Search (11 results, page 1 of 1)

  • × type_ss:"p"
  1. Noever, D.; Ciolino, M.: ¬The Turing deception (2022) 0.05
    0.053689316 = product of:
      0.10737863 = sum of:
        0.08014955 = product of:
          0.24044865 = sum of:
            0.24044865 = weight(_text_:3a in 862) [ClassicSimilarity], result of:
              0.24044865 = score(doc=862,freq=2.0), product of:
                0.42783085 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.050463587 = queryNorm
                0.56201804 = fieldWeight in 862, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=862)
          0.33333334 = coord(1/3)
        0.027229078 = weight(_text_:research in 862) [ClassicSimilarity], result of:
          0.027229078 = score(doc=862,freq=2.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.18912788 = fieldWeight in 862, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.046875 = fieldNorm(doc=862)
      0.5 = coord(2/4)
    
    Abstract
    This research revisits the classic Turing test and compares recent large language models such as ChatGPT for their abilities to reproduce human-level comprehension and compelling text generation. Two task challenges- summary and question answering- prompt ChatGPT to produce original content (98-99%) from a single text entry and sequential questions initially posed by Turing in 1950. We score the original and generated content against the OpenAI GPT-2 Output Detector from 2019, and establish multiple cases where the generated content proves original and undetectable (98%). The question of a machine fooling a human judge recedes in this work relative to the question of "how would one prove it?" The original contribution of the work presents a metric and simple grammatical set for understanding the writing mechanics of chatbots in evaluating their readability and statistical clarity, engagement, delivery, overall quality, and plagiarism risks. While Turing's original prose scores at least 14% below the machine-generated output, whether an algorithm displays hints of Turing's true initial thoughts (the "Lovelace 2.0" test) remains unanswerable.
    Source
    https%3A%2F%2Farxiv.org%2Fabs%2F2212.06721&usg=AOvVaw3i_9pZm9y_dQWoHi6uv0EN
  2. Tramullas, J.; Garrido-Picazo, P.; Sánchez-Casabón, A.I.: Use of Wikipedia categories on information retrieval research : a brief review (2020) 0.04
    0.03883488 = product of:
      0.07766976 = sum of:
        0.023211608 = weight(_text_:science in 5365) [ClassicSimilarity], result of:
          0.023211608 = score(doc=5365,freq=2.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.17461908 = fieldWeight in 5365, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.046875 = fieldNorm(doc=5365)
        0.054458156 = weight(_text_:research in 5365) [ClassicSimilarity], result of:
          0.054458156 = score(doc=5365,freq=8.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.37825575 = fieldWeight in 5365, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.046875 = fieldNorm(doc=5365)
      0.5 = coord(2/4)
    
    Abstract
    Wikipedia categories, a classification scheme built for organizing and describing Wikpedia articles, are being applied in computer science research. This paper adopts a systematic literature review approach, in order to identify different approaches and uses of Wikipedia categories in information retrieval research. Several types of work are identified, depending on the intrinsic study of the categories structure, or its use as a tool for the processing and analysis of other documentary corpus different to Wikipedia. Information retrieval is identified as one of the major areas of use, in particular its application in the refinement and improvement of search expressions, and the construction of textual corpus. However, the set of available works shows that in many cases research approaches applied and results obtained can be integrated into a comprehensive and inclusive concept of information retrieval.
  3. Großjohann, K.: Gathering-, Harvesting-, Suchmaschinen (1996) 0.01
    0.014503721 = product of:
      0.058014885 = sum of:
        0.058014885 = product of:
          0.11602977 = sum of:
            0.11602977 = weight(_text_:22 in 3227) [ClassicSimilarity], result of:
              0.11602977 = score(doc=3227,freq=4.0), product of:
                0.17671488 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050463587 = queryNorm
                0.6565931 = fieldWeight in 3227, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3227)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    7. 2.1996 22:38:41
    Pages
    22 S
  4. Wätjen, H.-J.: Mensch oder Maschine? : Auswahl und Erschließung vonm Informationsressourcen im Internet (1996) 0.01
    0.008546399 = product of:
      0.034185596 = sum of:
        0.034185596 = product of:
          0.06837119 = sum of:
            0.06837119 = weight(_text_:22 in 3161) [ClassicSimilarity], result of:
              0.06837119 = score(doc=3161,freq=2.0), product of:
                0.17671488 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050463587 = queryNorm
                0.38690117 = fieldWeight in 3161, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3161)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    2. 2.1996 15:40:22
  5. Lange, C.; Ion, P.; Dimou, A.; Bratsas, C.; Sperber, W.; Kohlhasel, M.; Antoniou, I.: Getting mathematics towards the Web of Data : the case of the Mathematics Subject Classification (2012) 0.01
    0.008375769 = product of:
      0.033503074 = sum of:
        0.033503074 = weight(_text_:science in 111) [ClassicSimilarity], result of:
          0.033503074 = score(doc=111,freq=6.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.25204095 = fieldWeight in 111, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=111)
      0.25 = coord(1/4)
    
