Search (18 results, page 1 of 1)

  • × author_ss:"Beheshti, J."
  1. Large, A.; Beheshti, J.; Tabatabaei, N.; Nesset, V.: Developing a visual taxonomy : children's views on aesthetics (2009) 0.03
    0.029423734 = product of:
      0.05884747 = sum of:
        0.027080212 = weight(_text_:science in 3088) [ClassicSimilarity], result of:
          0.027080212 = score(doc=3088,freq=2.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.20372227 = fieldWeight in 3088, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3088)
        0.031767257 = weight(_text_:research in 3088) [ClassicSimilarity], result of:
          0.031767257 = score(doc=3088,freq=2.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.22064918 = fieldWeight in 3088, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3088)
      0.5 = coord(2/4)
    
    Abstract
    This article explores the aesthetic design criteria that should be incorporated into the information visualization of a taxonomy intended for use by children. Seven elementary-school students were each asked to represent their ideas in drawings for visualizing a taxonomy. Their drawings were analyzed according to six criteria - balance, equilibrium, symmetry, unity, rhythm, and economy - identified as aesthetic measures in previous research. The drawings revealed the presence of all six measures, and three - unity, equilibrium, and rhythm - were found to play an especially important role. It is therefore concluded that an aesthetic design for an information visualization for young users should incorporate all six measures.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.9, S.1808-1822
  2. Large, A.; Beheshti, J.; Nesset, V.; Bowler, L.: Designing Web portals in intergenerational teams : two prototype portals for elementary school students (2004) 0.03
    0.025220342 = product of:
      0.050440684 = sum of:
        0.023211608 = weight(_text_:science in 5247) [ClassicSimilarity], result of:
          0.023211608 = score(doc=5247,freq=2.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.17461908 = fieldWeight in 5247, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.046875 = fieldNorm(doc=5247)
        0.027229078 = weight(_text_:research in 5247) [ClassicSimilarity], result of:
          0.027229078 = score(doc=5247,freq=2.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.18912788 = fieldWeight in 5247, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.046875 = fieldNorm(doc=5247)
      0.5 = coord(2/4)
    
    Abstract
    This article describes and discusses the detailed procedures followed by two intergenerational teams comprising the researchers and a group of eight grade-six elementary students (ages 11 to 12 years) and a group of six third-grade elementary students (ages 8 to 9 years), respectively, in designing two prototype Web portals intended for use by elementary school students. These procedures were based on three design theories: Contextual Inquiry, Participatory Design, and Cooperative Inquiry. The article also presents and describes the two resulting Web portal prototypes and discusses the design criteria employed by the teams. Conclusions are elaborated on the basis of this research experience regarding how such a design process should be conducted in the context of an intergenerational team, and what characteristics young users expect to find in Web portals that they will use to support their informational needs in terms of elementary school projects and assignments.
    Source
    Journal of the American Society for Information Science and Technology. 55(2004) no.13, S.1140-1154
  3. Large, A.; Beheshti, J.; Moukdad, H.: Information seeking on the Web : navigational skills of grade-six primary school students (1999) 0.03
    0.02502302 = product of:
      0.05004604 = sum of:
        0.027355144 = weight(_text_:science in 6545) [ClassicSimilarity], result of:
          0.027355144 = score(doc=6545,freq=4.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.20579056 = fieldWeight in 6545, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6545)
        0.0226909 = weight(_text_:research in 6545) [ClassicSimilarity], result of:
          0.0226909 = score(doc=6545,freq=2.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.15760657 = fieldWeight in 6545, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6545)
      0.5 = coord(2/4)
    
