Search (80 results, page 1 of 4)

  • × theme_ss:"Begriffstheorie"
  • × type_ss:"a"
  1. Axelos, C.; Flasch, K.; Schepers, H.; Kuhlen, R.; Romberg, R.; Zimmermann, R.: Allgemeines/Besonderes (1971-2007) 0.14
    0.13688362 = product of:
      0.6159763 = sum of:
        0.30798814 = weight(_text_:2f in 4031) [ClassicSimilarity], result of:
          0.30798814 = score(doc=4031,freq=4.0), product of:
            0.3321406 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03917671 = queryNorm
            0.92728245 = fieldWeight in 4031, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4031)
        0.30798814 = weight(_text_:2f in 4031) [ClassicSimilarity], result of:
          0.30798814 = score(doc=4031,freq=4.0), product of:
            0.3321406 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03917671 = queryNorm
            0.92728245 = fieldWeight in 4031, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4031)
      0.22222222 = coord(2/9)
    
    Footnote
    DOI: 10.24894/HWPh.5033. Vgl. unter: https://www.schwabeonline.ch/schwabe-xaveropp/elibrary/start.xav#__elibrary__%2F%2F*%5B%40attr_id%3D%27verw.allgemeinesbesonderes%27%5D__1515856414979.
  2. Pathak, L.P.: Concept-term relationship and a classified schedule of isolates for the term 'concept' (2000) 0.04
    0.035163544 = product of:
      0.105490625 = sum of:
        0.05872617 = weight(_text_:applications in 6046) [ClassicSimilarity], result of:
          0.05872617 = score(doc=6046,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.34048924 = fieldWeight in 6046, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6046)
        0.018148692 = weight(_text_:of in 6046) [ClassicSimilarity], result of:
          0.018148692 = score(doc=6046,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.29624295 = fieldWeight in 6046, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6046)
        0.028615767 = weight(_text_:systems in 6046) [ClassicSimilarity], result of:
          0.028615767 = score(doc=6046,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.23767869 = fieldWeight in 6046, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6046)
      0.33333334 = coord(3/9)
    
    Abstract
    Draws attention to the efforts to define the terms 'concept' and 'term' and suggests a schedule of isolates for the term 'concept' under eight headings: 0. Concept; 1. Theoretical aspects; 2. Learning theory and Psychological aspects; 3. Origin, evolution, formation, construction; 4. Semantic aspects; 5.Terms and Terminology; 6. Usage and discipline-specific applications; and 7. Concepts and ISAR systems. The schedule also includes about 150 aspects/isolate terms related to 'concept' along with the name of the authors who have used them. The schedule is intended to help in identifying the various aspects of a concept with the help of the terms used for them. These aspects may guide to some extent, in dissecting and seeing the social science concepts from various point of views
  3. Thiel, C.: ¬Der klassische und der moderne Begriff des Begriffs : Gedanken zur Geschichte der Begriffsbildung in den exakten Wissenschaften (1994) 0.03
    0.028684944 = product of:
      0.08605483 = sum of:
        0.041947264 = weight(_text_:applications in 7868) [ClassicSimilarity], result of:
          0.041947264 = score(doc=7868,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 7868, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=7868)
        0.023667734 = weight(_text_:of in 7868) [ClassicSimilarity], result of:
          0.023667734 = score(doc=7868,freq=40.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.38633084 = fieldWeight in 7868, product of:
              6.3245554 = tf(freq=40.0), with freq of:
                40.0 = termFreq=40.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=7868)
        0.020439833 = weight(_text_:systems in 7868) [ClassicSimilarity], result of:
          0.020439833 = score(doc=7868,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 7868, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=7868)
      0.33333334 = coord(3/9)
    
