Search (19 results, page 1 of 1)

  • × year_i:[2010 TO 2020}
  • × author_ss:"Hjoerland, B."
  1. Hjoerland, B.: Facet analysis : the logical approach to knowledge organization (2013) 0.06
    0.055603623 = product of:
      0.19461267 = sum of:
        0.03364573 = weight(_text_:classification in 2720) [ClassicSimilarity], result of:
          0.03364573 = score(doc=2720,freq=8.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.35186368 = fieldWeight in 2720, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2720)
        0.042440403 = product of:
          0.08488081 = sum of:
            0.08488081 = weight(_text_:bliss in 2720) [ClassicSimilarity], result of:
              0.08488081 = score(doc=2720,freq=2.0), product of:
                0.21478812 = queryWeight, product of:
                  7.1535926 = idf(docFreq=93, maxDocs=44218)
                  0.03002521 = queryNorm
                0.3951839 = fieldWeight in 2720, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  7.1535926 = idf(docFreq=93, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2720)
          0.5 = coord(1/2)
        0.08488081 = weight(_text_:bliss in 2720) [ClassicSimilarity], result of:
          0.08488081 = score(doc=2720,freq=2.0), product of:
            0.21478812 = queryWeight, product of:
              7.1535926 = idf(docFreq=93, maxDocs=44218)
              0.03002521 = queryNorm
            0.3951839 = fieldWeight in 2720, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              7.1535926 = idf(docFreq=93, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2720)
        0.03364573 = weight(_text_:classification in 2720) [ClassicSimilarity], result of:
          0.03364573 = score(doc=2720,freq=8.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.35186368 = fieldWeight in 2720, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2720)
      0.2857143 = coord(4/14)
    
    Abstract
    The facet-analytic paradigm is probably the most distinct approach to knowledge organization within Library and Information Science, and in many ways it has dominated what has be termed "modern classification theory". It was mainly developed by S.R. Ranganathan and the British Classification Research Group, but it is mostly based on principles of logical division developed more than two millennia ago. Colon Classification (CC) and Bliss 2 (BC2) are among the most important systems developed on this theoretical basis, but it has also influenced the development of other systems, such as the Dewey Decimal Classification (DDC) and is also applied in many websites. It still has a strong position in the field and it is the most explicit and "pure" theoretical approach to knowledge organization (KO) (but it is not by implication necessarily also the most important one). The strength of this approach is its logical principles and the way it provides structures in knowledge organization systems (KOS). The main weaknesses are (1) its lack of empirical basis and (2) its speculative ordering of knowledge without basis in the development or influence of theories and socio-historical studies. It seems to be based on the problematic assumption that relations between concepts are a priori and not established by the development of models, theories and laws.
  2. Hjoerland, B.: Is classification necessary after Google? (2012) 0.04
    0.038678452 = product of:
      0.13537458 = sum of:
        0.021217827 = weight(_text_:subject in 388) [ClassicSimilarity], result of:
          0.021217827 = score(doc=388,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.19758089 = fieldWeight in 388, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=388)
        0.044509117 = weight(_text_:classification in 388) [ClassicSimilarity], result of:
          0.044509117 = score(doc=388,freq=14.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.46547192 = fieldWeight in 388, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0390625 = fieldNorm(doc=388)
        0.02513852 = weight(_text_:bibliographic in 388) [ClassicSimilarity], result of:
          0.02513852 = score(doc=388,freq=2.0), product of:
            0.11688946 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.03002521 = queryNorm
            0.21506234 = fieldWeight in 388, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.0390625 = fieldNorm(doc=388)
        0.044509117 = weight(_text_:classification in 388) [ClassicSimilarity], result of:
          0.044509117 = score(doc=388,freq=14.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.46547192 = fieldWeight in 388, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0390625 = fieldNorm(doc=388)
      0.2857143 = coord(4/14)
    