    Abstract
    Reports on research into the information-seeking habits of primary schoolchildren conducted under operational conditions. Three workstations with Internet access were installed in a grade-six classroom in suburban Montreal. After a short introductory training session for the entire group followed by short individual sessions for each student, 53 students, working in small groups, used these workstations over a six-week period to seek information on the Web of relevance to a class project assigned by their teacher. The project dealt with the Winter Olympic Games (recently completed at that time). The student objective was to locate relevant information for a poster and an oral presentation on one of the sports represented at the Games. All screen activity was directly captured on videotape and group conversations at the workstation were audiotaped. Demographic and computer literacy information was gathered in a questionnaire. This paper presents a map of the information-seeking landscape based upon an analysis of the descriptive statistics gathered from the Web searches. It reveals that the novice users favored browsing over analytic search strategies, although they did show some sophistication in the construction of the latter. Online help was ignored. The children demonstrated a very high level of interactivity with the interface at the expense of thinking, planning and evaluating. This is a preliminary analysis of data which will subsequently be expanded by the inclusion of qualitative data
    Series
    Proceedings of the American Society for Information Science; vol.36
    Source
    Knowledge: creation, organization and use. Proceedings of the 62nd Annual Meeting of the American Society for Information Science, 31.10.-4.11.1999. Ed.: L. Woods
  4. Large, A.; Beheshti, J.; Rahman, T.: Design criteria for children's Web portals : the users speak out (2002) 0.02
    0.021861482 = product of:
      0.043722965 = sum of:
        0.023211608 = weight(_text_:science in 197) [ClassicSimilarity], result of:
          0.023211608 = score(doc=197,freq=2.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.17461908 = fieldWeight in 197, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.046875 = fieldNorm(doc=197)
        0.020511357 = product of:
          0.041022714 = sum of:
            0.041022714 = weight(_text_:22 in 197) [ClassicSimilarity], result of:
              0.041022714 = score(doc=197,freq=2.0), product of:
                0.17671488 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050463587 = queryNorm
                0.23214069 = fieldWeight in 197, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=197)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    2. 6.2005 10:34:22
    Source
    Journal of the American Society for Information Science and technology. 53(2002) no.2, S.79-94
  5. Leide, J.E.; Cole, C.; Beheshti, J.; Large, A.; Lin, Y.: Task-based information retrieval : structuring undergraduate history essays for better course evaluation using essay-type visualizations (2007) 0.02
    0.021016954 = product of:
      0.042033907 = sum of:
        0.019343007 = weight(_text_:science in 460) [ClassicSimilarity], result of:
          0.019343007 = score(doc=460,freq=2.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.1455159 = fieldWeight in 460, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=460)
        0.0226909 = weight(_text_:research in 460) [ClassicSimilarity], result of:
          0.0226909 = score(doc=460,freq=2.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.15760657 = fieldWeight in 460, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.0390625 = fieldNorm(doc=460)
      0.5 = coord(2/4)
    
    Abstract
    When domain novices are in C.C. Kuhlthau's (1993) Stage 3, the exploration stage of researching an assignment, they often do not know their information need; this causes them to go back to Stage 2, the topic-selection stage, when they are selecting keywords to formulate their query to an Information Retrieval (IR) system. Our hypothesis is that instead of going backward, they should be going forward toward a goal state-the performance of the task for which they are seeking the information. If they can somehow construct their goal state into a query, this forward-looking query better operationalizes their information need than does a topic-based query. For domain novice undergraduates seeking information for a course essay, we define their task as selecting a high-impact essay structure which will put the students' learning on display for the course instructor who will evaluate the essay. We report a study of first-year history undergraduate students which tested the use and effectiveness of "essay type" as a task-focused query-formulation device. We randomly assigned 78 history undergraduates to an intervention group and a control group. The dependent variable was essay quality, based on (a) an evaluation of the student's essay by a research team member, and (b) the marks given to the student's essay by the course instructor. We found that conscious or formal consideration of essay type is inconclusive as a basis of a task-focused query-formulation device for IR.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.9, S.1227-1241
  6. Cole, C.; Lin, Y.; Leide, J.; Large, A.; Beheshti, J.: ¬A classification of mental models of undergraduates seeking information for a course essay in history and psychology : preliminary investigations into aligning their mental models with online thesauri (2007) 0.02
    0.016813563 = product of:
      0.033627126 = sum of:
        0.015474406 = weight(_text_:science in 625) [ClassicSimilarity], result of:
          0.015474406 = score(doc=625,freq=2.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.11641272 = fieldWeight in 625, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.03125 = fieldNorm(doc=625)
        0.01815272 = weight(_text_:research in 625) [ClassicSimilarity], result of:
          0.01815272 = score(doc=625,freq=2.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.12608525 = fieldWeight in 625, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.03125 = fieldNorm(doc=625)
      0.5 = coord(2/4)
    