    Abstract
    Up to the present day, difficulties have confronted all attempts at establishing a theory of concepts that would comprise the various kinds of concept-formation in the disciplines of the spectrum of sciences. Not a few philosophical dictionaries, under the entry 'concept', still offer doctrinies which were current far back in the history of philosophy and have little in coomon with concept-formations in the sciences today. The paper aims at an improvement in this situation. After a sketch of the 'classical' notion of concept, already developed in antiquity (essentially a logic of 'classification', although 'class-formation' in tis present understanding had not yet been conceived), the canonical modern doctrine of concepts is outlined. With an eye to application in the exact sciences, it is shown how in the nineteenth century the view of concept as an additive complex of characteristics yields to a functional approach systematized, in the last quarter of the century, by classical quantificational logic. Almost simultaneously, Mach, Frege, Peano, Weyl and others set out to shape the modern theory of abstraction. It is these two theories that today permit philosophers of science not only to deal with functional processes of concept-formation but also to represent in a formally coorect manner metalinguistic propositions about concepts and their properties. Thus it seems that the fundamental tasks of a modern theory of concept have finally been taken care of
    Source
    Information systems and data analysis: prospects - foundations - applications. Proc. of the 17th Annual Conference of the Gesellschaft für Klassifikation, Kaiserslautern, March 3-5, 1993. Ed.: H.-H. Bock et al
  4. Nelson, S.J.: From meaning to term : semantic locality in the UMLS metathesaurus (1992) 0.03
    0.02636355 = product of:
      0.118635975 = sum of:
        0.10067343 = weight(_text_:applications in 5611) [ClassicSimilarity], result of:
          0.10067343 = score(doc=5611,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.5836958 = fieldWeight in 5611, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.09375 = fieldNorm(doc=5611)
        0.017962547 = weight(_text_:of in 5611) [ClassicSimilarity], result of:
          0.017962547 = score(doc=5611,freq=4.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2932045 = fieldWeight in 5611, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.09375 = fieldNorm(doc=5611)
      0.22222222 = coord(2/9)
    
    Source
    Assessing the value of medical informatics: Proc. of the 15th Annual Symposium on Computer Applications in Medical Care, Washington, DC, Nov.1991
  5. Khoo, C.; Myaeng, S.H.: Identifying semantic relations in text for information retrieval and information extraction (2002) 0.02
    0.023366287 = product of:
      0.10514829 = sum of:
        0.08718575 = weight(_text_:applications in 1197) [ClassicSimilarity], result of:
          0.08718575 = score(doc=1197,freq=6.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.5054954 = fieldWeight in 1197, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=1197)
        0.017962547 = weight(_text_:of in 1197) [ClassicSimilarity], result of:
          0.017962547 = score(doc=1197,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2932045 = fieldWeight in 1197, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1197)
      0.22222222 = coord(2/9)
    
    Abstract
    Automatic identification of semantic relations in text is a difficult problem, but is important for many applications. It has been used for relation matching in information retrieval to retrieve documents that contain not only the concepts but also the relations between concepts specified in the user's query. It is an integral part of information extraction-extracting from natural language text, facts or pieces of information related to a particular event or topic. Other potential applications are in the construction of relational thesauri (semantic networks of related concepts) and other kinds of knowledge bases, and in natural language processing applications such as machine translation and computer comprehension of text. This chapter examines the main methods used for identifying semantic relations automatically and their application in information retrieval and information extraction.
    Source
    The semantics of relationships: an interdisciplinary perspective. Eds: Green, R., C.A. Bean u. S.H. Myaeng
  6. Sowa, J.F.: Top-level ontological categories (1995) 0.02
    0.015256289 = product of:
      0.0686533 = sum of:
        0.022403233 = weight(_text_:of in 4743) [ClassicSimilarity], result of:
          0.022403233 = score(doc=4743,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.36569026 = fieldWeight in 4743, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=4743)
        0.046250064 = weight(_text_:systems in 4743) [ClassicSimilarity], result of:
          0.046250064 = score(doc=4743,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.38414678 = fieldWeight in 4743, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0625 = fieldNorm(doc=4743)
      0.22222222 = coord(2/9)
    
