Search (197 results, page 1 of 10)

  • × theme_ss:"Semantische Interoperabilität"
  1. Heflin, J.; Hendler, J.: Semantic interoperability on the Web (2000) 0.04
    0.03733623 = product of:
      0.05600434 = sum of:
        0.032339036 = weight(_text_:on in 759) [ClassicSimilarity], result of:
          0.032339036 = score(doc=759,freq=6.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.29462588 = fieldWeight in 759, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=759)
        0.023665305 = product of:
          0.04733061 = sum of:
            0.04733061 = weight(_text_:22 in 759) [ClassicSimilarity], result of:
              0.04733061 = score(doc=759,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.2708308 = fieldWeight in 759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=759)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    XML will have a profound impact on the way data is exchanged on the Internet. An important feature of this language is the separation of content from presentation, which makes it easier to select and/or reformat the data. However, due to the likelihood of numerous industry and domain specific DTDs, those who wish to integrate information will still be faced with the problem of semantic interoperability. In this paper we discuss why this problem is not solved by XML, and then discuss why the Resource Description Framework is only a partial solution. We then present the SHOE language, which we feel has many of the features necessary to enable a semantic web, and describe an existing set of tools that make it easy to use the language.
    Date
    11. 5.2013 19:22:18
  2. Mitchell, J.S.; Zeng, M.L.; Zumer, M.: Modeling classification systems in multicultural and multilingual contexts (2012) 0.03
    0.034212865 = product of:
      0.051319294 = sum of:
        0.02263261 = weight(_text_:on in 1967) [ClassicSimilarity], result of:
          0.02263261 = score(doc=1967,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.20619515 = fieldWeight in 1967, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=1967)
        0.028686684 = product of:
          0.057373367 = sum of:
            0.057373367 = weight(_text_:22 in 1967) [ClassicSimilarity], result of:
              0.057373367 = score(doc=1967,freq=4.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.32829654 = fieldWeight in 1967, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1967)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper reports on the second part of an initiative of the authors on researching classification systems with the conceptual model defined by the Functional Requirements for Subject Authority Data (FRSAD) final report. In an earlier study, the authors explored whether the FRSAD conceptual model could be extended beyond subject authority data to model classification data. The focus of the current study is to determine if classification data modeled using FRSAD can be used to solve real-world discovery problems in multicultural and multilingual contexts. The paper discusses the relationships between entities (same type or different types) in the context of classification systems that involve multiple translations and /or multicultural implementations. Results of two case studies are presented in detail: (a) two instances of the DDC (DDC 22 in English, and the Swedish-English mixed translation of DDC 22), and (b) Chinese Library Classification. The use cases of conceptual models in practice are also discussed.
  3. Mayr, P.; Petras, V.: Building a Terminology Network for Search : the KoMoHe project (2008) 0.03
    0.033380013 = product of:
      0.050070018 = sum of:
        0.026404712 = weight(_text_:on in 2618) [ClassicSimilarity], result of:
          0.026404712 = score(doc=2618,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.24056101 = fieldWeight in 2618, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2618)
        0.023665305 = product of:
          0.04733061 = sum of:
            0.04733061 = weight(_text_:22 in 2618) [ClassicSimilarity], result of:
              0.04733061 = score(doc=2618,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.2708308 = fieldWeight in 2618, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2618)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The paper reports about results on the GESIS-IZ project "Competence Center Modeling and Treatment of Semantic Heterogeneity" (KoMoHe). KoMoHe supervised a terminology mapping effort, in which 'cross-concordances' between major controlled vocabularies were organized, created and managed. In this paper we describe the establishment and implementation of crossconcordances for search in a digital library (DL).