    Abstract
    Purpose - The purpose of this paper is to examine challenges facing bibliographic classification at both the practical and theoretical levels. At the practical level, libraries are increasingly dispensing with classifying books. At the theoretical level, many researchers, managers, and users believe that the activity of "classification" is not worth the effort, as search engines can be improved without the heavy cost of providing metadata. Design/methodology/approach - The basic issue in classification is seen as providing criteria for deciding whether A should be classified as X. Such decisions are considered to be dependent on the purpose and values inherent in the specific classification process. These decisions are not independent of theories and values in the document being classified, but are dependent on an interpretation of the discourses within those documents. Findings - At the practical level, there is a need to provide high-quality control mechanisms. At the theoretical level, there is a need to establish the basis of each decision, and to change the philosophy of classification from being based on "standardisation" to being based on classifications tailored to different domains and purposes. Evidence-based practice provides an example of the importance of classifying documents according to research methods. Originality/value - Solving both the practical (organisational) and the theoretical problems facing classification is necessary if the field is to survive both as a practice and as an academic subject within library and information science. This article presents strategies designed to tackle these challenges.
  3. Hjoerland, B.: Theories of knowledge organization - theories of knowledge (2013) 0.02
    0.02084957 = product of:
      0.097298 = sum of:
        0.030006537 = weight(_text_:subject in 789) [ClassicSimilarity], result of:
          0.030006537 = score(doc=789,freq=4.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.27942157 = fieldWeight in 789, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=789)
        0.03364573 = weight(_text_:classification in 789) [ClassicSimilarity], result of:
          0.03364573 = score(doc=789,freq=8.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.35186368 = fieldWeight in 789, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0390625 = fieldNorm(doc=789)
        0.03364573 = weight(_text_:classification in 789) [ClassicSimilarity], result of:
          0.03364573 = score(doc=789,freq=8.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.35186368 = fieldWeight in 789, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0390625 = fieldNorm(doc=789)
      0.21428572 = coord(3/14)
    
    Abstract
    Any ontological theory commits us to accept and classify a number of phenomena in a more or less specific way-and vice versa: a classification tends to reveal the theoretical outlook of its creator. Objects and their descriptions and relations are not just "given," but determined by theories. Knowledge is fallible, and consensus is rare. By implication, knowledge organization has to consider different theories/views and their foundations. Bibliographical classifications depend on subject knowledge and on the same theories as corresponding scientific and scholarly classifications. Some classifications are based on logical distinctions, others on empirical examinations, and some on mappings of common ancestors or on establishing functional criteria. To evaluate a classification is to involve oneself in the research which has produced the given classification. Because research is always based more or less on specific epistemological ideals (e.g., empiricism, rationalism, historicism, or pragmatism), the evaluation of classification includes the evaluation of the epistemological foundations of the research on which given classifications have been based. The field of knowledge organization itself is based on different approaches and traditions such as user-based and cognitive views, facet-analytical views, numeric taxonomic approaches, bibliometrics, and domain-analytic approaches. These approaches and traditions are again connected to epistemological views, which have to be considered. Only the domain-analytic view is fully committed to exploring knowledge organization in the light of subject knowledge and substantial scholarly theories.
  4. Hjoerland, B.: Classification (2017) 0.02
    0.017196376 = product of:
      0.12037463 = sum of:
        0.060187314 = weight(_text_:classification in 3610) [ClassicSimilarity], result of:
          0.060187314 = score(doc=3610,freq=10.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.6294329 = fieldWeight in 3610, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0625 = fieldNorm(doc=3610)
        0.060187314 = weight(_text_:classification in 3610) [ClassicSimilarity], result of:
          0.060187314 = score(doc=3610,freq=10.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.6294329 = fieldWeight in 3610, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0625 = fieldNorm(doc=3610)
      0.14285715 = coord(2/14)
    
    Abstract
    This article presents and discusses definitions of the term "classification" and the related concepts "Concept/conceptualization," "categorization," "ordering," "taxonomy" and "typology." It further presents and discusses theories of classification including the influences of Aristotle and Wittgenstein. It presents different views on forming classes, including logical division, numerical taxonomy, historical classification, hermeneutical and pragmatic/critical views. Finally, issues related to artificial versus natural classification and taxonomic monism versus taxonomic pluralism are briefly presented and discussed.
  5. Hjoerland, B.: ¬The paradox of atheoretical classification (2016) 0.01
    0.012897282 = product of:
      0.09028097 = sum of:
        0.045140486 = weight(_text_:classification in 3169) [ClassicSimilarity], result of:
          0.045140486 = score(doc=3169,freq=10.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.4720747 = fieldWeight in 3169, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=3169)
        0.045140486 = weight(_text_:classification in 3169) [ClassicSimilarity], result of:
          0.045140486 = score(doc=3169,freq=10.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.4720747 = fieldWeight in 3169, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=3169)
      0.14285715 = coord(2/14)
    
