Search (26 results, page 1 of 2)

  • × theme_ss:"Data Mining"
  1. Kulathuramaiyer, N.; Maurer, H.: Implications of emerging data mining (2009) 0.03
    0.034011394 = product of:
      0.13604558 = sum of:
        0.13604558 = weight(_text_:master in 3144) [ClassicSimilarity], result of:
          0.13604558 = score(doc=3144,freq=2.0), product of:
            0.3116585 = queryWeight, product of:
              6.5848994 = idf(docFreq=165, maxDocs=44218)
              0.047329273 = queryNorm
            0.4365213 = fieldWeight in 3144, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.5848994 = idf(docFreq=165, maxDocs=44218)
              0.046875 = fieldNorm(doc=3144)
      0.25 = coord(1/4)
    
    Abstract
    Data Mining describes a technology that discovers non-trivial hidden patterns in a large collection of data. Although this technology has a tremendous impact on our lives, the invaluable contributions of this invisible technology often go unnoticed. This paper discusses advances in data mining while focusing on the emerging data mining capability. Such data mining applications perform multidimensional mining on a wide variety of heterogeneous data sources, providing solutions to many unresolved problems. This paper also highlights the advantages and disadvantages arising from the ever-expanding scope of data mining. Data Mining augments human intelligence by equipping us with a wealth of knowledge and by empowering us to perform our daily tasks better. As the mining scope and capacity increases, users and organizations become more willing to compromise privacy. The huge data stores of the 'master miners' allow them to gain deep insights into individual lifestyles and their social and behavioural patterns. Data integration and analysis capability of combining business and financial trends together with the ability to deterministically track market changes will drastically affect our lives.
  2. Information visualization in data mining and knowledge discovery (2002) 0.02
    0.018197427 = product of:
      0.036394853 = sum of:
        0.02998239 = weight(_text_:reference in 1789) [ClassicSimilarity], result of:
          0.02998239 = score(doc=1789,freq=6.0), product of:
            0.19255297 = queryWeight, product of:
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.047329273 = queryNorm
            0.15570983 = fieldWeight in 1789, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.015625 = fieldNorm(doc=1789)
        0.006412463 = product of:
          0.012824926 = sum of:
            0.012824926 = weight(_text_:22 in 1789) [ClassicSimilarity], result of:
              0.012824926 = score(doc=1789,freq=2.0), product of:
                0.16573904 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047329273 = queryNorm
                0.07738023 = fieldWeight in 1789, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.015625 = fieldNorm(doc=1789)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    23. 3.2008 19:10:22
    Footnote
    Rez. in: JASIST 54(2003) no.9, S.905-906 (C.A. Badurek): "Visual approaches for knowledge discovery in very large databases are a prime research need for information scientists focused an extracting meaningful information from the ever growing stores of data from a variety of domains, including business, the geosciences, and satellite and medical imagery. This work presents a summary of research efforts in the fields of data mining, knowledge discovery, and data visualization with the goal of aiding the integration of research approaches and techniques from these major fields. The editors, leading computer scientists from academia and industry, present a collection of 32 papers from contributors who are incorporating visualization and data mining techniques through academic research as well application development in industry and government agencies. Information Visualization focuses upon techniques to enhance the natural abilities of humans to visually understand data, in particular, large-scale data sets. It is primarily concerned with developing interactive graphical representations to enable users to more intuitively make sense of multidimensional data as part of the data exploration process. It includes research from computer science, psychology, human-computer interaction, statistics, and information science. Knowledge Discovery in Databases (KDD) most often refers to the process of mining databases for previously unknown patterns and trends in data. Data mining refers to the particular computational methods or algorithms used in this process. The data mining research field is most related to computational advances in database theory, artificial intelligence and machine learning. This work compiles research summaries from these main research areas in order to provide "a reference work containing the collection of thoughts and ideas of noted researchers from the fields of data mining and data visualization" (p. 8). It addresses these areas in three main sections: the first an data visualization, the second an KDD and model visualization, and the last an using visualization in the knowledge discovery process. The seven chapters of Part One focus upon methodologies and successful techniques from the field of Data Visualization. Hoffman and Grinstein (Chapter 2) give a particularly good overview of the field of data visualization and its potential application to data mining. An introduction to the terminology of data visualization, relation to perceptual and cognitive science, and discussion of the major visualization display techniques are presented. Discussion and illustration explain the usefulness and proper context of such data visualization techniques as scatter plots, 2D and 3D isosurfaces, glyphs, parallel coordinates, and radial coordinate visualizations. Remaining chapters present the need for standardization of visualization methods, discussion of user requirements in the development of tools, and examples of using information visualization in addressing research problems.
    With contributors almost exclusively from the computer science field, the intended audience of this work is heavily slanted towards a computer science perspective. However, it is highly readable and provides introductory material that would be useful to information scientists from a variety of domains. Yet, much interesting work in information visualization from other fields could have been included giving the work more of an interdisciplinary perspective to complement their goals of integrating work in this area. Unfortunately, many of the application chapters are these, shallow, and lack complementary illustrations of visualization techniques or user interfaces used. However, they do provide insight into the many applications being developed in this rapidly expanding field. The authors have successfully put together a highly useful reference text for the data mining and information visualization communities. Those interested in a good introduction and overview of complementary research areas in these fields will be satisfied with this collection of papers. The focus upon integrating data visualization with data mining complements texts in each of these fields, such as Advances in Knowledge Discovery and Data Mining (Fayyad et al., MIT Press) and Readings in Information Visualization: Using Vision to Think (Card et. al., Morgan Kauffman). This unique work is a good starting point for future interaction between researchers in the fields of data visualization and data mining and makes a good accompaniment for a course focused an integrating these areas or to the main reference texts in these fields."
  3. Trybula, W.J.: Data mining and knowledge discovery (1997) 0.02
    0.015146547 = product of:
      0.060586188 = sum of:
        0.060586188 = weight(_text_:reference in 2300) [ClassicSimilarity], result of:
          0.060586188 = score(doc=2300,freq=2.0), product of:
            0.19255297 = queryWeight, product of:
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.047329273 = queryNorm
            0.31464687 = fieldWeight in 2300, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2300)
      0.25 = coord(1/4)
    