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  4. Faro, S.; Francesconi, E.; Marinai, E.; Sandrucci, V.: Report on execution and results of the interoperability tests (2008) 0.03
    0.032256197 = product of:
      0.048384294 = sum of:
        0.021338228 = weight(_text_:on in 7411) [ClassicSimilarity], result of:
          0.021338228 = score(doc=7411,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.19440265 = fieldWeight in 7411, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=7411)
        0.027046064 = product of:
          0.054092128 = sum of:
            0.054092128 = weight(_text_:22 in 7411) [ClassicSimilarity], result of:
              0.054092128 = score(doc=7411,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.30952093 = fieldWeight in 7411, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=7411)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Date
    7.11.2008 10:40:22
  5. Haslhofer, B.: Uniform SPARQL access to interlinked (digital library) sources (2007) 0.03
    0.032256197 = product of:
      0.048384294 = sum of:
        0.021338228 = weight(_text_:on in 541) [ClassicSimilarity], result of:
          0.021338228 = score(doc=541,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.19440265 = fieldWeight in 541, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=541)
        0.027046064 = product of:
          0.054092128 = sum of:
            0.054092128 = weight(_text_:22 in 541) [ClassicSimilarity], result of:
              0.054092128 = score(doc=541,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.30952093 = fieldWeight in 541, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=541)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In this presentation, we therefore focus on a solution for providing uniform access to Digital Libraries and other online services. In order to enable uniform query access to heterogeneous sources, we must provide metadata interoperability in a way that a query language - in this case SPARQL - can cope with the incompatibility of the metadata in various sources without changing their already existing information models.
    Date
    26.12.2011 13:22:46
  6. Faro, S.; Francesconi, E.; Sandrucci, V.: Thesauri KOS analysis and selected thesaurus mapping methodology on the project case-study (2007) 0.03
    0.032256197 = product of:
      0.048384294 = sum of:
        0.021338228 = weight(_text_:on in 2227) [ClassicSimilarity], result of:
          0.021338228 = score(doc=2227,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.19440265 = fieldWeight in 2227, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=2227)
        0.027046064 = product of:
          0.054092128 = sum of:
            0.054092128 = weight(_text_:22 in 2227) [ClassicSimilarity], result of:
              0.054092128 = score(doc=2227,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.30952093 = fieldWeight in 2227, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2227)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Date
    7.11.2008 10:40:22
  7. Vetere, G.; Lenzerini, M.: Models for semantic interoperability in service-oriented architectures (2005) 0.03
    0.03082461 = product of:
      0.09247383 = sum of:
        0.09247383 = product of:
          0.27742147 = sum of:
            0.27742147 = weight(_text_:3a in 306) [ClassicSimilarity], result of:
              0.27742147 = score(doc=306,freq=2.0), product of:
                0.42309996 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.04990557 = queryNorm
                0.65568775 = fieldWeight in 306, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=306)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Content
    Vgl.: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5386707&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5386707.
  8. Golub, K.; Tudhope, D.; Zeng, M.L.; Zumer, M.: Terminology registries for knowledge organization systems : functionality, use, and attributes (2014) 0.03
    0.028611436 = product of:
      0.042917155 = sum of:
        0.02263261 = weight(_text_:on in 1347) [ClassicSimilarity], result of:
          0.02263261 = score(doc=1347,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.20619515 = fieldWeight in 1347, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=1347)
        0.020284547 = product of:
          0.040569093 = sum of:
            0.040569093 = weight(_text_:22 in 1347) [ClassicSimilarity], result of:
              0.040569093 = score(doc=1347,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.23214069 = fieldWeight in 1347, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1347)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Terminology registries (TRs) are a crucial element of the infrastructure required for resource discovery services, digital libraries, Linked Data, and semantic interoperability generally. They can make the content of knowledge organization systems (KOS) available both for human and machine access. The paper describes the attributes and functionality for a TR, based on a review of published literature, existing TRs, and a survey of experts. A domain model based on user tasks is constructed and a set of core metadata elements for use in TRs is proposed. Ideally, the TR should allow searching as well as browsing for a KOS, matching a user's search while also providing information about existing terminology services, accessible to both humans and machines. The issues surrounding metadata for KOS are also discussed, together with the rationale for different aspects and the importance of a core set of KOS metadata for future machine-based access; a possible core set of metadata elements is proposed. This is dealt with in terms of practical experience and in relation to the Dublin Core Application Profile.