    Abstract
    A distinction can be made between "artificial classifications" and "natural classifications," where artificial classifications may adequately serve some limited purposes, but natural classifications are overall most fruitful by allowing inference and thus many different purposes. There is strong support for the view that a natural classification should be based on a theory (and, of course, that the most fruitful theory provides the most fruitful classification). Nevertheless, atheoretical (or "descriptive") classifications are often produced. Paradoxically, atheoretical classifications may be very successful. The best example of a successful "atheoretical" classification is probably the prestigious Diagnostic and Statistical Manual of Mental Disorders (DSM) since its third edition from 1980. Based on such successes one may ask: Should the claim that classifications ideally are natural and theory-based be reconsidered? This paper argues that the seemingly success of atheoretical classifications hides deeper problems and that the ideal of theory-based classification should be maintained.
  6. Hjoerland, B.; Scerri, E.; Dupré, J.: Forum: The Philosophy of Classification : The Periodic Table and the Philosophy of Classification - What is the Nature of the Periodic Table as a Classification System? - A Note on the Debate Between Hjørland and Scerri on the Significance of the Periodic Table (2011) 0.01
    0.01153568 = product of:
      0.08074976 = sum of:
        0.04037488 = weight(_text_:classification in 4294) [ClassicSimilarity], result of:
          0.04037488 = score(doc=4294,freq=8.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.42223644 = fieldWeight in 4294, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=4294)
        0.04037488 = weight(_text_:classification in 4294) [ClassicSimilarity], result of:
          0.04037488 = score(doc=4294,freq=8.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.42223644 = fieldWeight in 4294, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=4294)
      0.14285715 = coord(2/14)
    
    Abstract
    Thanks to Professor Eric Scerri for engaging in debate in this journal (Scerri 2011) by replying to my review (Hjørland 2008a) of his book (Scerri 2007). One of my points has been that we in our community (Knowledge Organization, KO / Library and Information Science, LIS) have been too isolated from broader academic fields related to classification and the organization of knowledge. The present debate is a step towards reversing this situation. Bezug zu: Scerri, E.R.: The periodic table: its story and its significance. Oxford: Oxford University Press 2007. xxii, 346 S. und die Rezension dazu in: KO 35(2008) no.4, S.251-254 (B. Hjoerland).
  7. Hjoerland, B.: Domain analysis (2017) 0.01
    0.007690453 = product of:
      0.053833168 = sum of:
        0.026916584 = weight(_text_:classification in 3852) [ClassicSimilarity], result of:
          0.026916584 = score(doc=3852,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.28149095 = fieldWeight in 3852, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0625 = fieldNorm(doc=3852)
        0.026916584 = weight(_text_:classification in 3852) [ClassicSimilarity], result of:
          0.026916584 = score(doc=3852,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.28149095 = fieldWeight in 3852, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0625 = fieldNorm(doc=3852)
      0.14285715 = coord(2/14)
    
    Content
    Beitrag in einem Special Issue: Selected Papers from the International UDC Seminar 2017, Faceted Classification Today: Theory, Technology and End Users, 14-15 September, London UK.
  8. Hjoerland, B.: Indexing: concepts and theory (2018) 0.01
    0.00576784 = product of:
      0.04037488 = sum of:
        0.02018744 = weight(_text_:classification in 4644) [ClassicSimilarity], result of:
          0.02018744 = score(doc=4644,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.21111822 = fieldWeight in 4644, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=4644)
        0.02018744 = weight(_text_:classification in 4644) [ClassicSimilarity], result of:
          0.02018744 = score(doc=4644,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.21111822 = fieldWeight in 4644, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=4644)
      0.14285715 = coord(2/14)
    
    Abstract
    This article discusses definitions of index and indexing and provides a systematic overview of kinds of indexes. Theories of indexing are reviewed, and the theoretical basis of both manual indexing and automatic indexing is discussed, and a classification of theories is suggested (rationalist, cognitivist, empiricist, and historicist and pragmatist theories). It is claimed that although many researchers do not consider indexing to be a theoretical issue (or consider it to be a field without theories) indexing is indeed highly theory-laden (and the idea of atheoretical indexing is an oxymoron). An important issue is also the subjectivity of the indexer, in particular, her socio-cultural and paradigmatic background, as for example, when authors of documents are the best indexers of their own documents. The article contains a section about the tools available for indexing in the form of the indexing languages and their nature. It is concluded that the social epistemology first proposed by Jesse Shera in 1951 provides the most fruitful theoretical framework for indexing.
  9. Hjoerland, B.: Classical databases and knowledge organisation : a case for Boolean retrieval and human decision-making during search (2014) 0.01
    0.005044075 = product of:
      0.035308525 = sum of:
        0.02513852 = weight(_text_:bibliographic in 1398) [ClassicSimilarity], result of:
          0.02513852 = score(doc=1398,freq=2.0), product of:
            0.11688946 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.03002521 = queryNorm
            0.21506234 = fieldWeight in 1398, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1398)
        0.010170003 = product of:
          0.020340007 = sum of:
            0.020340007 = weight(_text_:22 in 1398) [ClassicSimilarity], result of:
              0.020340007 = score(doc=1398,freq=2.0), product of:
                0.10514317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03002521 = queryNorm
                0.19345059 = fieldWeight in 1398, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1398)
          0.5 = coord(1/2)
      0.14285715 = coord(2/14)
    