    Abstract
    Surveys ontological questions that arise in artificial intelligence, some of the answers that have been proposed by various philosophers, and an application of the philosophical analysis to the clarification of some current issues in artificial intelligence. Charles Sanders Peirce and Alfred North Whitehead have developed the most complete systems of categories. Their analyses suggest a basic structure of categories that can provide some guidelines for the design of artificial intelligence systems
    Source
    International journal of human-computer studies. 43(1995) nos.5/6, S.669-685
  7. Dahlberg, I.: On the theory of the concept (1979) 0.01
    0.014892921 = product of:
      0.067018144 = sum of:
        0.017962547 = weight(_text_:of in 1615) [ClassicSimilarity], result of:
          0.017962547 = score(doc=1615,freq=4.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2932045 = fieldWeight in 1615, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.09375 = fieldNorm(doc=1615)
        0.0490556 = weight(_text_:systems in 1615) [ClassicSimilarity], result of:
          0.0490556 = score(doc=1615,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.4074492 = fieldWeight in 1615, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.09375 = fieldNorm(doc=1615)
      0.22222222 = coord(2/9)
    
    Source
    Ordering systems for global information networks. Proc. of the 3rd Int. Study Conf. on Classification Research, Bombay 1975
  8. Hjoerland, B.: Concept theory (2009) 0.01
    0.014230624 = product of:
      0.06403781 = sum of:
        0.018332949 = weight(_text_:of in 3461) [ClassicSimilarity], result of:
          0.018332949 = score(doc=3461,freq=24.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2992506 = fieldWeight in 3461, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3461)
        0.045704857 = weight(_text_:systems in 3461) [ClassicSimilarity], result of:
          0.045704857 = score(doc=3461,freq=10.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.37961838 = fieldWeight in 3461, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3461)
      0.22222222 = coord(2/9)
    
    Abstract
    Concept theory is an extremely broad, interdisciplinary and complex field of research related to many deep fields with very long historical traditions without much consensus. However, information science and knowledge organization cannot avoid relating to theories of concepts. Knowledge organizing systems (e.g., classification systems, thesauri, and ontologies) should be understood as systems basically organizing concepts and their semantic relations. The same is the case with information retrieval systems. Different theories of concepts have different implications for how to construe, evaluate, and use such systems. Based on a post-Kuhnian view of paradigms, this article put forward arguments that the best understanding and classification of theories of concepts is to view and classify them in accordance with epistemological theories (empiricism, rationalism, historicism, and pragmatism). It is also argued that the historicist and pragmatist understandings of concepts are the most fruitful views and that this understanding may be part of a broader paradigm shift that is also beginning to take place in information science. The importance of historicist and pragmatic theories of concepts for information science is outlined.
    Footnote
    Vgl.: Szostak, R.: Comment on Hjørland's concept theory in: Journal of the American Society for Information Science and Technology. 61(2010) no.5, S. 1076-1077 und die Erwiderung darauf von B. Hjoerland (S.1078-1080)
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.8, S.1519-1536
  9. Dahlberg, I.: Zur Theorie des Begriffs (1974) 0.01
    0.013903585 = product of:
      0.06256613 = sum of:
        0.020082738 = weight(_text_:of in 1617) [ClassicSimilarity], result of:
          0.020082738 = score(doc=1617,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.32781258 = fieldWeight in 1617, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1617)
        0.042483397 = weight(_text_:systems in 1617) [ClassicSimilarity], result of:
          0.042483397 = score(doc=1617,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.35286134 = fieldWeight in 1617, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=1617)
      0.22222222 = coord(2/9)
    
    Abstract
    A concept is regarded as the common element of both classification systems and thesauri. Reality and knowledge are not represented by words or terms but by the meanings "behind" these tokens. A concept of, say, an object, a property of an object, a process, etc. is derived from verbal statements on these as subjects and may therefore be defined as the whole of true and possible predicates that can be collected on a given subject. It is from these predicates that the characteristics of the corresponding concepts can be derived. Common characteristics in different concepts lead to relationsbetween concepts, which relations in turn are factors for the formation of concept systems. Different kinds of relationships as well as different kinds of concepts are distinguished. It is pointed out that an orderly supply of the elements for propositions (informative statements) on new knowledge requires the construction and availability of such concept systems
  10. Svenonius, E.: Indexical contents (1982) 0.01
    0.013723786 = product of:
      0.061757036 = sum of:
        0.012701439 = weight(_text_:of in 27) [ClassicSimilarity], result of:
          0.012701439 = score(doc=27,freq=2.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.20732689 = fieldWeight in 27, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.09375 = fieldNorm(doc=27)
        0.0490556 = weight(_text_:systems in 27) [ClassicSimilarity], result of:
          0.0490556 = score(doc=27,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.4074492 = fieldWeight in 27, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.09375 = fieldNorm(doc=27)
      0.22222222 = coord(2/9)
    