    Abstract
    The article reports a field study which examined the mental models of 80 undergraduates seeking information for either a history or psychology course essay when they were in an early, exploration stage of researching their essay. This group is presently at a disadvantage when using thesaurus-type schemes in indexes and online search engines because there is a disconnect between how domain novice users of IR systems represent a topic space and how this space is represented in the standard IR system thesaurus. The study attempted to (a) ascertain the coding language used by the 80 undergraduates in the study to mentally represent their topic and then (b) align the mental models with the hierarchical structure found in many thesauri. The intervention focused the undergraduates' thinking about their topic from a topic statement to a thesis statement. The undergraduates were asked to produce three mental model diagrams for their real-life course essay at the beginning, middle, and end of the interview, for a total of 240 mental model diagrams, from which we created a 12-category mental model classification scheme. Findings indicate that at the end of the intervention, (a) the percentage of vertical mental models increased from 24 to 35% of all mental models; but that (b) 3rd-year students had fewer vertical mental models than did 1st-year undergraduates in the study, which is counterintuitive. The results indicate that there is justification for pursuing our research based on the hypothesis that rotating a domain novice's mental model into a vertical position would make it easier for him or her to cognitively connect with the thesaurus's hierarchical representation of the topic area.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.13, S.2092-2104
  7. Beheshti, J.; Bowler, L.; Large, A.; Nesset, V.: Towards an alternative information retrieval system for children (2005) 0.01
    0.007860358 = product of:
      0.03144143 = sum of:
        0.03144143 = weight(_text_:research in 644) [ClassicSimilarity], result of:
          0.03144143 = score(doc=644,freq=6.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.21838607 = fieldWeight in 644, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.03125 = fieldNorm(doc=644)
      0.25 = coord(1/4)
    
    Abstract
    A recent survey of more than 1700 households indicates that the main reason many parents purchase computers and connect their children to the Internet at home is for education (Safe and Smart). In addition the survey shows that children also use the Internet for educational activities that go beyond required school work. In fact, the fastest growing group of Internet users are children between the ages of eight and twelve (Vise, 2003), who are increasingly using the Web to access educational as well as entertainment materials. Children, however, rely on conventional information retrieval (IR) systems and search engines intended for general adult use, such as MSN or Google, and to a much lesser extent, Web portals such as Yahooligans! and LycosZone specifically intended for young users (Large et al., 2004; Large, Beheshti, and Rahman, 2002a). But research has shown that children's information needs (Walter, 1994), research approaches (Kuhlthau, 1991), and cognitive abilities and higher order thinking skills (Neuman, 1995; Siegler, 1998; Vandergrift, 1989) differ from those of adults. The results of earlier studies on children's use of online catalogues designed for adults indicate that young users are often faced with difficulties locating specific information related to their information needs (Hirsh, 1997). A growing body of research points to the problems children typically encounter when seeking information on the Web. Kafai and Bates (1997) conducted one of the first studies with young children on their use of Web sites, and concluded that they were able to navigate through the links and scroll. Only the older children, however, could use search engines effectively. Hirsh (1999) investigated the searching behavior of ten fifth graders and concluded that they encountered difficulties in formulating effective search queries and did not use advanced features. Schacter, Chung, and Dorr (1998) conducted a study on Internet searching by fifth and sixth graders and concluded that they did not plan their searches, used ill-defined queries, and preferred browsing. Large, Beheshti, and Moukdad (1999), investigating the information seeking behavior of 53 sixth graders, similarly found that children preferred browsing to searching. Bowler, Large, and Rejskind (2001), focusing on a few case studies of grade six students concluded that search engines designed for adults are unsuitable for children. Wallace et al. (2000), studying sixth graders, discovered that experience in using search engines does not improve children's search strategies and in general information seeking is an unfamiliar activity for children.
  8. Large, J.A.; Beheshti, J.: Interface design, Web portals, and children (2005) 0.01
    0.0068072695 = product of:
      0.027229078 = sum of:
        0.027229078 = weight(_text_:research in 5547) [ClassicSimilarity], result of:
          0.027229078 = score(doc=5547,freq=2.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.18912788 = fieldWeight in 5547, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.046875 = fieldNorm(doc=5547)
      0.25 = coord(1/4)
    