    Abstract
    State of the art review of the recently developed concepts of data mining (defined as the automated process of evaluating data and finding relationships) and knowledge discovery (defined as the automated process of extracting information, especially unpredicted relationships or previously unknown patterns among the data) with particular reference to numerical data. Includes: the knowledge acquisition process; data mining; evaluation methods; and knowledge discovery. Concludes that existing work in the field are confusing because the terminology is inconsistent and poorly defined. Although methods are available for analyzing and cleaning databases, better coordinated efforts should be directed toward providing users with improved means of structuring search mechanisms to explore the data for relationships
  4. Bauckhage, C.: Moderne Textanalyse : neues Wissen für intelligente Lösungen (2016) 0.02
    0.015023614 = product of:
      0.060094457 = sum of:
        0.060094457 = product of:
          0.120188914 = sum of:
            0.120188914 = weight(_text_:file in 2568) [ClassicSimilarity], result of:
              0.120188914 = score(doc=2568,freq=2.0), product of:
                0.25368783 = queryWeight, product of:
                  5.3600616 = idf(docFreq=564, maxDocs=44218)
                  0.047329273 = queryNorm
                0.47376698 = fieldWeight in 2568, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.3600616 = idf(docFreq=564, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2568)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    https://login.mailingwork.de/public/a_5668_LVrTK/file/data/1125_Textanalyse_Christian-Bauckhage.pdf
  5. Relational data mining (2001) 0.01
    0.012982754 = product of:
      0.051931016 = sum of:
        0.051931016 = weight(_text_:reference in 1303) [ClassicSimilarity], result of:
          0.051931016 = score(doc=1303,freq=2.0), product of:
            0.19255297 = queryWeight, product of:
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.047329273 = queryNorm
            0.2696973 = fieldWeight in 1303, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.046875 = fieldNorm(doc=1303)
      0.25 = coord(1/4)
    
