Search (27 results, page 1 of 2)

  • × theme_ss:"Metadaten"
  • × type_ss:"el"
  1. Dunsire, G.; Willer, M.: Initiatives to make standard library metadata models and structures available to the Semantic Web (2010) 0.03
    0.02830489 = product of:
      0.09906711 = sum of:
        0.024005229 = weight(_text_:subject in 3965) [ClassicSimilarity], result of:
          0.024005229 = score(doc=3965,freq=4.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.22353725 = fieldWeight in 3965, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03125 = fieldNorm(doc=3965)
        0.023310447 = weight(_text_:classification in 3965) [ClassicSimilarity], result of:
          0.023310447 = score(doc=3965,freq=6.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.24377833 = fieldWeight in 3965, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03125 = fieldNorm(doc=3965)
        0.028440988 = weight(_text_:bibliographic in 3965) [ClassicSimilarity], result of:
          0.028440988 = score(doc=3965,freq=4.0), product of:
            0.11688946 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.03002521 = queryNorm
            0.24331525 = fieldWeight in 3965, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.03125 = fieldNorm(doc=3965)
        0.023310447 = weight(_text_:classification in 3965) [ClassicSimilarity], result of:
          0.023310447 = score(doc=3965,freq=6.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.24377833 = fieldWeight in 3965, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03125 = fieldNorm(doc=3965)
      0.2857143 = coord(4/14)
    
    Abstract
    This paper describes recent initiatives to make standard library metadata models and structures available to the Semantic Web, including IFLA standards such as Functional Requirements for Bibliographic Records (FRBR), Functional Requirements for Authority Data (FRAD), and International Standard Bibliographic Description (ISBD) along with the infrastructure that supports them. The FRBR Review Group is currently developing representations of FRAD and the entityrelationship model of FRBR in resource description framework (RDF) applications, using a combination of RDF, RDF Schema (RDFS), Simple Knowledge Organisation System (SKOS) and Web Ontology Language (OWL), cross-relating both models where appropriate. The ISBD/XML Task Group is investigating the representation of ISBD in RDF. The IFLA Namespaces project is developing an administrative and technical infrastructure to support such initiatives and encourage uptake of standards by other agencies. The paper describes similar initiatives with related external standards such as RDA - resource description and access, REICAT (the new Italian cataloguing rules) and CIDOC Conceptual Reference Model (CRM). The DCMI RDA Task Group is working with the Joint Steering Committee for RDA to develop Semantic Web representations of RDA structural elements, which are aligned with FRBR and FRAD, and controlled metadata content vocabularies. REICAT is also based on FRBR, and an object-oriented version of FRBR has been integrated with CRM, which itself has an RDF representation. CRM was initially based on the metadata needs of the museum community, and is now seeking extension to the archives community with the eventual aim of developing a model common to the main cultural information domains of archives, libraries and museums. The Vocabulary Mapping Framework (VMF) project has developed a Semantic Web tool to automatically generate mappings between metadata models from the information communities, including publishers. The tool is based on several standards, including CRM, FRAD, FRBR, MARC21 and RDA.
    The paper discusses the importance of these initiatives in releasing as linked data the very large quantities of rich, professionally-generated metadata stored in formats based on these standards, such as UNIMARC and MARC21, addressing such issues as critical mass for semantic and statistical inferencing, integration with user- and machine-generated metadata, and authenticity, veracity and trust. The paper also discusses related initiatives to release controlled vocabularies, including the Dewey Decimal Classification (DDC), ISBD, Library of Congress Name Authority File (LCNAF), Library of Congress Subject Headings (LCSH), Rameau (French subject headings), Universal Decimal Classification (UDC), and the Virtual International Authority File (VIAF) as linked data. Finally, the paper discusses the potential collective impact of these initiatives on metadata workflows and management systems.
    Content
    Vortrag im Rahmen der Session 93. Cataloguing der WORLD LIBRARY AND INFORMATION CONGRESS: 76TH IFLA GENERAL CONFERENCE AND ASSEMBLY, 10-15 August 2010, Gothenburg, Sweden - 149. Information Technology, Cataloguing, Classification and Indexing with Knowledge Management
  2. Final Report to the ALCTS CCS SAC Subcommittee on Metadata and Subject Analysis (2001) 0.02
    0.0241358 = product of:
      0.112633735 = sum of:
        0.058800567 = weight(_text_:subject in 5016) [ClassicSimilarity], result of:
          0.058800567 = score(doc=5016,freq=6.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.5475522 = fieldWeight in 5016, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0625 = fieldNorm(doc=5016)
        0.026916584 = weight(_text_:classification in 5016) [ClassicSimilarity], result of:
          0.026916584 = score(doc=5016,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.28149095 = fieldWeight in 5016, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0625 = fieldNorm(doc=5016)
        0.026916584 = weight(_text_:classification in 5016) [ClassicSimilarity], result of:
          0.026916584 = score(doc=5016,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.28149095 = fieldWeight in 5016, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0625 = fieldNorm(doc=5016)
      0.21428572 = coord(3/14)
    
