Search (14 results, page 1 of 1)

  • × theme_ss:"Sprachretrieval"
  1. Srihari, R.K.: Using speech input for image interpretation, annotation, and retrieval (1997) 0.05
    0.047451444 = product of:
      0.09490289 = sum of:
        0.09490289 = sum of:
          0.052821 = weight(_text_:language in 764) [ClassicSimilarity], result of:
            0.052821 = score(doc=764,freq=2.0), product of:
              0.2030952 = queryWeight, product of:
                3.9232929 = idf(docFreq=2376, maxDocs=44218)
                0.051766515 = queryNorm
              0.26008 = fieldWeight in 764, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.9232929 = idf(docFreq=2376, maxDocs=44218)
                0.046875 = fieldNorm(doc=764)
          0.04208189 = weight(_text_:22 in 764) [ClassicSimilarity], result of:
            0.04208189 = score(doc=764,freq=2.0), product of:
              0.18127751 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051766515 = queryNorm
              0.23214069 = fieldWeight in 764, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=764)
      0.5 = coord(1/2)
    
    Abstract
    Explores the interaction of textual and photographic information in an integrated text and image database environment and describes 3 different applications involving the exploitation of linguistic context in vision. Describes the practical application of these ideas in working systems. PICTION uses captions to identify human faces in a photograph, wile Show&Tell is a multimedia system for semi automatic image annotation. The system combines advances in speech recognition, natural language processing and image understanding to assist in image annotation and enhance image retrieval capabilities. Presents an extension of this work to video annotation and retrieval
    Date
    22. 9.1997 19:16:05
  2. Thompson, L.A.; Ogden, W.C.: Visible speech improves human language understanding : implications for speech processing systems (1995) 0.03
    0.030496225 = product of:
      0.06099245 = sum of:
        0.06099245 = product of:
          0.1219849 = sum of:
            0.1219849 = weight(_text_:language in 3883) [ClassicSimilarity], result of:
              0.1219849 = score(doc=3883,freq=6.0), product of:
                0.2030952 = queryWeight, product of:
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.051766515 = queryNorm
                0.60062915 = fieldWeight in 3883, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3883)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Presents evidence from the study of human language understanding suggesting that the ability to perceive visible speech can greatly influence the ability to understand and remember spoken language. A view of the speaker's face can greatly aid in the perception of ambiguous or noisy speech and can aid cognitive processing of speech leading to better understanding and recall. Some of these effects have been replaced using computer synthesized visual and auditory speech. When giving an interface a voice, it may be best to give it a face too
  3. Keller, F.: How do humans deal with ungrammatical input? : Experimental evidence and computational modelling (1996) 0.03
    0.0264105 = product of:
      0.052821 = sum of:
        0.052821 = product of:
          0.105642 = sum of:
            0.105642 = weight(_text_:language in 7293) [ClassicSimilarity], result of:
              0.105642 = score(doc=7293,freq=2.0), product of:
                0.2030952 = queryWeight, product of:
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.051766515 = queryNorm
                0.52016 = fieldWeight in 7293, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.09375 = fieldNorm(doc=7293)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Natural language processing and speech technology: Results of the 3rd KONVENS Conference, Bielefeld, October 1996. Ed.: D. Gibbon
  4. Marx, J.: ¬Die '¬Computer-Talk-These' in der Sprachgenerierung : Hinweise zur Gestaltung natürlichsprachlicher Zustandsanzeigen in multimodalen Informationssystemen (1996) 0.03
    0.0264105 = product of:
      0.052821 = sum of:
        0.052821 = product of:
          0.105642 = sum of:
            0.105642 = weight(_text_:language in 7294) [ClassicSimilarity], result of:
              0.105642 = score(doc=7294,freq=2.0), product of:
                0.2030952 = queryWeight, product of:
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.051766515 = queryNorm
                0.52016 = fieldWeight in 7294, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.09375 = fieldNorm(doc=7294)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Natural language processing and speech technology: Results of the 3rd KONVENS Conference, Bielefeld, October 1996. Ed.: D. Gibbon
  5. Schultz, T.; Soltau, H.: Automatische Identifizierung spontan gesprochener Sprachen mit neuronalen Netzen (1996) 0.03
    0.0264105 = product of:
      0.052821 = sum of:
        0.052821 = product of:
          0.105642 = sum of:
            0.105642 = weight(_text_:language in 7295) [ClassicSimilarity], result of:
              0.105642 = score(doc=7295,freq=2.0), product of:
                0.2030952 = queryWeight, product of:
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.051766515 = queryNorm
                0.52016 = fieldWeight in 7295, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.09375 = fieldNorm(doc=7295)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Natural language processing and speech technology: Results of the 3rd KONVENS Conference, Bielefeld, October 1996. Ed.: D. Gibbon
  6. Young, C.W.; Eastman, C.M.; Oakman, R.L.: ¬An analysis of ill-formed input in natural language queries to document retrieval systems (1991) 0.02
    0.018675046 = product of:
      0.037350092 = sum of:
        0.037350092 = product of:
          0.074700184 = sum of:
            0.074700184 = weight(_text_:language in 5263) [ClassicSimilarity], result of:
              0.074700184 = score(doc=5263,freq=4.0), product of:
                0.2030952 = queryWeight, product of:
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.051766515 = queryNorm
                0.3678087 = fieldWeight in 5263, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5263)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Natrual language document retrieval queries from the Thomas Cooper Library, South Carolina Univ. were analysed in oder to investigate the frequency of various types of ill-formed input, such as spelling errors, cooccurrence violations, conjunctions, ellipsis, and missing or incorrect punctuation. Users were requested to write out their requests for information in complete sentences on the form normally used by the library. The primary reason for analysing ill-formed inputs was to determine whether there is a significant need to study ill-formed inputs in detail. Results indicated that most of the queries were sentence fragments and that many of them contained some type of ill-formed input. Conjunctions caused the most problems. The next most serious problem was caused by punctuation errors. Spelling errors occured in a small number of queries. The remaining types of ill-formed input considered, allipsis and cooccurrence violations, were not found in the queries