    Abstract
    Children seek information in order to complete school projects on a wide variety of topics, as well as to support their various leisure activities. Such information can be found in print documents, but increasingly young people are turning to the Web to meet their information needs. In order to exploit this resource, however, children must be able to search or browse digital information through the intermediation of an interface. In particular, they must use Web-based portals that in most cases have been designed for adult users. Guidelines for interface design are not hard to find, but typically they also postulate adult rather than juvenile users. The authors discuss their own research work that has focused upon what young people themselves have to say about the design of portal interfaces. They conclude that specific interface design guidelines are required for young users rather than simply relying upon general design guidelines, and that in order to formulate such guidelines it is necessary to actively include the young people themselves in this process.
  9. Large, A.; Beheshti, J.; Cole, C.: Information architecture for the Web : the IA matrix approach to designing children's portals (2002) 0.01
    0.006770053 = product of:
      0.027080212 = sum of:
        0.027080212 = weight(_text_:science in 1010) [ClassicSimilarity], result of:
          0.027080212 = score(doc=1010,freq=2.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.20372227 = fieldWeight in 1010, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1010)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and technology. 53(2002) no.10, S.831.838
  10. Large, A.; Beheshti, J.; Breuleux, A.: Multimedia and comprehension : a cognitive study (1994) 0.01
    0.005802902 = product of:
      0.023211608 = sum of:
        0.023211608 = weight(_text_:science in 7754) [ClassicSimilarity], result of:
          0.023211608 = score(doc=7754,freq=2.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.17461908 = fieldWeight in 7754, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.046875 = fieldNorm(doc=7754)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science. 45(1994) no.7, S.515-528
  11. Large, A.; Beheshti, J.; Breuleux, A.; Renaud, A.: Multimedia and comprehension : the relationship among text, animation, and captions (1995) 0.01
    0.005802902 = product of:
      0.023211608 = sum of:
        0.023211608 = weight(_text_:science in 5306) [ClassicSimilarity], result of:
          0.023211608 = score(doc=5306,freq=2.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.17461908 = fieldWeight in 5306, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.046875 = fieldNorm(doc=5306)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science. 46(1995) no.5, S.340-347
  12. Leide, J.E.; Large, A.; Beheshti, J.; Brooks, M.; Cole, C.: Visualization schemes for domain novices exploring a topic space : the navigation classification scheme (2003) 0.01
    0.005672725 = product of:
      0.0226909 = sum of:
        0.0226909 = weight(_text_:research in 1078) [ClassicSimilarity], result of:
          0.0226909 = score(doc=1078,freq=2.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.15760657 = fieldWeight in 1078, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1078)
      0.25 = coord(1/4)
    