    Abstract
    The charge for the SAC Subcommittee on Metadata and Subject Analysis states: Identify and study the major issues surrounding the use of metadata in the subject analysis and classification of digital resources. Provide discussion forums and programs relevant to these issues. Discussion forums should begin by Annual 1998. The continued need for the subcommittee should be reexamined by SAC no later than 2001.
  3. Hook, P.A.; Gantchev, A.: Using combined metadata sources to visualize a small library (OBL's English Language Books) (2017) 0.02
    0.022654418 = product of:
      0.10572062 = sum of:
        0.0474445 = weight(_text_:subject in 3870) [ClassicSimilarity], result of:
          0.0474445 = score(doc=3870,freq=10.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.4418043 = fieldWeight in 3870, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3870)
        0.029138058 = weight(_text_:classification in 3870) [ClassicSimilarity], result of:
          0.029138058 = score(doc=3870,freq=6.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.3047229 = fieldWeight in 3870, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3870)
        0.029138058 = weight(_text_:classification in 3870) [ClassicSimilarity], result of:
          0.029138058 = score(doc=3870,freq=6.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.3047229 = fieldWeight in 3870, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3870)
      0.21428572 = coord(3/14)
    
    Abstract
    Data from multiple knowledge organization systems are combined to provide a global overview of the content holdings of a small personal library. Subject headings and classification data are used to effectively map the combined book and topic space of the library. While harvested and manipulated by hand, the work reveals issues and potential solutions when using automated techniques to produce topic maps of much larger libraries. The small library visualized consists of the thirty-nine, digital, English language books found in the Osama Bin Laden (OBL) compound in Abbottabad, Pakistan upon his death. As this list of books has garnered considerable media attention, it is worth providing a visual overview of the subject content of these books - some of which is not readily apparent from the titles. Metadata from subject headings and classification numbers was combined to create book-subject maps. Tree maps of the classification data were also produced. The books contain 328 subject headings. In order to enhance the base map with meaningful thematic overlay, library holding count data was also harvested (and aggregated from duplicates). This additional data revealed the relative scarcity or popularity of individual books.
  4. Howarth, L.C.: Metadata schemes for subject gateways (2003) 0.02
    0.01541713 = product of:
      0.1079199 = sum of:
        0.05092278 = weight(_text_:subject in 1747) [ClassicSimilarity], result of:
          0.05092278 = score(doc=1747,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.4741941 = fieldWeight in 1747, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.09375 = fieldNorm(doc=1747)
        0.05699712 = product of:
          0.11399424 = sum of:
            0.11399424 = weight(_text_:schemes in 1747) [ClassicSimilarity], result of:
              0.11399424 = score(doc=1747,freq=2.0), product of:
                0.16067243 = queryWeight, product of:
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.03002521 = queryNorm
                0.7094823 = fieldWeight in 1747, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1747)
          0.5 = coord(1/2)
      0.14285715 = coord(2/14)
    
  5. Riley, J.: Understanding metadata : what is metadata, and what is it for? (2017) 0.01
    0.009613066 = product of:
      0.06729146 = sum of:
        0.03364573 = weight(_text_:classification in 2005) [ClassicSimilarity], result of:
          0.03364573 = score(doc=2005,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.35186368 = fieldWeight in 2005, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.078125 = fieldNorm(doc=2005)
        0.03364573 = weight(_text_:classification in 2005) [ClassicSimilarity], result of:
          0.03364573 = score(doc=2005,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.35186368 = fieldWeight in 2005, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.078125 = fieldNorm(doc=2005)
      0.14285715 = coord(2/14)
    