  7. Lin, J.; Katz, B.: Building a reusable test collection for question answering (2006) 0.02
    0.018675046 = product of:
      0.037350092 = sum of:
        0.037350092 = product of:
          0.074700184 = sum of:
            0.074700184 = weight(_text_:language in 5045) [ClassicSimilarity], result of:
              0.074700184 = score(doc=5045,freq=4.0), product of:
                0.2030952 = queryWeight, product of:
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.051766515 = queryNorm
                0.3678087 = fieldWeight in 5045, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5045)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In contrast to traditional information retrieval systems, which return ranked lists of documents that users must manually browse through, a question answering system attempts to directly answer natural language questions posed by the user. Although such systems possess language-processing capabilities, they still rely on traditional document retrieval techniques to generate an initial candidate set of documents. In this article, the authors argue that document retrieval for question answering represents a task different from retrieving documents in response to more general retrospective information needs. Thus, to guide future system development, specialized question answering test collections must be constructed. They show that the current evaluation resources have major shortcomings; to remedy the situation, they have manually created a small, reusable question answering test collection for research purposes. In this article they describe their methodology for building this test collection and discuss issues they encountered regarding the notion of "answer correctness."
  8. Burke, R.D.: Question answering from frequently asked question files : experiences with the FAQ Finder System (1997) 0.02
    0.017607002 = product of:
      0.035214003 = sum of:
        0.035214003 = product of:
          0.07042801 = sum of:
            0.07042801 = weight(_text_:language in 1191) [ClassicSimilarity], result of:
              0.07042801 = score(doc=1191,freq=2.0), product of:
                0.2030952 = queryWeight, product of:
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.051766515 = queryNorm
                0.34677336 = fieldWeight in 1191, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1191)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Describes FAQ Finder, a natural language question-answering system that uses files of frequently asked questions as its knowledge base. Unlike information retrieval approaches that rely on a purely lexical metric of similarity between query and document, FAQ Finder uses a semantic knowledge base (Wordnet) to improve its ability to match question and answer. Includes results from an evaluation of the system's performance and shows that a combination of semantic and statistical techniques works better than any single approach
  9. Wittbrock, M.J.; Hauptmann, A.G.: Speech recognition for a digital video library (1998) 0.02
    0.015562538 = product of:
      0.031125076 = sum of:
        0.031125076 = product of:
          0.062250152 = sum of:
            0.062250152 = weight(_text_:language in 873) [ClassicSimilarity], result of:
              0.062250152 = score(doc=873,freq=4.0), product of:
                0.2030952 = queryWeight, product of:
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.051766515 = queryNorm
                0.30650726 = fieldWeight in 873, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=873)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The standard method for making the full content of audio and video material searchable is to annotate it with human-generated meta-data that describes the content in a way that search can understand, as is done in the creation of multimedia CD-ROMs. However, for the huge amounts of data that could usefully be included in digital video and audio libraries, the cost of producing the meta-data is prohibitive. In the Informedia Digital Video Library, the production of the meta-data supporting the library interface is automated using techniques derived from artificial intelligence (AI) research. By applying speech recognition together with natural language processing, information retrieval, and image analysis, an interface has been prduced that helps users locate the information they want, and navigate or browse the digital video library more effectively. Specific interface components include automatc titles, filmstrips, video skims, word location marking, and representative frames for shots. Both the user interface and the information retrieval engine within Informedia are designed for use with automatically derived meta-data, much of which depends on speech recognition for its production. Some experimental information retrieval results will be given, supporting a basic premise of the Informedia project: That speech recognition generated transcripts can make multimedia material searchable. The Informedia project emphasizes the integration of speech recognition, image processing, natural language processing, and information retrieval to compensate for deficiencies in these individual technologies
  10. Ferret, O.; Grau, B.; Hurault-Plantet, M.; Illouz, G.; Jacquemin, C.; Monceaux, L.; Robba, I.; Vilnat, A.: How NLP can improve question answering (2002) 0.01
    0.01320525 = product of:
      0.0264105 = sum of:
        0.0264105 = product of:
          0.052821 = sum of:
            0.052821 = weight(_text_:language in 1850) [ClassicSimilarity], result of:
              0.052821 = score(doc=1850,freq=2.0), product of:
                0.2030952 = queryWeight, product of:
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.051766515 = queryNorm
                0.26008 = fieldWeight in 1850, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1850)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Answering open-domain factual questions requires Natural Language processing for refining document selection and answer identification. With our system QALC, we have participated in the Question Answering track of the TREC8, TREC9 and TREC10 evaluations. QALC performs an analysis of documents relying an multiword term searches and their linguistic variation both to minimize the number of documents selected and to provide additional clues when comparing question and sentence representations. This comparison process also makes use of the results of a syntactic parsing of the questions and Named Entity recognition functionalities. Answer extraction relies an the application of syntactic patterns chosen according to the kind of information that is sought, and categorized depending an the syntactic form of the question. These patterns allow QALC to handle nicely linguistic variations at the answer level.