    Abstract
    The Mathematics Subject Classification (MSC), maintained by the American Mathematical Society's Mathematical Reviews (MR) and FIZ Karlsruhe's Zentralblatt für Mathematik (Zbl), is a scheme for classifying publications in mathematics according to their subjects. While it is widely used, its traditional, idiosyncratic conceptualization and representation requires custom implementations of search, query and annotation support. This did not encourage people to create and explore connections of mathematics to subjects of related domains (e.g. science), and it made the scheme hard to maintain. We have reimplemented the current version of MSC2010 as a Linked Open Dataset using SKOS and our focus is concentrated on turning it into the new MSC authority. This paper explains the motivation, and details of our design considerations and how we realized them in the implementation. We present in-the-field use cases and point out how e-science applications can take advantage of the MSC LOD set. We conclude with a roadmap for bootstrapping the presence of mathematical and mathematics-based science, technology, and engineering knowledge on the Web of Data, where it has been noticeably underrepresented so far, starting from MSC/SKOS as a seed.
  6. Isaac, A.; Raemy, J.A.; Meijers, E.; Valk, S. De; Freire, N.: Metadata aggregation via linked data : results of the Europeana Common Culture project (2020) 0.01
    0.008293212 = product of:
      0.03317285 = sum of:
        0.03317285 = product of:
          0.0663457 = sum of:
            0.0663457 = weight(_text_:network in 39) [ClassicSimilarity], result of:
              0.0663457 = score(doc=39,freq=2.0), product of:
                0.22473325 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.050463587 = queryNorm
                0.29521978 = fieldWeight in 39, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.046875 = fieldNorm(doc=39)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Digital cultural heritage resources are widely available on the web through the digital libraries of heritage institutions. To address the difficulties of discoverability in cultural heritage, the common practice is metadata aggregation, where centralized efforts like Europeana facilitate discoverability by collecting the resources' metadata. We present the results of the linked data aggregation task conducted within the Europeana Common Culture project, which attempted an innovative approach to aggregation based on linked data made available by cultural heritage institutions. This task ran for one year with participation of eleven organizations, involving the three member roles of the Europeana network: data providers, intermediary aggregators, and the central aggregation hub, Europeana. We report on the challenges that were faced by data providers, the standards and specifications applied, and the resulting aggregated metadata.
  7. Witt, M.: Survey on the use of the catalogue at the médiathèque of the cité des sciences et de l'industrie (CSI) (1993) 0.01
    0.007941814 = product of:
      0.031767257 = sum of:
        0.031767257 = weight(_text_:research in 6233) [ClassicSimilarity], result of:
          0.031767257 = score(doc=6233,freq=2.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.22064918 = fieldWeight in 6233, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6233)
      0.25 = coord(1/4)
    
    Abstract
    An exploratory research study on OPACs was done within the framework of the French PARINFO program by four different teams: ENSSIB-CERSI, City Univ. of London, Médiathèque of the Cité des Sciences et de l'industrie and a firm GSI-ERLI. During the month of June 1992, 650 individual searches on four terminals were collected. The sessions were automatically recorded, accompanied by two online questionnaires, a pre-search and a post-search questionnaire. Some questions were asked orally by an interviewer and the answers noted. The article analyses the researches perceived by user as difficult or impossible. Some examples of the difficulties are given
  8. Wormell, I.: Multifunctional information work : new demands for training? (1995) 0.01
    0.007737203 = product of:
      0.030948812 = sum of:
        0.030948812 = weight(_text_:science in 3371) [ClassicSimilarity], result of:
          0.030948812 = score(doc=3371,freq=2.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.23282544 = fieldWeight in 3371, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0625 = fieldNorm(doc=3371)
      0.25 = coord(1/4)
    