    Abstract
    In this article and two other articles which conceptualize a future stage of the research program (Leide, Cole, Large, & Beheshti, submitted for publication; Cole, Leide, Large, Beheshti, & Brooks, in preparation), we map-out a domain novice user's encounter with an IR system from beginning to end so that appropriate classification-based visualization schemes can be inserted into the encounter process. This article describes the visualization of a navigation classification scheme only. The navigation classification scheme uses the metaphor of a ship and ship's navigator traveling through charted (but unknown to the user) waters, guided by a series of lighthouses. The lighthouses contain mediation interfaces linking the user to the information store through agents created for each. The user's agent is the cognitive model the user has of the information space, which the system encourages to evolve via interaction with the system's agent. The system's agent is an evolving classification scheme created by professional indexers to represent the structure of the information store. We propose a more systematic, multidimensional approach to creating evolving classification/indexing schemes, based on where the user is and what she is trying to do at that moment during the search session.
  13. Cole, C.; Leide, J.E.; Large, A,; Beheshti, J.; Brooks, M.: Putting it together online : information need identification for the domain novice user (2005) 0.00
    0.004835752 = product of:
      0.019343007 = sum of:
        0.019343007 = weight(_text_:science in 3469) [ClassicSimilarity], result of:
          0.019343007 = score(doc=3469,freq=2.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.1455159 = fieldWeight in 3469, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3469)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and Technology. 56(2005) no.7, S.684-694
  14. Cole, C.; Leide, J.; Beheshti, J.; Large, A.; Brooks, M.: Investigating the Anomalous States of Knowledge hypothesis in a real-life problem situation : a study of history and psychology undergraduates seeking information for a course essay (2005) 0.00
    0.004835752 = product of:
      0.019343007 = sum of:
        0.019343007 = weight(_text_:science in 4814) [ClassicSimilarity], result of:
          0.019343007 = score(doc=4814,freq=2.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.1455159 = fieldWeight in 4814, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4814)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and Technology. 56(2005) no.14, S.1544-1554
  15. Yi, K.; Beheshti, J.; Cole, C.; Leide, J.E.; Large, A.: User search behavior of domain-specific information retrieval systems : an analysis of the query logs from PsycINFO and ABC-Clio's Historical Abstracts/America: History and Life (2006) 0.00
    0.004835752 = product of:
      0.019343007 = sum of:
        0.019343007 = weight(_text_:science in 197) [ClassicSimilarity], result of:
          0.019343007 = score(doc=197,freq=2.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.1455159 = fieldWeight in 197, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=197)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.9, S.1208-1220
  16. Beheshti, J.; Cole, C.; Abuhimed, D.; Lamoureux, I.: Tracking middle school students' information behavior via Kuhlthau's ISP Model : temporality (2015) 0.00
    0.004835752 = product of:
      0.019343007 = sum of:
        0.019343007 = weight(_text_:science in 1819) [ClassicSimilarity], result of:
          0.019343007 = score(doc=1819,freq=2.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.1455159 = fieldWeight in 1819, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1819)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.5, S.943-960
  17. Cole, C.; Beheshti, J.; Abuhimed, D.; Lamoureux, I.: ¬The end game in Kuhlthau's ISP Model : knowledge construction for grade 8 students researching an inquiry-based history project (2015) 0.00
    0.004835752 = product of:
      0.019343007 = sum of:
        0.019343007 = weight(_text_:science in 2265) [ClassicSimilarity], result of:
          0.019343007 = score(doc=2265,freq=2.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.1455159 = fieldWeight in 2265, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2265)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.11, S.2249-2266
  18. Cole, C.; Beheshti, J.; Leide, J. E.; Large, A.: Interactive information retrieval : bringing the user to a selection state (2005) 0.00
    0.00453818 = product of:
      0.01815272 = sum of:
        0.01815272 = weight(_text_:research in 36) [ClassicSimilarity], result of:
          0.01815272 = score(doc=36,freq=2.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.12608525 = fieldWeight in 36, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.03125 = fieldNorm(doc=36)
      0.25 = coord(1/4)
    
    Abstract
    There have been various approaches to conceptualizing interactive information retrieval (IR), which can be generally divided into system and user approaches (Hearst, 1999; cf. also Spink, 1997). Both system and user approaches define user-system interaction in terms of the system and the user reacting to the actions or behaviors of the other: the system reacts to the user's input; the user to the output of the system (Spink, 1997). In system approach models of the interaction, e.g., Moran (1981), "[T]he user initiates an action or operation and the system responds in some way which in turn leads the user to initiate another action and so on" (Beaulieu, 2000, p. 433). In its purest form, the system approach models the user as a reactive part of the interaction, with the system taking the lead (Bates, 1990). User approaches, on the other hand, in their purest form wish to insert a model of the user in all its socio-cognitive dimensions, to the extent that system designers consider such approaches impractical (Vakkari and Jarvelin, 2005, Chap. 7, this volume). The cognitive approach to IR interaction attempts to overcome this divide (Ruthven, 2005, Chap. 4, this volume; Vakkari and Jarvelin, 2005 Chap. 7, this volume) by representing the cognitive elements of both system designers and the user in the interaction model (Larsen and Ingwersen, 2005 Chap. 3, this volume). There are cognitive approach researchers meeting in a central ground from both the system and user side. On the system side, are computer scientists employing cognitive research to design more effective IR systems from the point of view of the user's task (Nathan, 1990; Fischer, Henninger, and Redmiles, 1991; O'Day and Jeffries, 1993; Russell et al., 1993; Kitajima and Polson, 1996; Terwilliger and Polson, 1997). On the user side are cognitive approach researchers applying methods, concepts and models from psychology to design systems that are more in tune with how users acquire information (e.g., Belkin, 1980; Ford (2005, Chap. 5, this volume); Ingwersen (Larsen and Ingwersen, 2005, Chap. 3, this volume); Saracevic, 1996; Vakkari (Vakkari and Jarvelin, 2005, Chap. 7, this volume)).