    Footnote
    Rez. in: Cataloging and classification quarterly 55(2017) no.7/8, S.669-670 (Liz Woolcott).
  6. McCallum, S.M.: Extending MARC for bibliographic control in the Web environment : Challenges and alternatives (2000) 0.01
    0.006094498 = product of:
      0.08532297 = sum of:
        0.08532297 = weight(_text_:bibliographic in 6803) [ClassicSimilarity], result of:
          0.08532297 = score(doc=6803,freq=4.0), product of:
            0.11688946 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.03002521 = queryNorm
            0.7299458 = fieldWeight in 6803, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.09375 = fieldNorm(doc=6803)
      0.071428575 = coord(1/14)
    
    Footnote
    Paper for the conference 'Bibliographic control for the new millennium' held in Washington, DC at the Library of Congress, November 2000
  7. Caplan, P.: International metadata initiatives : lessons in bibliographic control (2000) 0.01
    0.006094498 = product of:
      0.08532297 = sum of:
        0.08532297 = weight(_text_:bibliographic in 6804) [ClassicSimilarity], result of:
          0.08532297 = score(doc=6804,freq=4.0), product of:
            0.11688946 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.03002521 = queryNorm
            0.7299458 = fieldWeight in 6804, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.09375 = fieldNorm(doc=6804)
      0.071428575 = coord(1/14)
    
    Footnote
    Paper for the conference 'Bibliographic control for the new millennium' held in Washington, DC at the Library of Congress, November 2000
  8. Buckland, M.; Chen, A.; Chen, H.M.; Kim, Y.; Lam, B.; Larson, R.; Norgard, B.; Purat, J.; Gey, F.: Mapping entry vocabulary to unfamiliar metadata vocabularies (1999) 0.01
    0.00576784 = product of:
      0.04037488 = sum of:
        0.02018744 = weight(_text_:classification in 1238) [ClassicSimilarity], result of:
          0.02018744 = score(doc=1238,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.21111822 = fieldWeight in 1238, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=1238)
        0.02018744 = weight(_text_:classification in 1238) [ClassicSimilarity], result of:
          0.02018744 = score(doc=1238,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.21111822 = fieldWeight in 1238, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=1238)
      0.14285715 = coord(2/14)
    
    Abstract
    The emerging network environment brings access to an increasing population of heterogeneous repositories. Inevitably, these, have quite diverse metadata vocabularies (categorization codes, classification numbers, index and thesaurus terms). So, necessarily, the number of metadata vocabularies that are accessible but unfamiliar for any individual searcher is increasing steeply. When an unfamiliar metadata vocabulary is encountered, how is a searcher to know which codes or terms will lead to what is wanted? This paper reports work at the University of California, Berkeley, on the design and development of English language indexes to metadata vocabularies. Further details and the current status of the work can be found at the project website http://www.sims.berkeley.edu/research/metadata/
  9. Kaparova, N.; Shwartsman, M.: Creation of the electronic resources metadatabase in russia : problems and prospects (2000) 0.00
    0.0043094605 = product of:
      0.060332447 = sum of:
        0.060332447 = weight(_text_:bibliographic in 5405) [ClassicSimilarity], result of:
          0.060332447 = score(doc=5405,freq=2.0), product of:
            0.11688946 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.03002521 = queryNorm
            0.5161496 = fieldWeight in 5405, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.09375 = fieldNorm(doc=5405)
      0.071428575 = coord(1/14)
    
    Footnote
    Vortrag, IFLA General Conference, Divison IV Bibliographic Control, Jerusalem, 2000
  10. Dillon, M.: Metadata for Web resources : how metadata works on the Web (2000) 0.00
    0.0043094605 = product of:
      0.060332447 = sum of:
        0.060332447 = weight(_text_:bibliographic in 6798) [ClassicSimilarity], result of:
          0.060332447 = score(doc=6798,freq=2.0), product of:
            0.11688946 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.03002521 = queryNorm
            0.5161496 = fieldWeight in 6798, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.09375 = fieldNorm(doc=6798)
      0.071428575 = coord(1/14)
    
    Footnote
    Paper for the conference 'Bibliographic control for the new millennium' held in Washington, DC at the Library of Congress, November 2000
  11. Lagoze, C.: Keeping Dublin Core simple : Cross-domain discovery or resource description? (2001) 0.00
    0.0024032665 = product of:
      0.016822865 = sum of:
        0.008411433 = weight(_text_:classification in 1216) [ClassicSimilarity], result of:
          0.008411433 = score(doc=1216,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.08796592 = fieldWeight in 1216, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.01953125 = fieldNorm(doc=1216)
        0.008411433 = weight(_text_:classification in 1216) [ClassicSimilarity], result of:
          0.008411433 = score(doc=1216,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.08796592 = fieldWeight in 1216, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.01953125 = fieldNorm(doc=1216)
      0.14285715 = coord(2/14)
    
