Search (8 results, page 1 of 1)

  • × classification_ss:"06.74 / Informationssysteme"
  • × theme_ss:"Suchmaschinen"
  1. Belew, R.K.: Finding out about : a cognitive perspective on search engine technology and the WWW (2001) 0.03
    0.025576282 = product of:
      0.03836442 = sum of:
        0.027048381 = weight(_text_:of in 3346) [ClassicSimilarity], result of:
          0.027048381 = score(doc=3346,freq=46.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.33143494 = fieldWeight in 3346, product of:
              6.78233 = tf(freq=46.0), with freq of:
                46.0 = termFreq=46.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=3346)
        0.011316041 = product of:
          0.022632083 = sum of:
            0.022632083 = weight(_text_:science in 3346) [ClassicSimilarity], result of:
              0.022632083 = score(doc=3346,freq=4.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.16463245 = fieldWeight in 3346, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3346)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The World Wide Web is rapidly filling with more text than anyone could have imagined even a short time ago, but the task of isolating relevant parts of this vast information has become just that much more daunting. Richard Belew brings a cognitive perspective to the study of information retrieval as a discipline within computer science. He introduces the idea of Finding Out About (FDA) as the process of actively seeking out information relevant to a topic of interest and describes its many facets - ranging from creating a good characterization of what the user seeks, to what documents actually mean, to methods of inferring semantic clues about each document, to the problem of evaluating whether our search engines are performing as we have intended. Finding Out About explains how to build the tools that are useful for searching collections of text and other media. In the process it takes a close look at the properties of textual documents that do not become clear until very large collections of them are brought together and shows that the construction of effective search engines requires knowledge of the statistical and mathematical properties of linguistic phenomena, as well as an appreciation for the cognitive foundation we bring to the task as language users. The unique approach of this book is its even handling of the phenomena of both numbers and words, making it accessible to a wide audience. The textbook is usable in both undergraduate and graduate classes on information retrieval, library science, and computational linguistics. The text is accompanied by a CD-ROM that contains a hypertext version of the book, including additional topics and notes not present in the printed edition. In addition, the CD contains the full text of C.J. "Keith" van Rijsbergen's famous textbook, Information Retrieval (now out of print). Many active links from Belew's to van Rijsbergen's hypertexts help to unite the material. Several test corpora and indexing tools are provided, to support the design of your own search engine. Additional exercises using these corpora and code are available to instructors. Also supporting this book is a Web site that will include recent additions to the book, as well as links to sites of new topics and methods.
  2. Croft, W.B.; Metzler, D.; Strohman, T.: Search engines : information retrieval in practice (2010) 0.02
    0.022595998 = product of:
      0.033893995 = sum of:
        0.016919931 = weight(_text_:of in 2605) [ClassicSimilarity], result of:
          0.016919931 = score(doc=2605,freq=8.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.20732689 = fieldWeight in 2605, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2605)
        0.016974064 = product of:
          0.033948127 = sum of:
            0.033948127 = weight(_text_:science in 2605) [ClassicSimilarity], result of:
              0.033948127 = score(doc=2605,freq=4.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.24694869 = fieldWeight in 2605, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2605)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    For introductory information retrieval courses at the undergraduate and graduate level in computer science, information science and computer engineering departments. Written by a leader in the field of information retrieval, Search Engines: Information Retrieval in Practice, is designed to give undergraduate students the understanding and tools they need to evaluate, compare and modify search engines. Coverage of the underlying IR and mathematical models reinforce key concepts. The book's numerous programming exercises make extensive use of Galago, a Java-based open source search engine. SUPPLEMENTS / Extensive lecture slides (in PDF and PPT format) / Solutions to selected end of chapter problems (Instructors only) / Test collections for exercises / Galago search engine