    Source
    Universal classification I: subject analysis and ordering systems. Proc. of the 4th Int. Study Conf. on Classification research, Augsburg, 28.6.-2.7.1982. Ed.: I. Dahlberg
  11. Bonnevie, E.: Dretske's semantic information theory and meta-theories in library and information science (2001) 0.01
    0.013722025 = product of:
      0.06174911 = sum of:
        0.041947264 = weight(_text_:applications in 4484) [ClassicSimilarity], result of:
          0.041947264 = score(doc=4484,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 4484, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4484)
        0.019801848 = weight(_text_:of in 4484) [ClassicSimilarity], result of:
          0.019801848 = score(doc=4484,freq=28.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.32322758 = fieldWeight in 4484, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4484)
      0.22222222 = coord(2/9)
    
    Abstract
    This article presents the semantic information theory, formulated by the philosopher Fred I. Dretske, as a contribution to the discussion of metatheories and their practical implications in the field of library and information science. Dretske's theory is described in Knowledge and the flow of information. It is founded on mathematical communication theory but developed and elaborated into a cognitive, functionalistic theory, is individually oriented, and deals with the content of information. The topics are: the information process from perception to cognition, and how concept formation takes place in terms of digitisation. Other important issues are the concepts of information and knowledge, truth and meaning. Semantic information theory can be used as a frame of reference in order to explain, clarify and refute concepts currently used in library and information science, and as the basis for critical reviews of elements of the cognitive viewpoint in IR, primarily the notion of "potential information". The main contribution of the theory lies in a clarification of concepts, but there are still problems regarding the practical applications. More research is needed to combine philosophical discussions with the practice of information and library science.
    Source
    Journal of documentation. 57(2001) no.4, S.519-534
  12. Simoes, G.; Machado, L.; Gnoli, C.; Souza, R.: Can an ontologically-oriented KO do without concepts? (2020) 0.01
    0.012988836 = product of:
      0.05844976 = sum of:
        0.023762217 = weight(_text_:of in 4964) [ClassicSimilarity], result of:
          0.023762217 = score(doc=4964,freq=28.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.38787308 = fieldWeight in 4964, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4964)
        0.034687545 = weight(_text_:systems in 4964) [ClassicSimilarity], result of:
          0.034687545 = score(doc=4964,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.28811008 = fieldWeight in 4964, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=4964)
      0.22222222 = coord(2/9)
    
    Abstract
    The ontological approach in the development of KOS is an attempt to overcome the limitations of the traditional epistemological approach. Questions raise about the representation and organization of ontologically-oriented KO units, such as BFO universals or ILC phenomena. The study aims to compare the ontological approaches of BFO and ILC using a hermeneutic approach. We found that the differences between the units of the two systems are primarily due to the formal level of abstraction of BFO and the different organizations, namely the grouping of phenomena into ILC classes that represent complex compounds of entities in the BFO approach. In both systems the use of concepts is considered instrumental, although in the ILC they constitute the intersubjective component of the phenomena whereas in BFO they serve to access the entities of reality but are not part of them.
    Source
    Knowledge Organization at the Interface. Proceedings of the Sixteenth International ISKO Conference, 2020 Aalborg, Denmark. Ed.: M. Lykke et al
  13. Hjoerland, B.: Concepts, paradigms and knowledge organization (2010) 0.01
    0.012796753 = product of:
      0.05758539 = sum of:
        0.022897845 = weight(_text_:of in 3512) [ClassicSimilarity], result of:
          0.022897845 = score(doc=3512,freq=26.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.37376386 = fieldWeight in 3512, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3512)
        0.034687545 = weight(_text_:systems in 3512) [ClassicSimilarity], result of:
          0.034687545 = score(doc=3512,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.28811008 = fieldWeight in 3512, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=3512)
      0.22222222 = coord(2/9)
    