    Abstract
    Reality is messy. Individuals perceive or define objects differently. Objects may change over time, morphing into new versions of their former selves or into things altogether different. A book can give rise to a translation, derivation, or edition, and these resulting objects are related in complex ways to each other and to the people and contexts in which they were created or transformed. Providing a normalized view of such a messy reality is a precondition for managing information. From the first library catalogs, through Melvil Dewey's Decimal Classification system in the nineteenth century, to today's MARC encoding of AACR2 cataloging rules, libraries have epitomized the process of what David Levy calls "order making", whereby catalogers impose a veneer of regularity on the natural disorder of the artifacts they encounter. The pre-digital library within which the Catalog and its standards evolved was relatively self-contained and controlled. Creating and maintaining catalog records was, and still is, the task of professionals. Today's Web, in contrast, has brought together a diversity of information management communities, with a variety of order-making standards, into what Stuart Weibel has called the Internet Commons. The sheer scale of this context has motivated a search for new ways to describe and index information. Second-generation search engines such as Google can yield astonishingly good search results, while tools such as ResearchIndex for automatic citation indexing and techniques for inferring "Web communities" from constellations of hyperlinks promise even better methods for focusing queries on information from authoritative sources. Such "automated digital libraries," according to Bill Arms, promise to radically reduce the cost of managing information. Alongside the development of such automated methods, there is increasing interest in metadata as a means of imposing pre-defined order on Web content. While the size and changeability of the Web makes professional cataloging impractical, a minimal amount of information ordering, such as that represented by the Dublin Core (DC), may vastly improve the quality of an automatic index at low cost; indeed, recent work suggests that some types of simple description may be generated with little or no human intervention.
  12. Edmunds, J.: Roadmap to nowhere : BIBFLOW, BIBFRAME, and linked data for libraries (2017) 0.00
    0.0021547303 = product of:
      0.030166224 = sum of:
        0.030166224 = weight(_text_:bibliographic in 3523) [ClassicSimilarity], result of:
          0.030166224 = score(doc=3523,freq=2.0), product of:
            0.11688946 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.03002521 = queryNorm
            0.2580748 = fieldWeight in 3523, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.046875 = fieldNorm(doc=3523)
      0.071428575 = coord(1/14)
    
    Abstract
    On December 12, 2016, Carl Stahmer and MacKenzie Smith presented at the CNI Members Fall Meeting about the BIBFLOW project, self-described on Twitter as "a two-year project of the UC Davis University Library and Zepheira investigating the future of library technical services." In her opening remarks, Ms. Smith, University Librarian at UC Davis, stated that one of the goals of the project was to devise a roadmap "to get from where we are today, which is kind of the 1970s with a little lipstick on it, to 2020, which is where we're going to be very soon." The notion that where libraries are today is somehow behind the times is one of the commonly heard rationales behind a move to linked data. Stated more precisely: - Libraries devote considerable time and resources to producing high-quality bibliographic metadata - This metadata is stored in unconnected silos - This metadata is in a format (MARC) that is incompatible with technologies of the emerging Semantic Web - The visibility of library metadata is diminished as a result of the two points above Are these assertions true? If yes, is linked data the solution?
  13. Suranofsky, M.; McColl, L.: a Google sheets add-on that uses the WorldCat search API : MatchMarc (2019) 0.00
    0.0021547303 = product of:
      0.030166224 = sum of:
        0.030166224 = weight(_text_:bibliographic in 5442) [ClassicSimilarity], result of:
          0.030166224 = score(doc=5442,freq=2.0), product of:
            0.11688946 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.03002521 = queryNorm
            0.2580748 = fieldWeight in 5442, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.046875 = fieldNorm(doc=5442)
      0.071428575 = coord(1/14)
    