  3. Berry, M.W.; Browne, M.: Understanding search engines : mathematical modeling and text retrieval (1999) 0.02
    0.02108477 = product of:
      0.031627156 = sum of:
        0.014653091 = weight(_text_:of in 5777) [ClassicSimilarity], result of:
          0.014653091 = score(doc=5777,freq=6.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.17955035 = fieldWeight in 5777, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=5777)
        0.016974064 = product of:
          0.033948127 = sum of:
            0.033948127 = weight(_text_:science in 5777) [ClassicSimilarity], result of:
              0.033948127 = score(doc=5777,freq=4.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.24694869 = fieldWeight in 5777, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5777)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This book discusses many of the key design issues for building search engines and emphazises the important role that applied mathematics can play in improving information retrieval. The authors discuss not only important data structures, algorithms, and software but also user-centered issues such as interfaces, manual indexing, and document preparation. They also present some of the current problems in information retrieval that many not be familiar to applied mathematicians and computer scientists and some of the driving computational methods (SVD, SDD) for automated conceptual indexing
    LCSH
    Text processing (Computer science)
    Subject
    Text processing (Computer science)
  4. Langville, A.N.; Meyer, C.D.: Google's PageRank and beyond : the science of search engine rankings (2006) 0.02
    0.019852445 = product of:
      0.029778667 = sum of:
        0.019384217 = weight(_text_:of in 6) [ClassicSimilarity], result of:
          0.019384217 = score(doc=6,freq=42.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.23752278 = fieldWeight in 6, product of:
              6.4807405 = tf(freq=42.0), with freq of:
                42.0 = termFreq=42.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0234375 = fieldNorm(doc=6)
        0.010394449 = product of:
          0.020788899 = sum of:
            0.020788899 = weight(_text_:science in 6) [ClassicSimilarity], result of:
              0.020788899 = score(doc=6,freq=6.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.15122458 = fieldWeight in 6, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=6)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Why doesn't your home page appear on the first page of search results, even when you query your own name? How do other Web pages always appear at the top? What creates these powerful rankings? And how? The first book ever about the science of Web page rankings, "Google's PageRank and Beyond" supplies the answers to these and other questions and more. The book serves two very different audiences: the curious science reader and the technical computational reader. The chapters build in mathematical sophistication, so that the first five are accessible to the general academic reader. While other chapters are much more mathematical in nature, each one contains something for both audiences. For example, the authors include entertaining asides such as how search engines make money and how the Great Firewall of China influences research. The book includes an extensive background chapter designed to help readers learn more about the mathematics of search engines, and it contains several MATLAB codes and links to sample Web data sets. The philosophy throughout is to encourage readers to experiment with the ideas and algorithms in the text. Any business seriously interested in improving its rankings in the major search engines can benefit from the clear examples, sample code, and list of resources provided. It includes: many illustrative examples and entertaining asides; MATLAB code; accessible and informal style; and complete and self-contained section for mathematics review.
    Content
