Search (58 results, page 1 of 3)

  • × author_ss:"Thelwall, M."
  • × year_i:[2010 TO 2020}
  1. Thelwall, M.: Web indicators for research evaluation : a practical guide (2016) 0.01
    0.014423447 = product of:
      0.06490551 = sum of:
        0.016735615 = weight(_text_:of in 3384) [ClassicSimilarity], result of:
          0.016735615 = score(doc=3384,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.27317715 = fieldWeight in 3384, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3384)
        0.048169892 = weight(_text_:software in 3384) [ClassicSimilarity], result of:
          0.048169892 = score(doc=3384,freq=4.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.30993375 = fieldWeight in 3384, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3384)
      0.22222222 = coord(2/9)
    
    Abstract
    In recent years there has been an increasing demand for research evaluation within universities and other research-based organisations. In parallel, there has been an increasing recognition that traditional citation-based indicators are not able to reflect the societal impacts of research and are slow to appear. This has led to the creation of new indicators for different types of research impact as well as timelier indicators, mainly derived from the Web. These indicators have been called altmetrics, webometrics or just web metrics. This book describes and evaluates a range of web indicators for aspects of societal or scholarly impact, discusses the theory and practice of using and evaluating web indicators for research assessment and outlines practical strategies for obtaining many web indicators. In addition to describing impact indicators for traditional scholarly outputs, such as journal articles and monographs, it also covers indicators for videos, datasets, software and other non-standard scholarly outputs. The book describes strategies to analyse web indicators for individual publications as well as to compare the impacts of groups of publications. The practical part of the book includes descriptions of how to use the free software Webometric Analyst to gather and analyse web data. This book is written for information science undergraduate and Master?s students that are learning about alternative indicators or scientometrics as well as Ph.D. students and other researchers and practitioners using indicators to help assess research impact or to study scholarly communication.
  2. Thelwall, M.: Mendeley readership altmetrics for medical articles : an analysis of 45 fields (2016) 0.01
    0.014008479 = product of:
      0.063038155 = sum of:
        0.050336715 = weight(_text_:applications in 3055) [ClassicSimilarity], result of:
          0.050336715 = score(doc=3055,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2918479 = fieldWeight in 3055, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=3055)
        0.012701439 = weight(_text_:of in 3055) [ClassicSimilarity], result of:
          0.012701439 = score(doc=3055,freq=8.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.20732689 = fieldWeight in 3055, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3055)
      0.22222222 = coord(2/9)
    
    Abstract
    Medical research is highly funded and often expensive and so is particularly important to evaluate effectively. Nevertheless, citation counts may accrue too slowly for use in some formal and informal evaluations. It is therefore important to investigate whether alternative metrics could be used as substitutes. This article assesses whether one such altmetric, Mendeley readership counts, correlates strongly with citation counts across all medical fields, whether the relationship is stronger if student readers are excluded, and whether they are distributed similarly to citation counts. Based on a sample of 332,975 articles from 2009 in 45 medical fields in Scopus, citation counts correlated strongly (about 0.7; 78% of articles had at least one reader) with Mendeley readership counts (from the new version 1 applications programming interface [API]) in almost all fields, with one minor exception, and the correlations tended to decrease slightly when student readers were excluded. Readership followed either a lognormal or a hooked power law distribution, whereas citations always followed a hooked power law, showing that the two may have underlying differences.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.8, S.1962-1972
  3. Thelwall, M.: Assessing web search engines : a webometric approach (2011) 0.01
    0.009184495 = product of:
      0.041330226 = sum of:
        0.016802425 = weight(_text_:of in 10) [ClassicSimilarity], result of:
          0.016802425 = score(doc=10,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2742677 = fieldWeight in 10, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=10)
        0.0245278 = weight(_text_:systems in 10) [ClassicSimilarity], result of:
          0.0245278 = score(doc=10,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2037246 = fieldWeight in 10, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=10)
      0.22222222 = coord(2/9)
    