    Abstract
    Lehigh University Libraries has developed a new tool for querying WorldCat using the WorldCat Search API. The tool is a Google Sheet Add-on and is available now via the Google Sheets Add-ons menu under the name "MatchMarc." The add-on is easily customizable, with no knowledge of coding needed. The tool will return a single "best" OCLC record number, and its bibliographic information for a given ISBN or LCCN, allowing the user to set up and define "best." Because all of the information, the input, the criteria, and the results exist in the Google Sheets environment, efficient workflows can be developed from this flexible starting point. This article will discuss the development of the add-on, how it works, and future plans for development.
  14. Wolfe, EW.: a case study in automated metadata enhancement : Natural Language Processing in the humanities (2019) 0.00
    0.0021217826 = product of:
      0.029704956 = sum of:
        0.029704956 = weight(_text_:subject in 5236) [ClassicSimilarity], result of:
          0.029704956 = score(doc=5236,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.27661324 = fieldWeight in 5236, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5236)
      0.071428575 = coord(1/14)
    
    Abstract
    The Black Book Interactive Project at the University of Kansas (KU) is developing an expanded corpus of novels by African American authors, with an emphasis on lesser known writers and a goal of expanding research in this field. Using a custom metadata schema with an emphasis on race-related elements, each novel is analyzed for a variety of elements such as literary style, targeted content analysis, historical context, and other areas. Librarians at KU have worked to develop a variety of computational text analysis processes designed to assist with specific aspects of this metadata collection, including text mining and natural language processing, automated subject extraction based on word sense disambiguation, harvesting data from Wikidata, and other actions.
  15. Baca, M.; O'Keefe, E.: Sharing standards and expertise in the early 21st century : Moving toward a collaborative, "cross-community" model for metadata creation (2008) 0.00
    0.0018186709 = product of:
      0.02546139 = sum of:
        0.02546139 = weight(_text_:subject in 2321) [ClassicSimilarity], result of:
          0.02546139 = score(doc=2321,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.23709705 = fieldWeight in 2321, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.046875 = fieldNorm(doc=2321)
      0.071428575 = coord(1/14)
    
    Abstract
    This paper provides a brief overview of the evolving descriptive metadata landscape, one phenomenon of which can be characterized as "cross-community" metadata as manifested in records that are the result of a combination of carefully considered data value and data content standards. he online catalog of the Morgan Library & Museum provides a real-life illustration of how diverse data content standards and vocabulary tools can be integrated within the classic data structure/technical interchange format of MARC21 to better describe unique, museum-type objects, and to provide better end-user access and understanding. The Morgan experience also shows the value of developing a collaborative model for metadata creation that combines the subject expertise of curators and scholars with the cataloging expertise and knowledge of standards possessed by librarians.
  16. Bartczak, J.; Glendon, I.: Python, Google Sheets, and the Thesaurus for Graphic Materials for efficient metadata project workflows (2017) 0.00
    0.0018186709 = product of:
      0.02546139 = sum of:
        0.02546139 = weight(_text_:subject in 3893) [ClassicSimilarity], result of:
          0.02546139 = score(doc=3893,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.23709705 = fieldWeight in 3893, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.046875 = fieldNorm(doc=3893)
      0.071428575 = coord(1/14)
    
    Abstract
    In 2017, the University of Virginia (U.Va.) will launch a two year initiative to celebrate the bicentennial anniversary of the University's founding in 1819. The U.Va. Library is participating in this event by digitizing some 20,000 photographs and negatives that document student life on the U.Va. grounds in the 1960s and 1970s. Metadata librarians and archivists are well-versed in the challenges associated with generating digital content and accompanying description within the context of limited resources. This paper describes how technology and new approaches to metadata design have enabled the University of Virginia's Metadata Analysis and Design Department to rapidly and successfully generate accurate description for these digital objects. Python's pandas module improves efficiency by cleaning and repurposing data recorded at digitization, while the lxml module builds MODS XML programmatically from CSV tables. A simplified technique for subject heading selection and assignment in Google Sheets provides a collaborative environment for streamlined metadata creation and data quality control.
  17. Bearman, D.; Miller, E.; Rust, G.; Trant, J.; Weibel, S.: ¬A common model to support interoperable metadata : progress report on reconciling metadata requirements from the Dublin Core and INDECS/DOI communities (1999) 0.00
    0.0017956087 = product of:
      0.02513852 = sum of:
        0.02513852 = weight(_text_:bibliographic in 1249) [ClassicSimilarity], result of:
          0.02513852 = score(doc=1249,freq=2.0), product of:
            0.11688946 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.03002521 = queryNorm
            0.21506234 = fieldWeight in 1249, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1249)
      0.071428575 = coord(1/14)
    
