstehung des World Wide Web im Jahre 1989 und dem darauf folgenden rasanten Anstieg der Zahl an Webseiten, kam es sehr schnell zu der Notwendigkeit, eine gewisse Ordnung in die Vielzahl von Inhalten zu bringen. So wurde schon im Jahre 1991 ein erster Vorläufer der heutigen Websuchmaschinen namens Gopher entwickelt. Die Struktur von Gopher, bei der zunächst alle Webseiten katalogisiert wurden, um anschließend komplett durchsucht werden zu können, war damals richtungweisend und wird auch heute noch in den meisten anderen Websuchmaschinen verwendet. Von damals bis heute hat sich sehr viel am Markt der Suchmaschinen verändert. Seit dem Jahre 2004 gibt es nur mehr drei große Websuchmaschinen, bezogen auf die Anzahl erfasster Dokumente. Neben Yahoo! Search und Microsofts MSN Search ist Google die bisher erfolgreichste Suchmaschine der Welt. Dargestellt werden die Suchergebnisse, indem sie der Relevanz nach sortiert werden. Jede Suchmaschine hat ihre eigenen geheimen Kriterien, welche für die Bewertung der Relevanz herangezogen werden. Googles Suchergebnisse werden aus einer Kombination zweier Verfahren angeordnet. Neben der Hypertext-Matching-Analyse ist dies die PageRank-Technologie. Der so genannte PageRank-Algorithmus, benannt nach seinem Erfinder Lawrence Page, ist die wesentliche Komponente, die Google auf seinen Erfolgsweg gebracht hat. Über die genaue Funktionsweise dieses Algorithmus hat Google, insbesondere nach einigen Verbesserungen in den letzten Jahren, nicht alle Details preisgegeben. Fest steht jedoch, dass der PageRank-Algorithmus die Relevanz einer Webseite auf Basis der Hyperlinkstruktur des Webs berechnet, wobei die Relevanz einer Webseite danach gewichtet wird, wie viele Links auf sie zeigen und Verweise von ihrerseits stark verlinkten Seiten stärker ins Gewicht fallen.
  19. Glockner, M.: Semantik Web : Die nächste Generation des World Wide Web (2004) 0.03
    0.028795974 = product of:
      0.1151839 = sum of:
        0.1151839 = weight(_text_:web in 4532) [ClassicSimilarity], result of:
          0.1151839 = score(doc=4532,freq=4.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.71389294 = fieldWeight in 4532, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.109375 = fieldNorm(doc=4532)
      0.25 = coord(1/4)
    
  20. Kiren, T.: ¬A clustering based indexing technique of modularized ontologies for information retrieval (2017) 0.03
    0.025362268 = product of:
      0.050724536 = sum of:
        0.03732781 = weight(_text_:search in 4399) [ClassicSimilarity], result of:
          0.03732781 = score(doc=4399,freq=4.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.21722981 = fieldWeight in 4399, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=4399)
        0.013396727 = product of:
          0.026793454 = sum of:
            0.026793454 = weight(_text_:22 in 4399) [ClassicSimilarity], result of:
              0.026793454 = score(doc=4399,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.15476047 = fieldWeight in 4399, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4399)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Modular ontologies are built in modular manner by combining modules from multiple relevant ontologies. Ontology heterogeneity also arises during modular ontology construction because multiple ontologies are being dealt with, during this process. Ontologies need to be aligned before using them for modular ontology construction. The existing approaches for ontology alignment compare all the concepts of each ontology to be aligned, hence not optimized in terms of time and search space utilization. A new indexing technique is proposed based on modular ontology. An efficient ontology alignment technique is proposed to solve the heterogeneity problem during the construction of modular ontology. Results are satisfactory as Precision and Recall are improved by (8%) and (10%) respectively. The value of Pearsons Correlation Coefficient for degree of similarity, time, search space requirement, precision and recall are close to 1 which shows that the results are significant. Further research can be carried out for using modular ontology based indexing technique for Multimedia Information Retrieval and Bio-Medical information retrieval.
    Date
    20. 1.2015 18:30:22

Authors

Years

Languages

  • d 82
  • e 27
  • f 1
  • hu 1
  • pt 1
  • More… Less…

Types