    Inhalt: Chapter 1. Introduction to Web Search Engines: 1.1 A Short History of Information Retrieval - 1.2 An Overview of Traditional Information Retrieval - 1.3 Web Information Retrieval Chapter 2. Crawling, Indexing, and Query Processing: 2.1 Crawling - 2.2 The Content Index - 2.3 Query Processing Chapter 3. Ranking Webpages by Popularity: 3.1 The Scene in 1998 - 3.2 Two Theses - 3.3 Query-Independence Chapter 4. The Mathematics of Google's PageRank: 4.1 The Original Summation Formula for PageRank - 4.2 Matrix Representation of the Summation Equations - 4.3 Problems with the Iterative Process - 4.4 A Little Markov Chain Theory - 4.5 Early Adjustments to the Basic Model - 4.6 Computation of the PageRank Vector - 4.7 Theorem and Proof for Spectrum of the Google Matrix Chapter 5. Parameters in the PageRank Model: 5.1 The a Factor - 5.2 The Hyperlink Matrix H - 5.3 The Teleportation Matrix E Chapter 6. The Sensitivity of PageRank; 6.1 Sensitivity with respect to alpha - 6.2 Sensitivity with respect to H - 6.3 Sensitivity with respect to vT - 6.4 Other Analyses of Sensitivity - 6.5 Sensitivity Theorems and Proofs Chapter 7. The PageRank Problem as a Linear System: 7.1 Properties of (I - alphaS) - 7.2 Properties of (I - alphaH) - 7.3 Proof of the PageRank Sparse Linear System Chapter 8. Issues in Large-Scale Implementation of PageRank: 8.1 Storage Issues - 8.2 Convergence Criterion - 8.3 Accuracy - 8.4 Dangling Nodes - 8.5 Back Button Modeling
    Chapter 9. Accelerating the Computation of PageRank: 9.1 An Adaptive Power Method - 9.2 Extrapolation - 9.3 Aggregation - 9.4 Other Numerical Methods Chapter 10. Updating the PageRank Vector: 10.1 The Two Updating Problems and their History - 10.2 Restarting the Power Method - 10.3 Approximate Updating Using Approximate Aggregation - 10.4 Exact Aggregation - 10.5 Exact vs. Approximate Aggregation - 10.6 Updating with Iterative Aggregation - 10.7 Determining the Partition - 10.8 Conclusions Chapter 11. The HITS Method for Ranking Webpages: 11.1 The HITS Algorithm - 11.2 HITS Implementation - 11.3 HITS Convergence - 11.4 HITS Example - 11.5 Strengths and Weaknesses of HITS - 11.6 HITS's Relationship to Bibliometrics - 11.7 Query-Independent HITS - 11.8 Accelerating HITS - 11.9 HITS Sensitivity Chapter 12. Other Link Methods for Ranking Webpages: 12.1 SALSA - 12.2 Hybrid Ranking Methods - 12.3 Rankings based on Traffic Flow Chapter 13. The Future of Web Information Retrieval: 13.1 Spam - 13.2 Personalization - 13.3 Clustering - 13.4 Intelligent Agents - 13.5 Trends and Time-Sensitive Search - 13.6 Privacy and Censorship - 13.7 Library Classification Schemes - 13.8 Data Fusion Chapter 14. Resources for Web Information Retrieval: 14.1 Resources for Getting Started - 14.2 Resources for Serious Study Chapter 15. The Mathematics Guide: 15.1 Linear Algebra - 15.2 Perron-Frobenius Theory - 15.3 Markov Chains - 15.4 Perron Complementation - 15.5 Stochastic Complementation - 15.6 Censoring - 15.7 Aggregation - 15.8 Disaggregation
  5. Berry, M.W.; Browne, M.: Understanding search engines : mathematical modeling and text retrieval (2005) 0.02
    0.015951611 = product of:
      0.023927415 = sum of:
        0.012611373 = weight(_text_:of in 7) [ClassicSimilarity], result of:
          0.012611373 = score(doc=7,freq=10.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.15453234 = fieldWeight in 7, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=7)
        0.011316041 = product of:
          0.022632083 = sum of:
            0.022632083 = weight(_text_:science in 7) [ClassicSimilarity], result of:
              0.022632083 = score(doc=7,freq=4.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.16463245 = fieldWeight in 7, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.03125 = fieldNorm(doc=7)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The second edition of Understanding Search Engines: Mathematical Modeling and Text Retrieval follows the basic premise of the first edition by discussing many of the key design issues for building search engines and emphasizing the important role that applied mathematics can play in improving information retrieval. The authors discuss important data structures, algorithms, and software as well as user-centered issues such as interfaces, manual indexing, and document preparation. Significant changes bring the text up to date on current information retrieval methods: for example the addition of a new chapter on link-structure algorithms used in search engines such as Google. The chapter on user interface has been rewritten to specifically focus on search engine usability. In addition the authors have added new recommendations for further reading and expanded the bibliography, and have updated and streamlined the index to make it more reader friendly.