    Date
    22. 8.2014 17:12:54
  9. Mitchell, J.S.; Zeng, M.L.; Zumer, M.: Modeling classification systems in multicultural and multilingual contexts (2014) 0.03
    0.02851072 = product of:
      0.04276608 = sum of:
        0.01886051 = weight(_text_:on in 1962) [ClassicSimilarity], result of:
          0.01886051 = score(doc=1962,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 1962, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1962)
        0.023905568 = product of:
          0.047811136 = sum of:
            0.047811136 = weight(_text_:22 in 1962) [ClassicSimilarity], result of:
              0.047811136 = score(doc=1962,freq=4.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.27358043 = fieldWeight in 1962, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1962)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This article reports on the second part of an initiative of the authors on researching classification systems with the conceptual model defined by the Functional Requirements for Subject Authority Data (FRSAD) final report. In an earlier study, the authors explored whether the FRSAD conceptual model could be extended beyond subject authority data to model classification data. The focus of the current study is to determine if classification data modeled using FRSAD can be used to solve real-world discovery problems in multicultural and multilingual contexts. The article discusses the relationships between entities (same type or different types) in the context of classification systems that involve multiple translations and/or multicultural implementations. Results of two case studies are presented in detail: (a) two instances of the Dewey Decimal Classification [DDC] (DDC 22 in English, and the Swedish-English mixed translation of DDC 22), and (b) Chinese Library Classification. The use cases of conceptual models in practice are also discussed.
  10. Candela, G.: ¬An automatic data quality approach to assess semantic data from cultural heritage institutions (2023) 0.03
    0.02822417 = product of:
      0.042336255 = sum of:
        0.01867095 = weight(_text_:on in 997) [ClassicSimilarity], result of:
          0.01867095 = score(doc=997,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.17010231 = fieldWeight in 997, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=997)
        0.023665305 = product of:
          0.04733061 = sum of:
            0.04733061 = weight(_text_:22 in 997) [ClassicSimilarity], result of:
              0.04733061 = score(doc=997,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.2708308 = fieldWeight in 997, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=997)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In recent years, cultural heritage institutions have been exploring the benefits of applying Linked Open Data to their catalogs and digital materials. Innovative and creative methods have emerged to publish and reuse digital contents to promote computational access, such as the concepts of Labs and Collections as Data. Data quality has become a requirement for researchers and training methods based on artificial intelligence and machine learning. This article explores how the quality of Linked Open Data made available by cultural heritage institutions can be automatically assessed. The results obtained can be useful for other institutions who wish to publish and assess their collections.
    Date
    22. 6.2023 18:23:31
  11. Levergood, B.; Farrenkopf, S.; Frasnelli, E.: ¬The specification of the language of the field and interoperability : cross-language access to catalogues and online libraries (CACAO) (2008) 0.02
    0.024192145 = product of:
      0.036288217 = sum of:
        0.016003672 = weight(_text_:on in 2646) [ClassicSimilarity], result of:
          0.016003672 = score(doc=2646,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.14580199 = fieldWeight in 2646, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=2646)
        0.020284547 = product of:
          0.040569093 = sum of:
            0.040569093 = weight(_text_:22 in 2646) [ClassicSimilarity], result of:
              0.040569093 = score(doc=2646,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.23214069 = fieldWeight in 2646, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2646)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  12. Boteram, F.; Hubrich, J.: Specifying intersystem relations : requirements, strategies, and issues (2010) 0.02
    0.024192145 = product of:
      0.036288217 = sum of:
        0.016003672 = weight(_text_:on in 3691) [ClassicSimilarity], result of:
          0.016003672 = score(doc=3691,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.14580199 = fieldWeight in 3691, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=3691)
        0.020284547 = product of:
          0.040569093 = sum of:
            0.040569093 = weight(_text_:22 in 3691) [ClassicSimilarity], result of:
              0.040569093 = score(doc=3691,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.23214069 = fieldWeight in 3691, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3691)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Ideally, intersystem relations complement highly expressive and thoroughly structured relational indexing languages. The relational structures of the participating systems contribute to the meaning of the individual terms or classes. When conceptualizing mapping relations the structural and functional design of the respective systems must be fully taken into account. As intersystem relations may differ considerably from familiar interconcept relations, the creation of an adequate inventory that is general in coverage and specific in depth demands a deep understanding of the requirements and properties of mapping relations. The characteristics of specific mapping relations largely rely on the characteristics of the systems they are intended to connect. The detailed declaration of differences and peculiarities of specific mapping relations is an important prerequisite for modelling these relations. First approaches towards specifying
    Date