  11. Galitsky, B.: Can many agents answer questions better than one? (2005) 0.01
    0.01320525 = product of:
      0.0264105 = sum of:
        0.0264105 = product of:
          0.052821 = sum of:
            0.052821 = weight(_text_:language in 3094) [ClassicSimilarity], result of:
              0.052821 = score(doc=3094,freq=2.0), product of:
                0.2030952 = queryWeight, product of:
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.051766515 = queryNorm
                0.26008 = fieldWeight in 3094, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3094)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The paper addresses the issue of how online natural language question answering, based on deep semantic analysis, may compete with currently popular keyword search, open domain information retrieval systems, covering a horizontal domain. We suggest the multiagent question answering approach, where each domain is represented by an agent which tries to answer questions taking into account its specific knowledge. The meta-agent controls the cooperation between question answering agents and chooses the most relevant answer(s). We argue that multiagent question answering is optimal in terms of access to business and financial knowledge, flexibility in query phrasing, and efficiency and usability of advice. The knowledge and advice encoded in the system are initially prepared by domain experts. We analyze the commercial application of multiagent question answering and the robustness of the meta-agent. The paper suggests that a multiagent architecture is optimal when a real world question answering domain combines a number of vertical ones to form a horizontal domain.
  12. Radev, D.; Fan, W.; Qu, H.; Wu, H.; Grewal, A.: Probabilistic question answering on the Web (2005) 0.01
    0.01320525 = product of:
      0.0264105 = sum of:
        0.0264105 = product of:
          0.052821 = sum of:
            0.052821 = weight(_text_:language in 3455) [ClassicSimilarity], result of:
              0.052821 = score(doc=3455,freq=2.0), product of:
                0.2030952 = queryWeight, product of:
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.051766515 = queryNorm
                0.26008 = fieldWeight in 3455, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3455)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Web-based search engines such as Google and NorthernLight return documents that are relevant to a user query, not answers to user questions. We have developed an architecture that augments existing search engines so that they support natural language question answering. The process entails five steps: query modulation, document retrieval, passage extraction, phrase extraction, and answer ranking. In this article, we describe some probabilistic approaches to the last three of these stages. We show how our techniques apply to a number of existing search engines, and we also present results contrasting three different methods for question answering. Our algorithm, probabilistic phrase reranking (PPR), uses proximity and question type features and achieves a total reciprocal document rank of .20 an the TREC8 corpus. Our techniques have been implemented as a Web-accessible system, called NSIR.
  13. Jensen, N.: Evaluierung von mehrsprachigem Web-Retrieval : Experimente mit dem EuroGOV-Korpus im Rahmen des Cross Language Evaluation Forum (CLEF) (2006) 0.01
    0.01320525 = product of:
      0.0264105 = sum of:
        0.0264105 = product of:
          0.052821 = sum of:
            0.052821 = weight(_text_:language in 5964) [ClassicSimilarity], result of:
              0.052821 = score(doc=5964,freq=2.0), product of:
                0.2030952 = queryWeight, product of:
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.051766515 = queryNorm
                0.26008 = fieldWeight in 5964, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5964)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  14. Strötgen, R.; Mandl, T.; Schneider, R.: Entwicklung und Evaluierung eines Question Answering Systems im Rahmen des Cross Language Evaluation Forum (CLEF) (2006) 0.01
    0.01320525 = product of:
      0.0264105 = sum of:
        0.0264105 = product of:
          0.052821 = sum of:
            0.052821 = weight(_text_:language in 5981) [ClassicSimilarity], result of:
              0.052821 = score(doc=5981,freq=2.0), product of:
                0.2030952 = queryWeight, product of:
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.051766515 = queryNorm
                0.26008 = fieldWeight in 5981, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5981)
          0.5 = coord(1/2)
      0.5 = coord(1/2)