    Abstract
    The Dublin Core metadata community and the INDECS/DOI community of authors, rights holders, and publishers are seeking common ground in the expression of metadata for information resources. Recent meetings at the 6th Dublin Core Workshop in Washington DC sketched out common models for semantics (informed by the requirements articulated in the IFLA Functional Requirements for the Bibliographic Record) and conventions for knowledge representation (based on the Resource Description Framework under development by the W3C). Further development of detailed requirements is planned by both communities in the coming months with the aim of fully representing the metadata needs of each. An open "Schema Harmonization" working group has been established to identify a common framework to support interoperability among these communities. The present document represents a starting point identifying historical developments and common requirements of these perspectives on metadata and charts a path for harmonizing their respective conceptual models. It is hoped that collaboration over the coming year will result in agreed semantic and syntactic conventions that will support a high degree of interoperability among these communities, ideally expressed in a single data model and using common, standard tools.
  18. Broughton, V.: Automatic metadata generation : Digital resource description without human intervention (2007) 0.00
    0.0017434291 = product of:
      0.024408007 = sum of:
        0.024408007 = product of:
          0.048816014 = sum of:
            0.048816014 = weight(_text_:22 in 6048) [ClassicSimilarity], result of:
              0.048816014 = score(doc=6048,freq=2.0), product of:
                0.10514317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03002521 = queryNorm
                0.46428138 = fieldWeight in 6048, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6048)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Date
    22. 9.2007 15:41:14
  19. Roszkowski, M.; Lukas, C.: ¬A distributed architecture for resource discovery using metadata (1998) 0.00
    0.0017146593 = product of:
      0.024005229 = sum of:
        0.024005229 = weight(_text_:subject in 1256) [ClassicSimilarity], result of:
          0.024005229 = score(doc=1256,freq=4.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.22353725 = fieldWeight in 1256, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03125 = fieldNorm(doc=1256)
      0.071428575 = coord(1/14)
    
    Abstract
    This article describes an approach for linking geographically distributed collections of metadata so that they are searchable as a single collection. We describe the infrastructure, which uses standard Internet protocols such as the Lightweight Directory Access Protocol (LDAP) and the Common Indexing Protocol (CIP), to distribute queries, return results, and exchange index information. We discuss the advantages of using linked collections of authoritative metadata as an alternative to using a keyword indexing search-engine for resource discovery. We examine other architectures that use metadata for resource discovery, such as Dienst/NCSTRL, the AHDS HTTP/Z39.50 Gateway, and the ROADS initiative. Finally, we discuss research issues and future directions of the project. The Internet Scout Project, which is funded by the National Science Foundation and is located in the Computer Sciences Department at the University of Wisconsin-Madison, is charged with assisting the higher education community in resource discovery on the Internet. To that end, the Scout Report and subsequent subject-specific Scout Reports were developed to guide the U.S. higher education community to research-quality resources. The Scout Report Signpost utilizes the content from the Scout Reports as the basis of a metadata collection. Signpost consists of more than 2000 cataloged Internet sites using established standards such as Library of Congress subject headings and abbreviated call letters, and emerging standards such as the Dublin Core (DC). This searchable and browseable collection is free and freely accessible, as are all of the Internet Scout Project's services.
  20. Chan, L.M.; Zeng, M.L.: Metadata interoperability and standardization - a study of methodology, part I : achieving interoperability at the schema level (2006) 0.00
    0.0015155592 = product of:
      0.021217827 = sum of:
        0.021217827 = weight(_text_:subject in 1176) [ClassicSimilarity], result of:
          0.021217827 = score(doc=1176,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.19758089 = fieldWeight in 1176, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1176)
      0.071428575 = coord(1/14)
    
    Abstract
    The rapid growth of Internet resources and digital collections has been accompanied by a proliferation of metadata schemas, each of which has been designed based on the requirements of particular user communities, intended users, types of materials, subject domains, project needs, etc. Problems arise when building large digital libraries or repositories with metadata records that were prepared according to diverse schemas. This article (published in two parts) contains an analysis of the methods that have been used to achieve or improve interoperability among metadata schemas and applications, for the purposes of facilitating conversion and exchange of metadata and enabling cross-domain metadata harvesting and federated searches. From a methodological point of view, implementing interoperability may be considered at different levels of operation: schema level, record level, and repository level. Part I of the article intends to explain possible situations in which metadata schemas may be created or implemented, whether in individual projects or in integrated repositories. It also discusses approaches used at the schema level. Part II of the article will discuss metadata interoperability efforts at the record and repository levels.