    Abstract
    It is argued that concepts are the building blocks of knowledge organizing systems (KOS). Objections to this view are considered and answers are provided. By implication the theory of concepts constitutes the foundation for knowledge organization (KO). The theory of concepts is understood as related to and derived from theories of knowledge. Different theories of knowledge such as empiricism, rationalism, historicism and pragmatism imply different theories of concepts. Such different epistemologies and their associated theories of concepts represent different methodological ideals which probably compete in all knowledge domains. Different approaches to KO are also in fundamental ways associated with different theories of concepts. The paper holds that the historicist and pragmatic theory of concept should be considered most valuable. By implication is it is necessary to know about competing theories in the fields being organized. A further implication of the pragmatic view is that the construction of a KOS must be understood as a way of participating in the discourses in the domain that is being represented.
    Source
    Paradigms and conceptual systems in knowledge organization: Proceedings of the Eleventh International ISKO Conference, 23-26 February 2010 Rome, Italy. Edited by Claudio Gnoli and Fulvio Mazzocchi
  14. Thellefsen, M.: ¬The dynamics of information representation and knowledge mediation (2006) 0.01
    0.010526687 = product of:
      0.04737009 = sum of:
        0.014666359 = weight(_text_:of in 170) [ClassicSimilarity], result of:
          0.014666359 = score(doc=170,freq=6.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.23940048 = fieldWeight in 170, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=170)
        0.03270373 = weight(_text_:systems in 170) [ClassicSimilarity], result of:
          0.03270373 = score(doc=170,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2716328 = fieldWeight in 170, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0625 = fieldNorm(doc=170)
      0.22222222 = coord(2/9)
    
    Abstract
    This paper present an alternative approach to knowledge organization based on semiotic reasoning. The semantic distance between domain specific terminology and KOS is analyzed by means of their different sign systems. It is argued that a faceted approach may provide the means needed to minimize the gap between knowledge domains and KOS.
    Source
    Knowledge organization for a global learning society: Proceedings of the 9th International ISKO Conference, 4-7 July 2006, Vienna, Austria. Hrsg.: G. Budin, C. Swertz u. K. Mitgutsch
  15. Garcia Marco, F.J.; Esteban Navarro, M.A.: On some contributions of the cognitive sciences and epistemology to a theory of classification (1993) 0.01
    0.010131279 = product of:
      0.045590755 = sum of:
        0.021062955 = weight(_text_:of in 5876) [ClassicSimilarity], result of:
          0.021062955 = score(doc=5876,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.34381276 = fieldWeight in 5876, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=5876)
        0.0245278 = weight(_text_:systems in 5876) [ClassicSimilarity], result of:
          0.0245278 = score(doc=5876,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2037246 = fieldWeight in 5876, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=5876)
      0.22222222 = coord(2/9)
    