    Abstract
    Information Retrieval (IR) research typically evaluates search systems in terms of the standard precision, recall and F-measures to weight the relative importance of precision and recall (e.g. van Rijsbergen, 1979). All of these assess the extent to which the system returns good matches for a query. In contrast, webometric measures are designed specifically for web search engines and are designed to monitor changes in results over time and various aspects of the internal logic of the way in which search engine select the results to be returned. This chapter introduces a range of webometric measurements and illustrates them with case studies of Google, Bing and Yahoo! This is a very fertile area for simple and complex new investigations into search engine results.
  4. Thelwall, M.; Buckley, K.; Paltoglou, G.: Sentiment in Twitter events (2011) 0.01
    0.008001433 = product of:
      0.036006447 = sum of:
        0.020082738 = weight(_text_:of in 4345) [ClassicSimilarity], result of:
          0.020082738 = score(doc=4345,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.32781258 = fieldWeight in 4345, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4345)
        0.015923709 = product of:
          0.031847417 = sum of:
            0.031847417 = weight(_text_:22 in 4345) [ClassicSimilarity], result of:
              0.031847417 = score(doc=4345,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.23214069 = fieldWeight in 4345, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4345)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    The microblogging site Twitter generates a constant stream of communication, some of which concerns events of general interest. An analysis of Twitter may, therefore, give insights into why particular events resonate with the population. This article reports a study of a month of English Twitter posts, assessing whether popular events are typically associated with increases in sentiment strength, as seems intuitively likely. Using the top 30 events, determined by a measure of relative increase in (general) term usage, the results give strong evidence that popular events are normally associated with increases in negative sentiment strength and some evidence that peaks of interest in events have stronger positive sentiment than the time before the peak. It seems that many positive events, such as the Oscars, are capable of generating increased negative sentiment in reaction to them. Nevertheless, the surprisingly small average change in sentiment associated with popular events (typically 1% and only 6% for Tiger Woods' confessions) is consistent with events affording posters opportunities to satisfy pre-existing personal goals more often than eliciting instinctive reactions.
    Date
    22. 1.2011 14:27:06
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.2, S.406-418
  5. Thelwall, M.; Maflahi, N.: Guideline references and academic citations as evidence of the clinical value of health research (2016) 0.01
    0.008001433 = product of:
      0.036006447 = sum of:
        0.020082738 = weight(_text_:of in 2856) [ClassicSimilarity], result of:
          0.020082738 = score(doc=2856,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.32781258 = fieldWeight in 2856, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2856)
        0.015923709 = product of:
          0.031847417 = sum of:
            0.031847417 = weight(_text_:22 in 2856) [ClassicSimilarity], result of:
              0.031847417 = score(doc=2856,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.23214069 = fieldWeight in 2856, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2856)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    This article introduces a new source of evidence of the value of medical-related research: citations from clinical guidelines. These give evidence that research findings have been used to inform the day-to-day practice of medical staff. To identify whether citations from guidelines can give different information from that of traditional citation counts, this article assesses the extent to which references in clinical guidelines tend to be highly cited in the academic literature and highly read in Mendeley. Using evidence from the United Kingdom, references associated with the UK's National Institute of Health and Clinical Excellence (NICE) guidelines tended to be substantially more cited than comparable articles, unless they had been published in the most recent 3 years. Citation counts also seemed to be stronger indicators than Mendeley readership altmetrics. Hence, although presence in guidelines may be particularly useful to highlight the contributions of recently published articles, for older articles citation counts may already be sufficient to recognize their contributions to health in society.
    Date
    19. 3.2016 12:22:00
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.4, S.960-966
  6. Didegah, F.; Thelwall, M.: Co-saved, co-tweeted, and co-cited networks (2018) 0.01
    0.008001433 = product of:
      0.036006447 = sum of:
        0.020082738 = weight(_text_:of in 4291) [ClassicSimilarity], result of:
          0.020082738 = score(doc=4291,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.32781258 = fieldWeight in 4291, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4291)
        0.015923709 = product of:
          0.031847417 = sum of:
            0.031847417 = weight(_text_:22 in 4291) [ClassicSimilarity], result of:
              0.031847417 = score(doc=4291,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.23214069 = fieldWeight in 4291, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4291)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Counts of tweets and Mendeley user libraries have been proposed as altmetric alternatives to citation counts for the impact assessment of articles. Although both have been investigated to discover whether they correlate with article citations, it is not known whether users tend to tweet or save (in Mendeley) the same kinds of articles that they cite. In response, this article compares pairs of articles that are tweeted, saved to a Mendeley library, or cited by the same user, but possibly a different user for each source. The study analyzes 1,131,318 articles published in 2012, with minimum tweeted (10), saved to Mendeley (100), and cited (10) thresholds. The results show surprisingly minor overall overlaps between the three phenomena. The importance of journals for Twitter and the presence of many bots at different levels of activity suggest that this site has little value for impact altmetrics. The moderate differences between patterns of saving and citation suggest that Mendeley can be used for some types of impact assessments, but sensitivity is needed for underlying differences.
    Date
    28. 7.2018 10:00:22
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.8, S.959-973
  7. Thelwall, M.; Sud, P.; Wilkinson, D.: Link and co-inlink network diagrams with URL citations or title mentions (2012) 0.01
    0.006667861 = product of:
      0.030005373 = sum of:
        0.016735615 = weight(_text_:of in 57) [ClassicSimilarity], result of:
          0.016735615 = score(doc=57,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.27317715 = fieldWeight in 57, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=57)
        0.013269759 = product of:
          0.026539518 = sum of:
            0.026539518 = weight(_text_:22 in 57) [ClassicSimilarity], result of:
              0.026539518 = score(doc=57,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.19345059 = fieldWeight in 57, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=57)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Webometric network analyses have been used to map the connectivity of groups of websites to identify clusters, important sites or overall structure. Such analyses have mainly been based upon hyperlink counts, the number of hyperlinks between a pair of websites, although some have used title mentions or URL citations instead. The ability to automatically gather hyperlink counts from Yahoo! ceased in April 2011 and the ability to manually gather such counts was due to cease by early 2012, creating a need for alternatives. This article assesses URL citations and title mentions as possible replacements for hyperlinks in both binary and weighted direct link and co-inlink network diagrams. It also assesses three different types of data for the network connections: hit count estimates, counts of matching URLs, and filtered counts of matching URLs. Results from analyses of U.S. library and information science departments and U.K. universities give evidence that metrics based upon URLs or titles can be appropriate replacements for metrics based upon hyperlinks for both binary and weighted networks, although filtered counts of matching URLs are necessary to give the best results for co-title mention and co-URL citation network diagrams.
    Date
    6. 4.2012 18:16:22
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.4, S.805-816
  8. Li, X.; Thelwall, M.; Kousha, K.: ¬The role of arXiv, RePEc, SSRN and PMC in formal scholarly communication (2015) 0.01
    0.006667861 = product of:
      0.030005373 = sum of:
        0.016735615 = weight(_text_:of in 2593) [ClassicSimilarity], result of:
          0.016735615 = score(doc=2593,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.27317715 = fieldWeight in 2593, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2593)
        0.013269759 = product of:
          0.026539518 = sum of:
            0.026539518 = weight(_text_:22 in 2593) [ClassicSimilarity], result of:
              0.026539518 = score(doc=2593,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.19345059 = fieldWeight in 2593, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2593)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Purpose The four major Subject Repositories (SRs), arXiv, Research Papers in Economics (RePEc), Social Science Research Network (SSRN) and PubMed Central (PMC), are all important within their disciplines but no previous study has systematically compared how often they are cited in academic publications. In response, the purpose of this paper is to report an analysis of citations to SRs from Scopus publications, 2000-2013. Design/methodology/approach Scopus searches were used to count the number of documents citing the four SRs in each year. A random sample of 384 documents citing the four SRs was then visited to investigate the nature of the citations. Findings Each SR was most cited within its own subject area but attracted substantial citations from other subject areas, suggesting that they are open to interdisciplinary uses. The proportion of documents citing each SR is continuing to increase rapidly, and the SRs all seem to attract substantial numbers of citations from more than one discipline. Research limitations/implications Scopus does not cover all publications, and most citations to documents found in the four SRs presumably cite the published version, when one exists, rather than the repository version. Practical implications SRs are continuing to grow and do not seem to be threatened by institutional repositories and so research managers should encourage their continued use within their core disciplines, including for research that aims at an audience in other disciplines. Originality/value This is the first simultaneous analysis of Scopus citations to the four most popular SRs.
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 67(2015) no.6, S.614-635
  9. Thelwall, M.: Are Mendeley reader counts high enough for research evaluations when articles are published? (2017) 0.01
    0.006667861 = product of:
      0.030005373 = sum of:
        0.016735615 = weight(_text_:of in 3806) [ClassicSimilarity], result of:
          0.016735615 = score(doc=3806,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.27317715 = fieldWeight in 3806, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3806)
        0.013269759 = product of:
          0.026539518 = sum of:
            0.026539518 = weight(_text_:22 in 3806) [ClassicSimilarity], result of:
              0.026539518 = score(doc=3806,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.19345059 = fieldWeight in 3806, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3806)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Purpose Mendeley reader counts have been proposed as early indicators for the impact of academic publications. The purpose of this paper is to assess whether there are enough Mendeley readers for research evaluation purposes during the month when an article is first published. Design/methodology/approach Average Mendeley reader counts were compared to the average Scopus citation counts for 104,520 articles from ten disciplines during the second half of 2016. Findings Articles attracted, on average, between 0.1 and 0.8 Mendeley readers per article in the month in which they first appeared in Scopus. This is about ten times more than the average Scopus citation count. Research limitations/implications Other disciplines may use Mendeley more or less than the ten investigated here. The results are dependent on Scopus's indexing practices, and Mendeley reader counts can be manipulated and have national and seniority biases. Practical implications Mendeley reader counts during the month of publication are more powerful than Scopus citations for comparing the average impacts of groups of documents but are not high enough to differentiate between the impacts of typical individual articles. Originality/value This is the first multi-disciplinary and systematic analysis of Mendeley reader counts from the publication month of an article.
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 69(2017) no.2, S.174-183
  10. Thelwall, M.; Buckley, K.; Paltoglou, G.; Cai, D.; Kappas, A.: Sentiment strength detection in short informal text (2010) 0.01
    0.0064770123 = product of:
      0.029146556 = sum of:
        0.015876798 = weight(_text_:of in 4200) [ClassicSimilarity], result of:
          0.015876798 = score(doc=4200,freq=18.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.25915858 = fieldWeight in 4200, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4200)
        0.013269759 = product of:
          0.026539518 = sum of:
            0.026539518 = weight(_text_:22 in 4200) [ClassicSimilarity], result of:
              0.026539518 = score(doc=4200,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.19345059 = fieldWeight in 4200, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4200)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    A huge number of informal messages are posted every day in social network sites, blogs, and discussion forums. Emotions seem to be frequently important in these texts for expressing friendship, showing social support or as part of online arguments. Algorithms to identify sentiment and sentiment strength are needed to help understand the role of emotion in this informal communication and also to identify inappropriate or anomalous affective utterances, potentially associated with threatening behavior to the self or others. Nevertheless, existing sentiment detection algorithms tend to be commercially oriented, designed to identify opinions about products rather than user behaviors. This article partly fills this gap with a new algorithm, SentiStrength, to extract sentiment strength from informal English text, using new methods to exploit the de facto grammars and spelling styles of cyberspace. Applied to MySpace comments and with a lookup table of term sentiment strengths optimized by machine learning, SentiStrength is able to predict positive emotion with 60.6% accuracy and negative emotion with 72.8% accuracy, both based upon strength scales of 1-5. The former, but not the latter, is better than baseline and a wide range of general machine learning approaches.
    Date
    22. 1.2011 14:29:23
    Footnote
    Vgl. auch das Erratum in: Journal of the American Society for Information Science and Technology. 62(2011) no.2, S.419
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.12, S.2544-2558
  11. Thelwall, M.; Sud, P.: Mendeley readership counts : an investigation of temporal and disciplinary differences (2016) 0.01
    0.006361144 = product of:
      0.028625147 = sum of:
        0.012701439 = weight(_text_:of in 3211) [ClassicSimilarity], result of:
          0.012701439 = score(doc=3211,freq=8.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.20732689 = fieldWeight in 3211, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3211)
        0.015923709 = product of:
          0.031847417 = sum of:
            0.031847417 = weight(_text_:22 in 3211) [ClassicSimilarity], result of:
              0.031847417 = score(doc=3211,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.23214069 = fieldWeight in 3211, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3211)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Scientists and managers using citation-based indicators to help evaluate research cannot evaluate recent articles because of the time needed for citations to accrue. Reading occurs before citing, however, and so it makes sense to count readers rather than citations for recent publications. To assess this, Mendeley readers and citations were obtained for articles from 2004 to late 2014 in five broad categories (agriculture, business, decision science, pharmacy, and the social sciences) and 50 subcategories. In these areas, citation counts tended to increase with every extra year since publication, and readership counts tended to increase faster initially but then stabilize after about 5 years. The correlation between citations and readers was also higher for longer time periods, stabilizing after about 5 years. Although there were substantial differences between broad fields and smaller differences between subfields, the results confirm the value of Mendeley reader counts as early scientific impact indicators.
    Date
    16.11.2016 11:07:22
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.12, S.3036-3050
  12. Kousha, K.; Thelwall, M.: Can Amazon.com reviews help to assess the wider impacts of books? (2016) 0.00
    0.0026402464 = product of:
      0.023762217 = sum of:
        0.023762217 = weight(_text_:of in 2768) [ClassicSimilarity], result of:
          0.023762217 = score(doc=2768,freq=28.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.38787308 = fieldWeight in 2768, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2768)
      0.11111111 = coord(1/9)
    