    Abstract
    As the first book devoted to relational data mining, this coherently written multi-author monograph provides a thorough introduction and systematic overview of the area. The ferst part introduces the reader to the basics and principles of classical knowledge discovery in databases and inductive logic programmeng; subsequent chapters by leading experts assess the techniques in relational data mining in a principled and comprehensive way; finally, three chapters deal with advanced applications in various fields and refer the reader to resources for relational data mining. This book will become a valuable source of reference for R&D professionals active in relational data mining. Students as well as IT professionals and ambitioned practitioners interested in learning about relational data mining will appreciate the book as a useful text and gentle introduction to this exciting new field.
  6. Chowdhury, G.G.: Template mining for information extraction from digital documents (1999) 0.01
    0.01122181 = product of:
      0.04488724 = sum of:
        0.04488724 = product of:
          0.08977448 = sum of:
            0.08977448 = weight(_text_:22 in 4577) [ClassicSimilarity], result of:
              0.08977448 = score(doc=4577,freq=2.0), product of:
                0.16573904 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047329273 = queryNorm
                0.5416616 = fieldWeight in 4577, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4577)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    2. 4.2000 18:01:22
  7. Varathan, K.D.; Giachanou, A.; Crestani, F.: Comparative opinion mining : a review (2017) 0.01
    0.010818963 = product of:
      0.04327585 = sum of:
        0.04327585 = weight(_text_:reference in 3540) [ClassicSimilarity], result of:
          0.04327585 = score(doc=3540,freq=2.0), product of:
            0.19255297 = queryWeight, product of:
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.047329273 = queryNorm
            0.22474778 = fieldWeight in 3540, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3540)
      0.25 = coord(1/4)
    
    Abstract
    Opinion mining refers to the use of natural language processing, text analysis, and computational linguistics to identify and extract subjective information in textual material. Opinion mining, also known as sentiment analysis, has received a lot of attention in recent times, as it provides a number of tools to analyze public opinion on a number of different topics. Comparative opinion mining is a subfield of opinion mining which deals with identifying and extracting information that is expressed in a comparative form (e.g., "paper X is better than the Y"). Comparative opinion mining plays a very important role when one tries to evaluate something because it provides a reference point for the comparison. This paper provides a review of the area of comparative opinion mining. It is the first review that cover specifically this topic as all previous reviews dealt mostly with general opinion mining. This survey covers comparative opinion mining from two different angles. One from the perspective of techniques and the other from the perspective of comparative opinion elements. It also incorporates preprocessing tools as well as data set that were used by past researchers that can be useful to future researchers in the field of comparative opinion mining.
  8. KDD : techniques and applications (1998) 0.01
    0.009618694 = product of:
      0.038474776 = sum of:
        0.038474776 = product of:
          0.07694955 = sum of:
            0.07694955 = weight(_text_:22 in 6783) [ClassicSimilarity], result of:
              0.07694955 = score(doc=6783,freq=2.0), product of:
                0.16573904 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047329273 = queryNorm
                0.46428138 = fieldWeight in 6783, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6783)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Footnote
    A special issue of selected papers from the Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'97), held Singapore, 22-23 Feb 1997
  9. Shi, X.; Yang, C.C.: Mining related queries from Web search engine query logs using an improved association rule mining model (2007) 0.01
    0.009389759 = product of:
      0.037559036 = sum of:
        0.037559036 = product of:
          0.07511807 = sum of:
            0.07511807 = weight(_text_:file in 597) [ClassicSimilarity], result of:
              0.07511807 = score(doc=597,freq=2.0), product of:
                0.25368783 = queryWeight, product of:
                  5.3600616 = idf(docFreq=564, maxDocs=44218)
                  0.047329273 = queryNorm
                0.29610437 = fieldWeight in 597, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.3600616 = idf(docFreq=564, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=597)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    With the overwhelming volume of information, the task of finding relevant information on a given topic on the Web is becoming increasingly difficult. Web search engines hence become one of the most popular solutions available on the Web. However, it has never been easy for novice users to organize and represent their information needs using simple queries. Users have to keep modifying their input queries until they get expected results. Therefore, it is often desirable for search engines to give suggestions on related queries to users. Besides, by identifying those related queries, search engines can potentially perform optimizations on their systems, such as query expansion and file indexing. In this work we propose a method that suggests a list of related queries given an initial input query. The related queries are based in the query log of previously submitted queries by human users, which can be identified using an enhanced model of association rules. Users can utilize the suggested related queries to tune or redirect the search process. Our method not only discovers the related queries, but also ranks them according to the degree of their relatedness. Unlike many other rival techniques, it also performs reasonably well on less frequent input queries.
  10. Chakrabarti, S.: Mining the Web : discovering knowledge from hypertext data (2003) 0.01
    0.00865517 = product of:
      0.03462068 = sum of:
        0.03462068 = weight(_text_:reference in 2222) [ClassicSimilarity], result of:
          0.03462068 = score(doc=2222,freq=2.0), product of:
            0.19255297 = queryWeight, product of:
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.047329273 = queryNorm
            0.17979822 = fieldWeight in 2222, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.03125 = fieldNorm(doc=2222)
      0.25 = coord(1/4)
    