    Abstract
    This paper considers classical bibliographic databases based on the Boolean retrieval model (for example MEDLINE and PsycInfo). This model is challenged by modern search engines and information retrieval (IR) researchers, who often consider Boolean retrieval as a less efficient approach. This speech examines this claim and argues for the continued value of Boolean systems, which implies two further issues: (1) the important role of human expertise in searching (expert searchers and "information literacy") and (2) the role of knowledge organization (KO) in the design and use of classical databases, including controlled vocabularies and human indexing. An underlying issue is the kind of retrieval system for which one should aim. It is suggested that Julian Warner's (2010) differentiation between the computer science traditions, aiming at automatically transforming queries into (ranked) sets of relevant documents, and an older library-orientated tradition aiming at increasing the "selection power" of users seems important. The Boolean retrieval model is important in order to provide users with the power to make informed searches and have full control over what is found and what is not found. These issues may also have important implications for the maintenance of information science and KO as research fields as well as for the information profession as a profession in its own right.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  10. Hjoerland, B.: Knowledge organization (KO) (2017) 0.00
    0.0047444506 = product of:
      0.066422306 = sum of:
        0.066422306 = weight(_text_:subject in 3418) [ClassicSimilarity], result of:
          0.066422306 = score(doc=3418,freq=10.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.61852604 = fieldWeight in 3418, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3418)
      0.071428575 = coord(1/14)
    
    Abstract
    This article presents and discusses the concept "subject" or subject matter (of documents) as it has been examined in library and information science (LIS) for more than 100 years. Different theoretical positions are outlined and it is found that the most important distinction is between documentoriented views versus request-oriented views. The documentoriented view conceives subject as something inherent in documents, whereas the request-oriented view (or the policybased view) understands subject as an attribution made to documents in order to facilitate certain uses of them. Related concepts such as concepts, aboutness, topic, isness and ofness are also briefly presented. The conclusion is that the most fruitful way of defining "subject" (of a document) is the document's informative or epistemological potentials, that is, the document's potentials of informing users and advancing the development of knowledge.
  11. Hjoerland, B.: Subject (of documents) (2016) 0.00
    0.0040097926 = product of:
      0.056137092 = sum of:
        0.056137092 = weight(_text_:subject in 3182) [ClassicSimilarity], result of:
          0.056137092 = score(doc=3182,freq=14.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.5227499 = fieldWeight in 3182, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3182)
      0.071428575 = coord(1/14)
    
    Abstract
    This article presents and discusses the concept "subject" or subject matter (of documents) as it has been examined in library and information science (LIS) for more than 100 years. Different theoretical positions are outlined and it is found that the most important distinction is between document-oriented views versus request-oriented views. The document-oriented view conceive subject as something inherent in documents, whereas the request-oriented view (or the policy based view) understand subject as an attribution made to documents in order to facilitate certain uses of them. Related concepts such as concepts, aboutness, topic, isness and ofness are also briefly presented. The conclusion is that the most fruitful way of defining "subject" (of a document) is the documents informative or epistemological potentials, that is, the documents potentials of informing users and advance the development of knowledge.
    Content
    Contents: 1. Introduction; 2. Theoretical views: 2.1 Charles Ammi Cutter (1837-1903), 2.2 S. R. Ranganathan (1892-1972), 2.3 Patrick Wilson (1927-2003), 2.4 "Content oriented" versus "request oriented" views, 2.5 Issues of subjectivity and objectivity, 2.6 The subject knowledge view, 2.7 Other views and definitions; 3. Related concepts: 3.1 Words versus concepts versus subjects, 3.2 Aboutness, 3.3 Topic, 3.4 Isness, 3.5 Ofness, 3.6 Theme.
  12. Hjoerland, B.: ¬The foundation of the concept of relevance (2010) 0.00
    0.002625025 = product of:
      0.03675035 = sum of:
        0.03675035 = weight(_text_:subject in 3326) [ClassicSimilarity], result of:
          0.03675035 = score(doc=3326,freq=6.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.34222013 = fieldWeight in 3326, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3326)
      0.071428575 = coord(1/14)
    