    Abstract
    Although citation counts are often used to evaluate the research impact of academic publications, they are problematic for books that aim for educational or cultural impact. To fill this gap, this article assesses whether a number of simple metrics derived from Amazon.com reviews of academic books could provide evidence of their impact. Based on a set of 2,739 academic monographs from 2008 and a set of 1,305 best-selling books in 15 Amazon.com academic subject categories, the existence of significant but low or moderate correlations between citations and numbers of reviews, combined with other evidence, suggests that online book reviews tend to reflect the wider popularity of a book rather than its academic impact, although there are substantial disciplinary differences. Metrics based on online reviews are therefore recommended for the evaluation of books that aim at a wide audience inside or outside academia when it is important to capture the broader impacts of educational or cultural activities and when they cannot be manipulated in advance of the evaluation.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.3, S.566-581
  13. Didegah, F.; Thelwall, M.: Determinants of research citation impact in nanoscience and nanotechnology (2013) 0.00
    0.002544205 = product of:
      0.022897845 = sum of:
        0.022897845 = weight(_text_:of in 737) [ClassicSimilarity], result of:
          0.022897845 = score(doc=737,freq=26.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.37376386 = fieldWeight in 737, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=737)
      0.11111111 = coord(1/9)
    
    Abstract
    This study investigates a range of metrics available when a nanoscience and nanotechnology article is published to see which metrics correlate more with the number of citations to the article. It also introduces the degree of internationality of journals and references as new metrics for this purpose. The journal impact factor; the impact of references; the internationality of authors, journals, and references; and the number of authors, institutions, and references were all calculated for papers published in nanoscience and nanotechnology journals in the Web of Science from 2007 to 2009. Using a zero-inflated negative binomial regression model on the data set, the impact factor of the publishing journal and the citation impact of the cited references were found to be the most effective determinants of citation counts in all four time periods. In the entire 2007 to 2009 period, apart from journal internationality and author numbers and internationality, all other predictor variables had significant effects on citation counts.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.5, S.1055-1064
  14. Larivière, V.; Sugimoto, C.R.; Macaluso, B.; Milojevi´c, S.; Cronin, B.; Thelwall, M.: arXiv E-prints and the journal of record : an analysis of roles and relationships (2014) 0.00
    0.0023521183 = product of:
      0.021169065 = sum of:
        0.021169065 = weight(_text_:of in 1285) [ClassicSimilarity], result of:
          0.021169065 = score(doc=1285,freq=32.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.34554482 = fieldWeight in 1285, product of:
              5.656854 = tf(freq=32.0), with freq of:
                32.0 = termFreq=32.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1285)
      0.11111111 = coord(1/9)
    