    Footnote
    Part I, Infrastructure, has two chapters: Chapter 2 on crawling the Web and Chapter 3 an Web search and information retrieval. The second part of the book, containing chapters 4, 5, and 6, is the centerpiece. This part specifically focuses an machine learning in the context of hypertext. Part III is a collection of applications that utilize the techniques described in earlier chapters. Chapter 7 is an social network analysis. Chapter 8 is an resource discovery. Chapter 9 is an the future of Web mining. Overall, this is a valuable reference book for researchers and developers in the field of Web mining. It should be particularly useful for those who would like to design and probably code their own Computer programs out of the equations and pseudocodes an most of the pages. For a student, the most valuable feature of the book is perhaps the formal and consistent treatments of concepts across the board. For what is behind and beyond the technical details, one has to either dig deeper into the bibliographic notes at the end of each chapter, or resort to more in-depth analysis of relevant subjects in the literature. lf you are looking for successful stories about Web mining or hard-way-learned lessons of failures, this is not the book."
  11. Cohen, D.J.: From Babel to knowledge : data mining large digital collections (2006) 0.01
    0.00865517 = product of:
      0.03462068 = sum of:
        0.03462068 = weight(_text_:reference in 1178) [ClassicSimilarity], result of:
          0.03462068 = score(doc=1178,freq=2.0), product of:
            0.19255297 = queryWeight, product of:
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.047329273 = queryNorm
            0.17979822 = fieldWeight in 1178, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.03125 = fieldNorm(doc=1178)
      0.25 = coord(1/4)
    