    Content
    Inhalt: Introduction Document File Preparation - Manual Indexing - Information Extraction - Vector Space Modeling - Matrix Decompositions - Query Representations - Ranking and Relevance Feedback - Searching by Link Structure - User Interface - Book Format Document File Preparation Document Purification and Analysis - Text Formatting - Validation - Manual Indexing - Automatic Indexing - Item Normalization - Inverted File Structures - Document File - Dictionary List - Inversion List - Other File Structures Vector Space Models Construction - Term-by-Document Matrices - Simple Query Matching - Design Issues - Term Weighting - Sparse Matrix Storage - Low-Rank Approximations Matrix Decompositions QR Factorization - Singular Value Decomposition - Low-Rank Approximations - Query Matching - Software - Semidiscrete Decomposition - Updating Techniques Query Management Query Binding - Types of Queries - Boolean Queries - Natural Language Queries - Thesaurus Queries - Fuzzy Queries - Term Searches - Probabilistic Queries Ranking and Relevance Feedback Performance Evaluation - Precision - Recall - Average Precision - Genetic Algorithms - Relevance Feedback Searching by Link Structure HITS Method - HITS Implementation - HITS Summary - PageRank Method - PageRank Adjustments - PageRank Implementation - PageRank Summary User Interface Considerations General Guidelines - Search Engine Interfaces - Form Fill-in - Display Considerations - Progress Indication - No Penalties for Error - Results - Test and Retest - Final Considerations Further Reading
    LCSH
    Text processing (Computer science)
    Subject
    Text processing (Computer science)
  6. Levy, S.: In the plex : how Google thinks, works, and shapes our lives (2011) 0.00
    0.0040293946 = product of:
      0.012088183 = sum of:
        0.012088183 = weight(_text_:of in 9) [ClassicSimilarity], result of:
          0.012088183 = score(doc=9,freq=12.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.14812148 = fieldWeight in 9, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.02734375 = fieldNorm(doc=9)
      0.33333334 = coord(1/3)
    
    Abstract
    Few companies in history have ever been as successful and as admired as Google, the company that has transformed the Internet and become an indispensable part of our lives. How has Google done it? Veteran technology reporter Steven Levy was granted unprecedented access to the company, and in this revelatory book he takes readers inside Google headquarters-the Googleplex-to show how Google works. While they were still students at Stanford, Google cofounders Larry Page and Sergey Brin revolutionized Internet search. They followed this brilliant innovation with another, as two of Google's earliest employees found a way to do what no one else had: make billions of dollars from Internet advertising. With this cash cow (until Google's IPO nobody other than Google management had any idea how lucrative the company's ad business was), Google was able to expand dramatically and take on other transformative projects: more efficient data centers, open-source cell phones, free Internet video (YouTube), cloud computing, digitizing books, and much more. The key to Google's success in all these businesses, Levy reveals, is its engineering mind-set and adoption of such Internet values as speed, openness, experimentation, and risk taking. After its unapologetically elitist approach to hiring, Google pampers its engineers-free food and dry cleaning, on-site doctors and masseuses-and gives them all the resources they need to succeed. Even today, with a workforce of more than 23,000, Larry Page signs off on every hire. But has Google lost its innovative edge? It stumbled badly in China-Levy discloses what went wrong and how Brin disagreed with his peers on the China strategy-and now with its newest initiative, social networking, Google is chasing a successful competitor for the first time. Some employees are leaving the company for smaller, nimbler start-ups. Can the company that famously decided not to be evil still compete? No other book has ever turned Google inside out as Levy does with In the Plex.
    Content
    The world according to Google: biography of a search engine -- Googlenomics: cracking the code on internet profits -- Don't be evil: how Google built its culture -- Google's cloud: how Google built data centers and killed the hard drive -- Outside the box: the Google phone company. and the Google t.v. company -- Guge: Google moral dilemma in China -- Google.gov: is what's good for Google, good for government or the public? -- Epilogue: chasing tail lights: trying to crack the social code.