    Abstract
    Intended is first of all a preliminary review of the implications that the new approaches to the theory of classification, mainly from cognitive psychology and epistemology may have for information work and research. As a secondary topic the scientific relations existing among information science, epistemology and the cognitive sciences are discussed. Classification is seen as a central activity in all daily and scientific activities, and, of course, of knowledge organization in information services. There is a mutual implication between classification and conceptualization, as the former moves in a natural way to the latter and the best result elaborated for classification is the concept. Research in concept theory is a need for a theory of classification. In this direction it is of outstanding importance to integrate the achievements of 'natural concept formation theory' (NCFT) as an alternative approach to conceptualization different from the traditional one of logicians and problem solving researchers. In conclusion both approaches are seen as being complementary: the NCFT approach being closer to the user and the logical one being more suitable for experts, including 'expert systems'
  16. Storms, G.; VanMechelen, I.; DeBoeck, P.: Structural-analysis of the intension and extension of semantic concepts (1994) 0.01
    0.009067817 = product of:
      0.040805176 = sum of:
        0.022227516 = weight(_text_:of in 2574) [ClassicSimilarity], result of:
          0.022227516 = score(doc=2574,freq=18.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.36282203 = fieldWeight in 2574, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2574)
        0.018577661 = product of:
          0.037155323 = sum of:
            0.037155323 = weight(_text_:22 in 2574) [ClassicSimilarity], result of:
              0.037155323 = score(doc=2574,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.2708308 = fieldWeight in 2574, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2574)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    A method (HICLAS, DeBoeck & Rosenberg, 1988) for studying the internal structure of semantic concepts is presented. The proposed method reveals the internal structure of the extension as well as the intesion of a concept, together with a correspondence relation that shows the mutual dependence of both structures. Its use is illustrated with the analysis of simple concepts (e.g. sports) and conjunctive concepts (e.g. birds that are also pets). The underlying structure that is revealed can be interpreted as a differentiation of the simple concepts studied and for conjunctive concepts the proposed method is able to extract non-inherited and emergent features (Hampton, 1988)
    Date
    22. 7.2000 19:17:40
    Source
    European journal of cognitive psychology. 6(1994) no.1, S.43-75
  17. Hjoerland, B.: Are relations in thesauri "context-free, definitional, and true in all possible worlds"? (2015) 0.01
    0.009053368 = product of:
      0.040740155 = sum of:
        0.011833867 = weight(_text_:of in 2033) [ClassicSimilarity], result of:
          0.011833867 = score(doc=2033,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.19316542 = fieldWeight in 2033, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2033)
        0.02890629 = weight(_text_:systems in 2033) [ClassicSimilarity], result of:
          0.02890629 = score(doc=2033,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.24009174 = fieldWeight in 2033, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2033)
      0.22222222 = coord(2/9)
    
    Abstract
    Much of the literature of information science and knowledge organization has accepted and built upon Elaine Svenonius's (2004) claim that "paradigmatic relationships are those that are context-free, definitional, and true in all possible worlds" (p. 583). At the same time, the literature demonstrates a common understanding that paradigmatic relations are the kinds of semantic relations used in thesauri and other knowledge organization systems (including equivalence relations, hierarchical relations, and associative relations). This understanding is problematic and harmful because it directs attention away from the empirical and contextual basis for knowledge-organizing systems. Whether A is a kind of X is certainly not context-free and definitional in empirical sciences or in much everyday information. Semantic relations are theory-dependent and, in biology, for example, a scientific revolution has taken place in which many relations have changed following the new taxonomic paradigm named "cladism." This biological example is not an exception, but the norm. Semantic relations including paradigmatic relations are not a priori but are dependent on subject knowledge, scientific findings, and paradigms. As long as information scientists and knowledge organizers isolate themselves from subject knowledge, knowledge organization cannot possibly progress.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.7, S.1367-1373
  18. Gerbé, O.; Mineau, G.W.; Keller, R.K.: Conceptual graphs, metamodelling, and notation of concepts : fundamental issues (2000) 0.01
    0.008907516 = product of:
      0.04008382 = sum of:
        0.015556021 = weight(_text_:of in 5078) [ClassicSimilarity], result of:
          0.015556021 = score(doc=5078,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.25392252 = fieldWeight in 5078, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=5078)
        0.0245278 = weight(_text_:systems in 5078) [ClassicSimilarity], result of:
          0.0245278 = score(doc=5078,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2037246 = fieldWeight in 5078, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=5078)
      0.22222222 = coord(2/9)
    