    Abstract
    In Jorge Luis Borges's curious short story The Library of Babel, the narrator describes an endless collection of books stored from floor to ceiling in a labyrinth of countless hexagonal rooms. The pages of the library's books seem to contain random sequences of letters and spaces; occasionally a few intelligible words emerge in the sea of paper and ink. Nevertheless, readers diligently, and exasperatingly, scan the shelves for coherent passages. The narrator himself has wandered numerous rooms in search of enlightenment, but with resignation he simply awaits his death and burial - which Borges explains (with signature dark humor) consists of being tossed unceremoniously over the library's banister. Borges's nightmare, of course, is a cursed vision of the research methods of disciplines such as literature, history, and philosophy, where the careful reading of books, one after the other, is supposed to lead inexorably to knowledge and understanding. Computer scientists would approach Borges's library far differently. Employing the information theory that forms the basis for search engines and other computerized techniques for assessing in one fell swoop large masses of documents, they would quickly realize the collection's incoherence though sampling and statistical methods - and wisely start looking for the library's exit. These computational methods, which allow us to find patterns, determine relationships, categorize documents, and extract information from massive corpuses, will form the basis for new tools for research in the humanities and other disciplines in the coming decade. For the past three years I have been experimenting with how to provide such end-user tools - that is, tools that harness the power of vast electronic collections while hiding much of their complicated technical plumbing. In particular, I have made extensive use of the application programming interfaces (APIs) the leading search engines provide for programmers to query their databases directly (from server to server without using their web interfaces). In addition, I have explored how one might extract information from large digital collections, from the well-curated lexicographic database WordNet to the democratic (and poorly curated) online reference work Wikipedia. While processing these digital corpuses is currently an imperfect science, even now useful tools can be created by combining various collections and methods for searching and analyzing them. And more importantly, these nascent services suggest a future in which information can be gleaned from, and sense can be made out of, even imperfect digital libraries of enormous scale. A brief examination of two approaches to data mining large digital collections hints at this future, while also providing some lessons about how to get there.
  12. Liu, B.: Web data mining : exploring hyperlinks, contents, and usage data (2011) 0.01
    0.00865517 = product of:
      0.03462068 = sum of:
        0.03462068 = weight(_text_:reference in 354) [ClassicSimilarity], result of:
          0.03462068 = score(doc=354,freq=2.0), product of:
            0.19255297 = queryWeight, product of:
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.047329273 = queryNorm
            0.17979822 = fieldWeight in 354, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.03125 = fieldNorm(doc=354)
      0.25 = coord(1/4)
    
    Abstract
    Web mining aims to discover useful information and knowledge from the Web hyperlink structure, page contents, and usage data. Although Web mining uses many conventional data mining techniques, it is not purely an application of traditional data mining due to the semistructured and unstructured nature of the Web data and its heterogeneity. It has also developed many of its own algorithms and techniques. Liu has written a comprehensive text on Web data mining. Key topics of structure mining, content mining, and usage mining are covered both in breadth and in depth. His book brings together all the essential concepts and algorithms from related areas such as data mining, machine learning, and text processing to form an authoritative and coherent text. The book offers a rich blend of theory and practice, addressing seminal research ideas, as well as examining the technology from a practical point of view. It is suitable for students, researchers and practitioners interested in Web mining both as a learning text and a reference book. Lecturers can readily use it for classes on data mining, Web mining, and Web search. Additional teaching materials such as lecture slides, datasets, and implemented algorithms are available online.
  13. Mining text data (2012) 0.01
    0.00865517 = product of:
      0.03462068 = sum of:
        0.03462068 = weight(_text_:reference in 362) [ClassicSimilarity], result of:
          0.03462068 = score(doc=362,freq=2.0), product of:
            0.19255297 = queryWeight, product of:
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.047329273 = queryNorm
            0.17979822 = fieldWeight in 362, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.03125 = fieldNorm(doc=362)
      0.25 = coord(1/4)
    