    Abstract
    Since its creation in 1991, arXiv has become central to the diffusion of research in a number of fields. Combining data from the entirety of arXiv and the Web of Science (WoS), this article investigates (a) the proportion of papers across all disciplines that are on arXiv and the proportion of arXiv papers that are in the WoS, (b) the elapsed time between arXiv submission and journal publication, and (c) the aging characteristics and scientific impact of arXiv e-prints and their published version. It shows that the proportion of WoS papers found on arXiv varies across the specialties of physics and mathematics, and that only a few specialties make extensive use of the repository. Elapsed time between arXiv submission and journal publication has shortened but remains longer in mathematics than in physics. In physics, mathematics, as well as in astronomy and astrophysics, arXiv versions are cited more promptly and decay faster than WoS papers. The arXiv versions of papers-both published and unpublished-have lower citation rates than published papers, although there is almost no difference in the impact of the arXiv versions of published and unpublished papers.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.6, S.1157-1169
  15. Thelwall, M.; Klitkou, A.; Verbeek, A.; Stuart, D.; Vincent, C.: Policy-relevant Webometrics for individual scientific fields (2010) 0.00
    0.0023403284 = product of:
      0.021062955 = sum of:
        0.021062955 = weight(_text_:of in 3574) [ClassicSimilarity], result of:
          0.021062955 = score(doc=3574,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.34381276 = fieldWeight in 3574, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3574)
      0.11111111 = coord(1/9)
    