  7. Sherman, C.: Google power : Unleash the full potential of Google (2005) 0.00
    0.003988066 = product of:
      0.011964198 = sum of:
        0.011964198 = weight(_text_:of in 3185) [ClassicSimilarity], result of:
          0.011964198 = score(doc=3185,freq=4.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.14660224 = fieldWeight in 3185, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3185)
      0.33333334 = coord(1/3)
    
    Abstract
    With this title, readers learn to push the search engine to its limits and extract the best content from Google, without having to learn complicated code. "Google Power" takes Google users under the hood, and teaches them a wide range of advanced web search techniques, through practical examples. Its content is organised by topic, so reader learns how to conduct in-depth searches on the most popular search topics, from health to government listings to people.
  8. Wegweiser im Netz : Qualität und Nutzung von Suchmaschinen (2004) 0.00
    0.0032562427 = product of:
      0.009768728 = sum of:
        0.009768728 = weight(_text_:of in 2858) [ClassicSimilarity], result of:
          0.009768728 = score(doc=2858,freq=6.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.11970024 = fieldWeight in 2858, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=2858)
      0.33333334 = coord(1/3)
    
    Abstract
    Suchmaschinen sind die neuen »Gatekeeper« im Internet. Sie kanalisieren unsere Aufmerksamkeit und haben entscheidenden Einfluss darauf, welche Inhalte wie zugänglich sind. Ohne sie sind Informationen im Netz nur schwer auffindbar. Allerdings: Nur wenige Nutzer wissen, wie man Suchmaschinen optimal bedient und wie sie funktionieren. Sie sind anfällig für Manipulationen (»Spamming«) und verschaffen auch ungewollt Zugang zu illegalen und jugendgefährdenden Inhalten. Wie können Suchmaschinen trotzdem ihrer Verantwortung als zentrale Informationssortierer gerecht werden? Eine groß angelegte Untersuchung der Bertelsmann Stiftung stellt diese Beobachtungen auf eine wissenschaftliche Basis. Eine Nutzerbefragung, ein Laborexperiment und ein Leistungsvergleich geben Aufschluss über Image, Bedienerfreundlichkeit und Qualität von Suchmaschinen. Aus dieser Analyse entwickeln die Autoren einen Code of Conduct für Suchmaschinenbetreiber, der einen möglichst objektiven und transparenten Zugang zu Informationen im Netz garantieren soll. Das Buch ist dreigeteilt: Im ersten umfangreichen Teil (bis Seite 490) werden, nach einer Einführung in die Suchmaschinenproblematik und ihr Umfeld, Qualität und Nutzung erforscht: Nach der Marktanalyse der deutschsprachigen Suchdienste werden ausgewählte einem Leistungsvergleich unterzogen. Der Gefährdung von Kindern und Jugendlichen widmet sich das Kapitel Problemanalyse. Wie erfolgreich Spamversuche die Suchergebnisse beeinflussen können, wird anschließend dargestellt. Den Kenntnissen und Einstellungen von Nutzern von Suchdiensten widmet sich ein ausführliches Kapitel. Nutzungshäufigkeit, Suchprozesse und Vorgehensweisen sind detailliert untersucht worden. Die Ergebnisse der Laborexperimente liefern konkrete Einsichten, auf über 100 Seiten verständlich beschrieben. In Kapitel 6 werden die angewandten Methoden ausführlich erläutert. Das angefügte Glossar könnte ausführlicher sein. Der zweite Teil appelliert an die gesellschaftliche Verantwortung der deutschen Suchdienstbetreiber, indem ein Code of Conduct für Suchmaschinen entworfen wird. Im dritten Teil wird auf die Entwicklungen in der Suchmaschinenlandschaft eingegangen, die sich durch Firmenübernahmen und die Monopolstellung von Google ergeben haben.
    Content
    Enthält die Beiträge: Vorwort (Miriam Meckel) Wegweiser im Netz: Qualität und Nutzung von Suchmaschinen (Marcel Machill, Christoph Neuberger, Wolfgang Schweiger, Werner Wirth) Ein Code of Conduct für Suchmaschinen (Carsten Welp) Die Suchmaschinenlandschaft 2003: Wirtschaftliche und technische Entwicklungen (Stefan Karzauninkat)

Languages

Types