    22. 7.2010 17:11:51
  13. Bittner, T.; Donnelly, M.; Winter, S.: Ontology and semantic interoperability (2006) 0.02
    0.024192145 = product of:
      0.036288217 = sum of:
        0.016003672 = weight(_text_:on in 4820) [ClassicSimilarity], result of:
          0.016003672 = score(doc=4820,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.14580199 = fieldWeight in 4820, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=4820)
        0.020284547 = product of:
          0.040569093 = sum of:
            0.040569093 = weight(_text_:22 in 4820) [ClassicSimilarity], result of:
              0.040569093 = score(doc=4820,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.23214069 = fieldWeight in 4820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4820)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    One of the major problems facing systems for Computer Aided Design (CAD), Architecture Engineering and Construction (AEC) and Geographic Information Systems (GIS) applications today is the lack of interoperability among the various systems. When integrating software applications, substantial di culties can arise in translating information from one application to the other. In this paper, we focus on semantic di culties that arise in software integration. Applications may use di erent terminologies to describe the same domain. Even when appli-cations use the same terminology, they often associate di erent semantics with the terms. This obstructs information exchange among applications. To cir-cumvent this obstacle, we need some way of explicitly specifying the semantics for each terminology in an unambiguous fashion. Ontologies can provide such specification. It will be the task of this paper to explain what ontologies are and how they can be used to facilitate interoperability between software systems used in computer aided design, architecture engineering and construction, and geographic information processing.
    Date
    3.12.2016 18:39:22
  14. Lauser, B.; Johannsen, G.; Caracciolo, C.; Hage, W.R. van; Keizer, J.; Mayr, P.: Comparing human and automatic thesaurus mapping approaches in the agricultural domain (2008) 0.02
    0.023842867 = product of:
      0.0357643 = sum of:
        0.01886051 = weight(_text_:on in 2627) [ClassicSimilarity], result of:
          0.01886051 = score(doc=2627,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 2627, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2627)
        0.01690379 = product of:
          0.03380758 = sum of:
            0.03380758 = weight(_text_:22 in 2627) [ClassicSimilarity], result of:
              0.03380758 = score(doc=2627,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.19345059 = fieldWeight in 2627, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2627)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Knowledge organization systems (KOS), like thesauri and other controlled vocabularies, are used to provide subject access to information systems across the web. Due to the heterogeneity of these systems, mapping between vocabularies becomes crucial for retrieving relevant information. However, mapping thesauri is a laborious task, and thus big efforts are being made to automate the mapping process. This paper examines two mapping approaches involving the agricultural thesaurus AGROVOC, one machine-created and one human created. We are addressing the basic question "What are the pros and cons of human and automatic mapping and how can they complement each other?" By pointing out the difficulties in specific cases or groups of cases and grouping the sample into simple and difficult types of mappings, we show the limitations of current automatic methods and come up with some basic recommendations on what approach to use when.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  15. Godby, C.J.; Smith, D.; Childress, E.: Encoding application profiles in a computational model of the crosswalk (2008) 0.02
    0.023842867 = product of:
      0.0357643 = sum of:
        0.01886051 = weight(_text_:on in 2649) [ClassicSimilarity], result of:
          0.01886051 = score(doc=2649,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 2649, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2649)
        0.01690379 = product of:
          0.03380758 = sum of:
            0.03380758 = weight(_text_:22 in 2649) [ClassicSimilarity], result of:
              0.03380758 = score(doc=2649,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.19345059 = fieldWeight in 2649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2649)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    OCLC's Crosswalk Web Service (Godby, Smith and Childress, 2008) formalizes the notion of crosswalk, as defined in Gill,et al. (n.d.), by hiding technical details and permitting the semantic equivalences to emerge as the centerpiece. One outcome is that metadata experts, who are typically not programmers, can enter the translation logic into a spreadsheet that can be automatically converted into executable code. In this paper, we describe the implementation of the Dublin Core Terms application profile in the management of crosswalks involving MARC. A crosswalk that encodes an application profile extends the typical format with two columns: one that annotates the namespace to which an element belongs, and one that annotates a 'broader-narrower' relation between a pair of elements, such as Dublin Core coverage and Dublin Core Terms spatial. This information is sufficient to produce scripts written in OCLC's Semantic Equivalence Expression Language (or Seel), which are called from the Crosswalk Web Service to generate production-grade translations. With its focus on elements that can be mixed, matched, added, and redefined, the application profile (Heery and Patel, 2000) is a natural fit with the translation model of the Crosswalk Web Service, which attempts to achieve interoperability by mapping one pair of elements at a time.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  16. Si, L.E.; O'Brien, A.; Probets, S.: Integration of distributed terminology resources to facilitate subject cross-browsing for library portal systems (2009) 0.02