    Abstract
    Knowledge management, in particular corporate knowledge management, is a challenge companies and researchers have to meet. The conceptual graph formalism is a good candidate for the representation of corporate knowledge, and for the development of knowledge management systems. But many of the issues concerning the use of conceptual graphs as a metalanguage have not been worked out in detail. By introducing a function that maps higher level to lower level, this paper clarifies the metalevel semantics, notation and manipulation of concepts in the conceptual graph formalism. In addition, this function allows metamodeling activities to take place using the CG notation
  19. Besler, G.; Szulc, J.: Gottlob Frege's theory of definition as useful tool for knowledge organization : definition of 'context' - case study (2014) 0.01
    0.008710325 = product of:
      0.03919646 = sum of:
        0.025926704 = weight(_text_:of in 1440) [ClassicSimilarity], result of:
          0.025926704 = score(doc=1440,freq=48.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.42320424 = fieldWeight in 1440, product of:
              6.928203 = tf(freq=48.0), with freq of:
                48.0 = termFreq=48.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1440)
        0.013269759 = product of:
          0.026539518 = sum of:
            0.026539518 = weight(_text_:22 in 1440) [ClassicSimilarity], result of:
              0.026539518 = score(doc=1440,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.19345059 = fieldWeight in 1440, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1440)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    The aim of this paper is to analyze the Gottlob Frege's (1848-1925) theory of definition as a tool for knowledge organization. The objective was achieved by discussing the theory of definition including: the aims of definition, kinds of definition, condition of correct definition, what is undefinable. Frege indicated the following aims of a defining: (1) to introduce a new word, which has had no precise meaning until then (2) to explain the meaning of a word; (3) to catch a thought. We would like to present three kinds of definitions used by Frege: a contextual definition, a stipulative definition and a piecemeal definition. In the history of theory of definition Frege was the first to have formulated the condition of a correct definition. According to Frege not everything can be defined, what is logically simple cannot have a proper definition Usability of Frege's theory of definition is referred in the case study. Definitions that serve as an example are definitions of 'context'. The term 'context' is used in different situations and meanings in the field of knowledge organization. The paper is rounded by a discussion of how Frege's theory of definition can be useful for knowledge organization. To present G. Frege's theory of definition in view of the need for knowledge organization we shall start with different ranges of knowledge organization.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  20. Jouis, C.: Logic of relationships (2002) 0.01
    0.008208332 = product of:
      0.036937494 = sum of:
        0.023667734 = weight(_text_:of in 1204) [ClassicSimilarity], result of:
          0.023667734 = score(doc=1204,freq=40.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.38633084 = fieldWeight in 1204, product of:
              6.3245554 = tf(freq=40.0), with freq of:
                40.0 = termFreq=40.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1204)
        0.013269759 = product of:
          0.026539518 = sum of:
            0.026539518 = weight(_text_:22 in 1204) [ClassicSimilarity], result of:
              0.026539518 = score(doc=1204,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.19345059 = fieldWeight in 1204, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1204)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    A main goal of recent studies in semantics is to integrate into conceptual structures the models of representation used in linguistics, logic, and/or artificial intelligence. A fundamental problem resides in the need to structure knowledge and then to check the validity of constructed representations. We propose associating logical properties with relationships by introducing the relationships into a typed and functional system of specifcations. This makes it possible to compare conceptual representations against the relationships established between the concepts. The mandatory condition to validate such a conceptual representation is consistency. The semantic system proposed is based an a structured set of semantic primitives-types, relations, and properties-based an a global model of language processing, Applicative and Cognitive Grammar (ACG) (Desc16s, 1990), and an extension of this model to terminology (Jouis & Mustafa 1995, 1996, 1997). The ACG postulates three levels of representation of languages, including a cognitive level. At this level, the meanings of lexical predicates are represented by semantic cognitive schemes. From this perspective, we propose a set of semantic concepts, which defines an organized system of meanings. Relations are part of a specification network based an a general terminological scheure (i.e., a coherent system of meanings of relations). In such a system, a specific relation may be characterized as to its: (1) functional type (the semantic type of arguments of the relation); (2) algebraic properties (reflexivity, symmetry, transitivity, etc.); and (3) combinatorial relations with other entities in the same context (for instance, the part of the text where a concept is defined).
    Date
    1.12.2002 11:12:22
    Source
    The semantics of relationships: an interdisciplinary perspective. Eds: Green, R., C.A. Bean u. S.H. Myaeng

Authors

Languages

  • e 63
  • d 7
  • m 6
  • ru 2
  • nl 1
  • pt 1
  • More… Less…