    Abstract
    Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on Text Embedded with Heterogeneous and Multimedia Data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases. Mining Text Data simplifies the content, so that advanced-level students, practitioners and researchers in computer science can benefit from this book. Academic and corporate libraries, as well as ACM, IEEE, and Management Science focused on information security, electronic commerce, databases, data mining, machine learning, and statistics are the primary buyers for this reference book.
  14. Matson, L.D.; Bonski, D.J.: Do digital libraries need librarians? (1997) 0.01
    0.006412463 = product of:
      0.025649851 = sum of:
        0.025649851 = product of:
          0.051299702 = sum of:
            0.051299702 = weight(_text_:22 in 1737) [ClassicSimilarity], result of:
              0.051299702 = score(doc=1737,freq=2.0), product of:
                0.16573904 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047329273 = queryNorm
                0.30952093 = fieldWeight in 1737, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1737)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22.11.1998 18:57:22
  15. Lusti, M.: Data Warehousing and Data Mining : Eine Einführung in entscheidungsunterstützende Systeme (1999) 0.01
    0.006412463 = product of:
      0.025649851 = sum of:
        0.025649851 = product of:
          0.051299702 = sum of:
            0.051299702 = weight(_text_:22 in 4261) [ClassicSimilarity], result of:
              0.051299702 = score(doc=4261,freq=2.0), product of:
                0.16573904 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047329273 = queryNorm
                0.30952093 = fieldWeight in 4261, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4261)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    17. 7.2002 19:22:06
  16. Amir, A.; Feldman, R.; Kashi, R.: ¬A new and versatile method for association generation (1997) 0.01
    0.006412463 = product of:
      0.025649851 = sum of:
        0.025649851 = product of:
          0.051299702 = sum of:
            0.051299702 = weight(_text_:22 in 1270) [ClassicSimilarity], result of:
              0.051299702 = score(doc=1270,freq=2.0), product of:
                0.16573904 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047329273 = queryNorm
                0.30952093 = fieldWeight in 1270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1270)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Information systems. 22(1997) nos.5/6, S.333-347
  17. Hofstede, A.H.M. ter; Proper, H.A.; Van der Weide, T.P.: Exploiting fact verbalisation in conceptual information modelling (1997) 0.01
    0.005610905 = product of:
      0.02244362 = sum of:
        0.02244362 = product of:
          0.04488724 = sum of:
            0.04488724 = weight(_text_:22 in 2908) [ClassicSimilarity], result of:
              0.04488724 = score(doc=2908,freq=2.0), product of:
                0.16573904 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047329273 = queryNorm
                0.2708308 = fieldWeight in 2908, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2908)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Information systems. 22(1997) nos.5/6, S.349-385
  18. Lackes, R.; Tillmanns, C.: Data Mining für die Unternehmenspraxis : Entscheidungshilfen und Fallstudien mit führenden Softwarelösungen (2006) 0.00
    0.004809347 = product of:
      0.019237388 = sum of:
        0.019237388 = product of:
          0.038474776 = sum of:
            0.038474776 = weight(_text_:22 in 1383) [ClassicSimilarity], result of:
              0.038474776 = score(doc=1383,freq=2.0), product of:
                0.16573904 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047329273 = queryNorm
                0.23214069 = fieldWeight in 1383, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1383)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 3.2008 14:46:06
  19. Hallonsten, O.; Holmberg, D.: Analyzing structural stratification in the Swedish higher education system : data contextualization with policy-history analysis (2013) 0.00
    0.0040077893 = product of:
      0.016031157 = sum of:
        0.016031157 = product of:
          0.032062314 = sum of:
            0.032062314 = weight(_text_:22 in 668) [ClassicSimilarity], result of:
              0.032062314 = score(doc=668,freq=2.0), product of:
                0.16573904 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047329273 = queryNorm
                0.19345059 = fieldWeight in 668, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=668)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 3.2013 19:43:01
  20. Vaughan, L.; Chen, Y.: Data mining from web search queries : a comparison of Google trends and Baidu index (2015) 0.00
    0.0040077893 = product of:
      0.016031157 = sum of:
        0.016031157 = product of:
          0.032062314 = sum of:
            0.032062314 = weight(_text_:22 in 1605) [ClassicSimilarity], result of:
              0.032062314 = score(doc=1605,freq=2.0), product of:
                0.16573904 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047329273 = queryNorm
                0.19345059 = fieldWeight in 1605, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1605)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.1, S.13-22

Languages

  • e 18
  • d 8

Types