    0.023842867 = product of:
      0.0357643 = sum of:
        0.01886051 = weight(_text_:on in 3628) [ClassicSimilarity], result of:
          0.01886051 = score(doc=3628,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 3628, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3628)
        0.01690379 = product of:
          0.03380758 = sum of:
            0.03380758 = weight(_text_:22 in 3628) [ClassicSimilarity], result of:
              0.03380758 = score(doc=3628,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.19345059 = fieldWeight in 3628, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3628)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose: To develop a prototype middleware framework between different terminology resources in order to provide a subject cross-browsing service for library portal systems. Design/methodology/approach: Nine terminology experts were interviewed to collect appropriate knowledge to support the development of a theoretical framework for the research. Based on this, a simplified software-based prototype system was constructed incorporating the knowledge acquired. The prototype involved mappings between the computer science schedule of the Dewey Decimal Classification (which acted as a spine) and two controlled vocabularies UKAT and ACM Computing Classification. Subsequently, six further experts in the field were invited to evaluate the prototype system and provide feedback to improve the framework. Findings: The major findings showed that given the large variety of terminology resources distributed on the web, the proposed middleware service is essential to integrate technically and semantically the different terminology resources in order to facilitate subject cross-browsing. A set of recommendations are also made outlining the important approaches and features that support such a cross browsing middleware service.
    Content
    This paper is a pre-print version presented at the ISKO UK 2009 conference, 22-23 June, prior to peer review and editing. For published proceedings see special issue of Aslib Proceedings journal.
  17. Dunsire, G.; Nicholson, D.: Signposting the crossroads : terminology Web services and classification-based interoperability (2010) 0.02
    0.023842867 = product of:
      0.0357643 = sum of:
        0.01886051 = weight(_text_:on in 4066) [ClassicSimilarity], result of:
          0.01886051 = score(doc=4066,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 4066, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4066)
        0.01690379 = product of:
          0.03380758 = sum of:
            0.03380758 = weight(_text_:22 in 4066) [ClassicSimilarity], result of:
              0.03380758 = score(doc=4066,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.19345059 = fieldWeight in 4066, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4066)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The focus of this paper is the provision of terminology- and classification-based terminologies interoperability data via web services, initially using interoperability data based on the use of a Dewey Decimal Classification (DDC) spine, but with an aim to explore other possibilities in time, including the use of other spines. The High-Level Thesaurus Project (HILT) Phase IV developed pilot web services based on SRW/U, SOAP, and SKOS to deliver machine-readable terminology and crossterminology mappings data likely to be useful to information services wishing to enhance their subject search or browse services. It also developed an associated toolkit to help information services technical staff to embed HILT-related functionality within service interfaces. Several UK information services have created illustrative user interface enhancements using HILT functionality and these will demonstrate what is possible. HILT currently has the following subject schemes mounted and available: DDC, CAB, GCMD, HASSET, IPSV, LCSH, MeSH, NMR, SCAS, UNESCO, and AAT. It also has high level mappings between some of these schemes and DDC and some deeper pilot mappings available.
    Date
    6. 1.2011 19:22:48
  18. Dobrev, P.; Kalaydjiev, O.; Angelova, G.: From conceptual structures to semantic interoperability of content (2007) 0.02
    0.023842867 = product of:
      0.0357643 = sum of:
        0.01886051 = weight(_text_:on in 4607) [ClassicSimilarity], result of:
          0.01886051 = score(doc=4607,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 4607, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4607)
        0.01690379 = product of:
          0.03380758 = sum of:
            0.03380758 = weight(_text_:22 in 4607) [ClassicSimilarity], result of:
              0.03380758 = score(doc=4607,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.19345059 = fieldWeight in 4607, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4607)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Smart applications behave intelligently because they understand at least partially the context where they operate. To do this, they need not only a formal domain model but also formal descriptions of the data they process and their own operational behaviour. Interoperability of smart applications is based on formalised definitions of all their data and processes. This paper studies the semantic interoperability of data in the case of eLearning and describes an experiment and its assessment. New content is imported into a knowledge-based learning environment without real updates of the original domain model, which is encoded as a knowledge base of conceptual graphs. A component called mediator enables the import by assigning dummy metadata annotations for the imported items. However, some functionality of the original system is lost, when processing the imported content, due to the lack of proper metadata annotation which cannot be associated fully automatically. So the paper presents an interoperability scenario when appropriate content items are viewed from the perspective of the original world and can be (partially) reused there.