    Abstract
    In 1975 Tefko Saracevic declared the subject knowledge view to be the most fundamental perspective of relevance. This paper examines the assumptions in different views of relevance, including the system's view and the user's view and offers a reinterpretation of these views. The paper finds that what was regarded as the most fundamental view by Saracevic in 1975 has not since been considered (with very few exceptions). Other views, which are based on less fruitful assumptions, have dominated the discourse on relevance in information retrieval and information science. Many authors have reexamined the concept of relevance in information science, but have neglected the subject knowledge view, hence basic theoretical assumptions seem not to have been properly addressed. It is as urgent now as it was in 1975 seriously to consider the subject knowledge view of relevance (which may also be termed the epistemological view). The concept of relevance, like other basic concepts, is influenced by overall approaches to information science, such as the cognitive view and the domain-analytic view. There is today a trend toward a social paradigm for information science. This paper offers an understanding of relevance from such a social point of view.
  13. Hjoerland, B.: Are relations in thesauri "context-free, definitional, and true in all possible worlds"? (2015) 0.00
    0.0021433241 = product of:
      0.030006537 = sum of:
        0.030006537 = weight(_text_:subject in 2033) [ClassicSimilarity], result of:
          0.030006537 = score(doc=2033,freq=4.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.27942157 = fieldWeight in 2033, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2033)
      0.071428575 = coord(1/14)
    
    Abstract
    Much of the literature of information science and knowledge organization has accepted and built upon Elaine Svenonius's (2004) claim that "paradigmatic relationships are those that are context-free, definitional, and true in all possible worlds" (p. 583). At the same time, the literature demonstrates a common understanding that paradigmatic relations are the kinds of semantic relations used in thesauri and other knowledge organization systems (including equivalence relations, hierarchical relations, and associative relations). This understanding is problematic and harmful because it directs attention away from the empirical and contextual basis for knowledge-organizing systems. Whether A is a kind of X is certainly not context-free and definitional in empirical sciences or in much everyday information. Semantic relations are theory-dependent and, in biology, for example, a scientific revolution has taken place in which many relations have changed following the new taxonomic paradigm named "cladism." This biological example is not an exception, but the norm. Semantic relations including paradigmatic relations are not a priori but are dependent on subject knowledge, scientific findings, and paradigms. As long as information scientists and knowledge organizers isolate themselves from subject knowledge, knowledge organization cannot possibly progress.
  14. Hjoerland, B.: Classical databases and knowledge organization : a case for boolean retrieval and human decision-making during searches (2015) 0.00
    0.0017956087 = product of:
      0.02513852 = sum of:
        0.02513852 = weight(_text_:bibliographic in 2124) [ClassicSimilarity], result of:
          0.02513852 = score(doc=2124,freq=2.0), product of:
            0.11688946 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.03002521 = queryNorm
            0.21506234 = fieldWeight in 2124, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2124)
      0.071428575 = coord(1/14)
    
    Abstract
    This paper considers classical bibliographic databases based on the Boolean retrieval model (such as MEDLINE and PsycInfo). This model is challenged by modern search engines and information retrieval (IR) researchers, who often consider Boolean retrieval a less efficient approach. The paper examines this claim and argues for the continued value of Boolean systems, and suggests two further considerations: (a) the important role of human expertise in searching (expert searchers and "information literate" users) and (b) the role of library and information science and knowledge organization (KO) in the design and use of classical databases. An underlying issue is the kind of retrieval system for which one should aim. Warner's (2010) differentiation between the computer science traditions and an older library-oriented tradition seems important; the former aim to transform queries automatically into (ranked) sets of relevant documents, whereas the latter aims to increase the "selection power" of users. The Boolean retrieval model is valuable in providing users with the power to make informed searches and have full control over what is found and what is not. These issues may have significant implications for the maintenance of information science and KO as research fields as well as for the information profession as a profession in its own right.
  15. Hjoerland, B.: Citation analysis : a social and dynamic approach to knowledge organization (2013) 0.00
    0.0017956087 = product of:
      0.02513852 = sum of:
        0.02513852 = weight(_text_:bibliographic in 2710) [ClassicSimilarity], result of:
          0.02513852 = score(doc=2710,freq=2.0), product of:
            0.11688946 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.03002521 = queryNorm
            0.21506234 = fieldWeight in 2710, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2710)
      0.071428575 = coord(1/14)
    