    Abstract
    Despite over 10 years of research there is no agreement on the most suitable roles for Webometric indicators in support of research policy and almost no field-based Webometrics. This article partly fills these gaps by analyzing the potential of policy-relevant Webometrics for individual scientific fields with the help of 4 case studies. Although Webometrics cannot provide robust indicators of knowledge flows or research impact, it can provide some evidence of networking and mutual awareness. The scope of Webometrics is also relatively wide, including not only research organizations and firms but also intermediary groups like professional associations, Web portals, and government agencies. Webometrics can, therefore, provide evidence about the research process to compliment peer review, bibliometric, and patent indicators: tracking the early, mainly prepublication development of new fields and research funding initiatives, assessing the role and impact of intermediary organizations and the need for new ones, and monitoring the extent of mutual awareness in particular research areas.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.7, S.1464-1475
  16. Thelwall, M.; Goriunova, O.; Vis, F.; Faulkner, S.; Burns, A.; Aulich, J.; Mas-Bleda, A.; Stuart, E.; D'Orazio, F.: Chatting through pictures : a classification of images tweeted in one week in the UK and USA (2016) 0.00
    0.002277429 = product of:
      0.02049686 = sum of:
        0.02049686 = weight(_text_:of in 3215) [ClassicSimilarity], result of:
          0.02049686 = score(doc=3215,freq=30.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.33457235 = fieldWeight in 3215, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3215)
      0.11111111 = coord(1/9)
    
    Abstract
    Twitter is used by a substantial minority of the populations of many countries to share short messages, sometimes including images. Nevertheless, despite some research into specific images, such as selfies, and a few news stories about specific tweeted photographs, little is known about the types of images that are routinely shared. In response, this article reports a content analysis of random samples of 800 images tweeted from the UK or USA during a week at the end of 2014. Although most images were photographs, a substantial minority were hybrid or layered image forms: phone screenshots, collages, captioned pictures, and pictures of text messages. About half were primarily of one or more people, including 10% that were selfies, but a wide variety of other things were also pictured. Some of the images were for advertising or to share a joke but in most cases the purpose of the tweet seemed to be to share the minutiae of daily lives, performing the function of chat or gossip, sometimes in innovative ways.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.11, S.2575-2586
  17. Kousha, K.; Thelwall, M.: ¬An automatic method for assessing the teaching impact of books from online academic syllabi (2016) 0.00
    0.002277429 = product of:
      0.02049686 = sum of:
        0.02049686 = weight(_text_:of in 3226) [ClassicSimilarity], result of:
          0.02049686 = score(doc=3226,freq=30.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.33457235 = fieldWeight in 3226, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3226)
      0.11111111 = coord(1/9)
    
    Abstract
    Scholars writing books that are widely used to support teaching in higher education may be undervalued because of a lack of evidence of teaching value. Although sales data may give credible evidence for textbooks, these data may poorly reflect educational uses of other types of books. As an alternative, this article proposes a method to search automatically for mentions of books in online academic course syllabi based on Bing searches for syllabi mentioning a given book, filtering out false matches through an extensive set of rules. The method had an accuracy of over 90% based on manual checks of a sample of 2,600 results from the initial Bing searches. Over one third of about 14,000 monographs checked had one or more academic syllabus mention, with more in the arts and humanities (56%) and social sciences (52%). Low but significant correlations between syllabus mentions and citations across most fields, except the social sciences, suggest that books tend to have different levels of impact for teaching and research. In conclusion, the automatic syllabus search method gives a new way to estimate the educational utility of books in a way that sales data and citation counts cannot.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.12, S.2993-3007
  18. Kousha, K.; Thelwall, M.: Are wikipedia citations important evidence of the impact of scholarly articles and books? (2017) 0.00
    0.0022002053 = product of:
      0.019801848 = sum of:
        0.019801848 = weight(_text_:of in 3440) [ClassicSimilarity], result of:
          0.019801848 = score(doc=3440,freq=28.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.32322758 = fieldWeight in 3440, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3440)
      0.11111111 = coord(1/9)
    