    Abstract
    The paper calls for an integrated approach to information science education where disciplinary interaction is predicated on the forgoing of formal, informal and sustainable links with researchers and pracitioners in other fields. The modern information profession, in order to promote its creativity and to strengthen its development, has to go beyond the traditional roles and functions and should extend the professions' horizons. Thus the LIS education and training programmes must aim to foster professionals who, one day, will create new jobs and not just fill the old ones
  9. Guizzardi, G.; Guarino, N.: Semantics, ontology and explanation (2023) 0.01
    0.005802902 = product of:
      0.023211608 = sum of:
        0.023211608 = weight(_text_:science in 976) [ClassicSimilarity], result of:
          0.023211608 = score(doc=976,freq=2.0), product of:
            0.1329271 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.050463587 = queryNorm
            0.17461908 = fieldWeight in 976, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.046875 = fieldNorm(doc=976)
      0.25 = coord(1/4)
    
    Abstract
    The terms 'semantics' and 'ontology' are increasingly appearing together with 'explanation', not only in the scientific literature, but also in organizational communication. However, all of these terms are also being significantly overloaded. In this paper, we discuss their strong relation under particular interpretations. Specifically, we discuss a notion of explanation termed ontological unpacking, which aims at explaining symbolic domain descriptions (conceptual models, knowledge graphs, logical specifications) by revealing their ontological commitment in terms of their assumed truthmakers, i.e., the entities in one's ontology that make the propositions in those descriptions true. To illustrate this idea, we employ an ontological theory of relations to explain (by revealing the hidden semantics of) a very simple symbolic model encoded in the standard modeling language UML. We also discuss the essential role played by ontology-driven conceptual models (resulting from this form of explanation processes) in properly supporting semantic interoperability tasks. Finally, we discuss the relation between ontological unpacking and other forms of explanation in philosophy and science, as well as in the area of Artificial Intelligence.
  10. Pejtersen, A.M.; Jensen, H.; Speck, P.; Villumsen, S.; Weber, S.: Catalogs for children : the Book House project on visualization of database retrieval and classification (1993) 0.01
    0.005672725 = product of:
      0.0226909 = sum of:
        0.0226909 = weight(_text_:research in 6232) [ClassicSimilarity], result of:
          0.0226909 = score(doc=6232,freq=2.0), product of:
            0.14397179 = queryWeight, product of:
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.050463587 = queryNorm
            0.15760657 = fieldWeight in 6232, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8529835 = idf(docFreq=6931, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6232)
      0.25 = coord(1/4)
    
    Abstract
    This paper describes the Book House system which is designed to support children's information retrieval in libraries as part of their education. It is a shareware program available on CD-ROM and discs, and comprises functionality for database searching as well as for the classification and storage of book information in the database. The system concept is based on an understanding of children's domain structures and their capabilities for categorization of information needs in connection with their activities in public libraries, in school libraries or in schools. These structures are visualized in the interface by using metaphors and multimedia technology. Through the use of text, images and animation, the Book House supports children - even at a very early age - to learn by doing in an enjoyable way which plays on their previous experiences with computer games. Both words and pictures can be used for searching; this makes the system suitable for all age groups. Even children who have not yet learned to read properly can by selecting pictures search for and find books they would like to have read aloud. Thus at the very beginning of their school period, they can learn to search for books on their own. For the library community itself, such a system will provide an extended service which will increase the number of children's own searches and also improve the relevance, quality and utilization of the collections in the libraries. A market research on the need for an annual indexing service for books in the Book House format is in preparation by the Danish Library Center
  11. Luo, L.; Ju, J.; Li, Y.-F.; Haffari, G.; Xiong, B.; Pan, S.: ChatRule: mining logical rules with large language models for knowledge graph reasoning (2023) 0.00
    0.0042731995 = product of:
      0.017092798 = sum of:
        0.017092798 = product of:
          0.034185596 = sum of:
            0.034185596 = weight(_text_:22 in 1171) [ClassicSimilarity], result of:
              0.034185596 = score(doc=1171,freq=2.0), product of:
                0.17671488 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050463587 = queryNorm
                0.19345059 = fieldWeight in 1171, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1171)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    23.11.2023 19:07:22