    Abstract
    Knowledge organization (KO) and bibliometrics have traditionally been seen as separate subfields of library and information science, but bibliometric techniques make it possible to identify candidate terms for thesauri and to organize knowledge by relating scientific papers and authors to each other and thereby indicating kinds of relatedness and semantic distance. It is therefore important to view bibliometric techniques as a family of approaches to KO in order to illustrate their relative strengths and weaknesses. The subfield of bibliometrics concerned with citation analysis forms a distinct approach to KO which is characterized by its social, historical and dynamic nature, its close dependence on scholarly literature and its explicit kind of literary warrant. The two main methods, co-citation analysis and bibliographic coupling represent different things and thus neither can be considered superior for all purposes. The main difference between traditional knowledge organization systems (KOSs) and maps based on citation analysis is that the first group represents intellectual KOSs, whereas the second represents social KOSs. For this reason bibliometric maps cannot be expected ever to be fully equivalent to scholarly taxonomies, but they are - along with other forms of KOSs - valuable tools for assisting users' to orient themselves to the information ecology. Like other KOSs, citation-based maps cannot be neutral but will always be based on researchers' decisions, which tend to favor certain interests and views at the expense of others.
  16. Hjoerland, B.: Evidence-based practice : an analysis based on the philosophy of science (2011) 0.00
    0.0015155592 = product of:
      0.021217827 = sum of:
        0.021217827 = weight(_text_:subject in 4476) [ClassicSimilarity], result of:
          0.021217827 = score(doc=4476,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.19758089 = fieldWeight in 4476, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4476)
      0.071428575 = coord(1/14)
    
    Abstract
    Evidence-based practice (EBP) is an influential interdisciplinary movement that originated in medicine as evidence-based medicine (EBM) about 1992. EBP is of considerable interest to library and information science (LIS) because it focuses on a thorough documentation of the basis for the decision making that is established in research as well as an optimization of every link in documentation and search processes. EBP is based on the philosophical doctrine of empiricism and, therefore, it is subject to the criticism that has been raised against empiricism. The main criticism of EBP is that practitioners lose their autonomy, that the understanding of theory and of underlying mechanisms is weakened, and that the concept of evidence is too narrow in the empiricist tradition. In this article, it is suggested that we should speak of "research-based practice" rather than EBP, because this term is open to more fruitful epistemologies and provides a broader understanding of evidence. The focus on scientific argumentation in EBP is an important contribution from EBP to LIS, which is long overdue, but parts of the underlying epistemological assumptions should be replaced: EBP is too narrow, too formalist, and too mechanical an approach on which to base scientific and scholarly documentation.
  17. Hjoerland, B.: Theories of knowledge organization - theories of knowledge (2017) 0.00
    0.0010170004 = product of:
      0.014238005 = sum of:
        0.014238005 = product of:
          0.02847601 = sum of:
            0.02847601 = weight(_text_:22 in 3494) [ClassicSimilarity], result of:
              0.02847601 = score(doc=3494,freq=2.0), product of:
                0.10514317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03002521 = queryNorm
                0.2708308 = fieldWeight in 3494, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3494)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Pages
    S.22-36
  18. Hjoerland, B.: ¬The importance of theories of knowledge : indexing and information retrieval as an example (2011) 0.00
    8.7171455E-4 = product of:
      0.0122040035 = sum of:
        0.0122040035 = product of:
          0.024408007 = sum of:
            0.024408007 = weight(_text_:22 in 4359) [ClassicSimilarity], result of:
              0.024408007 = score(doc=4359,freq=2.0), product of:
                0.10514317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03002521 = queryNorm
                0.23214069 = fieldWeight in 4359, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4359)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Date
    17. 3.2011 19:22:55
  19. Hjoerland, B.: User-based and cognitive approaches to knowledge organization : a theoretical analysis of the research literature (2013) 0.00
    7.264289E-4 = product of:
      0.010170003 = sum of:
        0.010170003 = product of:
          0.020340007 = sum of:
            0.020340007 = weight(_text_:22 in 629) [ClassicSimilarity], result of:
              0.020340007 = score(doc=629,freq=2.0), product of:
                0.10514317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03002521 = queryNorm
                0.19345059 = fieldWeight in 629, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=629)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Date
    22. 2.2013 11:49:13