    Abstract
    Individual academics and research evaluators often need to assess the value of published research. Although citation counts are a recognized indicator of scholarly impact, alternative data is needed to provide evidence of other types of impact, including within education and wider society. Wikipedia is a logical choice for both of these because the role of a general encyclopaedia is to be an understandable repository of facts about a diverse array of topics and hence it may cite research to support its claims. To test whether Wikipedia could provide new evidence about the impact of scholarly research, this article counted citations to 302,328 articles and 18,735 monographs in English indexed by Scopus in the period 2005 to 2012. The results show that citations from Wikipedia to articles are too rare for most research evaluation purposes, with only 5% of articles being cited in all fields. In contrast, a third of monographs have at least one citation from Wikipedia, with the most in the arts and humanities. Hence, Wikipedia citations can provide extra impact evidence for academic monographs. Nevertheless, the results may be relatively easily manipulated and so Wikipedia is not recommended for evaluations affecting stakeholder interests.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.3, S.762-779
  19. Kousha, K.; Thelwall, M.; Rezaie, S.: Can the impact of scholarly images be assessed online? : an exploratory study using image identification technology (2010) 0.00
    0.0021201707 = product of:
      0.019081537 = sum of:
        0.019081537 = weight(_text_:of in 3966) [ClassicSimilarity], result of:
          0.019081537 = score(doc=3966,freq=26.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.31146988 = fieldWeight in 3966, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3966)
      0.11111111 = coord(1/9)
    
    Abstract
    The web contains a huge number of digital pictures. For scholars publishing such images it is important to know how well used their images are, but no method seems to have been developed for monitoring the value of academic images. In particular, can the impact of scientific or artistic images be assessed through identifying images copied or reused on the Internet? This article explores a case study of 260 NASA images to investigate whether the TinEye search engine could theoretically help to provide this information. The results show that the selected pictures had a median of 11 online copies each. However, a classification of 210 of these copies reveals that only 1.4% were explicitly used in academic publications, reflecting research impact, and the majority of the NASA pictures were used for informal scholarly (or educational) communication (37%). Additional analyses of world famous paintings and scientific images about pathology and molecular structures suggest that image contents are important for the type and extent of image use. Although it is reasonable to use statistics derived from TinEye for assessing image reuse value, the extent of its image indexing is not known.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.9, S.1734-1744
  20. Thelwall, M.; Kousha, K.: Goodreads : a social network site for book readers (2017) 0.00
    0.0021201707 = product of:
      0.019081537 = sum of:
        0.019081537 = weight(_text_:of in 3534) [ClassicSimilarity], result of:
          0.019081537 = score(doc=3534,freq=26.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.31146988 = fieldWeight in 3534, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3534)
      0.11111111 = coord(1/9)
    
    Abstract
    Goodreads is an Amazon-owned book-based social web site for members to share books, read, review books, rate books, and connect with other readers. Goodreads has tens of millions of book reviews, recommendations, and ratings that may help librarians and readers to select relevant books. This article describes a first investigation of the properties of Goodreads users, using a random sample of 50,000 members. The results suggest that about three quarters of members with a public profile are female, and that there is little difference between male and female users in patterns of behavior, except for females registering more books and rating them less positively. Goodreads librarians and super-users engage extensively with most features of the site. The absence of strong correlations between book-based and social usage statistics (e.g., numbers of friends, followers, books, reviews, and ratings) suggests that members choose their own individual balance of social and book activities and rarely ignore one at the expense of the other. Goodreads is therefore neither primarily a book-based website nor primarily a social network site but is a genuine hybrid, social navigation site.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.4, S.972-983