    Source
    Conceptual structures: knowledge architectures for smart applications: 15th International Conference on Conceptual Structures, ICCS 2007, Sheffield, UK, July 22 - 27, 2007 ; proceedings. Eds.: U. Priss u.a
  19. Concepts in Context : Proceedings of the Cologne Conference on Interoperability and Semantics in Knowledge Organization July 19th - 20th, 2010 (2011) 0.02
    0.023842867 = product of:
      0.0357643 = sum of:
        0.01886051 = weight(_text_:on in 628) [ClassicSimilarity], result of:
          0.01886051 = score(doc=628,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 628, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=628)
        0.01690379 = product of:
          0.03380758 = sum of:
            0.03380758 = weight(_text_:22 in 628) [ClassicSimilarity], result of:
              0.03380758 = score(doc=628,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.19345059 = fieldWeight in 628, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=628)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Content
    Winfried Gödert: Programmatic Issues and Introduction - Dagobert Soergel: Conceptual Foundations for Semantic Mapping and Semantic Search - Jan-Helge Jacobs, Tina Mengel, Katrin Müller: Insights and Outlooks: A Retrospective View on the CrissCross Project - Yvonne Jahns, Helga Karg: Translingual Retrieval: Moving between Vocabularies - MACS 2010 - Jessica Hubrich: Intersystem Relations: Characteristics and Functionalities - Stella G Dextre Clarke: In Pursuit of Interoperability: Can We Standardize Mapping Types? - Philipp Mayr, Philipp Schaer, Peter Mutschke: A Science Model Driven Retrieval Prototype - Claudia Effenberger, Julia Hauser: Would an Explicit Versioning of the DDC Bring Advantages for Retrieval? - Gordon Dunsire: Interoperability and Semantics in RDF Representations of FRBR, FRAD and FRSAD - Maja Zumer: FRSAD: Challenges of Modeling the Aboutness - Michael Panzer: Two Tales of a Concept: Aligning FRSAD with SKOS - Felix Boteram: Integrating Semantic Interoperability into FRSAD
    Date
    22. 2.2013 11:34:18
  20. Gabler, S.: Vergabe von DDC-Sachgruppen mittels eines Schlagwort-Thesaurus (2021) 0.02
    0.02201758 = product of:
      0.066052735 = sum of:
        0.066052735 = product of:
          0.19815819 = sum of:
            0.19815819 = weight(_text_:3a in 1000) [ClassicSimilarity], result of:
              0.19815819 = score(doc=1000,freq=2.0), product of:
                0.42309996 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.04990557 = queryNorm
                0.46834838 = fieldWeight in 1000, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1000)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Content
    Master thesis Master of Science (Library and Information Studies) (MSc), Universität Wien. Advisor: Christoph Steiner. Vgl.: https://www.researchgate.net/publication/371680244_Vergabe_von_DDC-Sachgruppen_mittels_eines_Schlagwort-Thesaurus. DOI: 10.25365/thesis.70030. Vgl. dazu die Präsentation unter: https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=web&cd=&ved=0CAIQw7AJahcKEwjwoZzzytz_AhUAAAAAHQAAAAAQAg&url=https%3A%2F%2Fwiki.dnb.de%2Fdownload%2Fattachments%2F252121510%2FDA3%2520Workshop-Gabler.pdf%3Fversion%3D1%26modificationDate%3D1671093170000%26api%3Dv2&psig=AOvVaw0szwENK1or3HevgvIDOfjx&ust=1687719410889597&opi=89978449.

Years

Languages

  • e 180
  • d 16
  • More… Less…

Types

  • a 134
  • el 68
  • m 12
  • s 6
  • x 5
  • r 3
  • p 2
  • n 1
  • More… Less…