Search (194 results, page 1 of 10)

  • × theme_ss:"Computerlinguistik"
  • × year_i:[1990 TO 2000}
  1. Haas, S.W.: Natural language processing : toward large-scale, robust systems (1996) 0.08
    0.080591865 = product of:
      0.1813317 = sum of:
        0.09491582 = weight(_text_:applications in 7415) [ClassicSimilarity], result of:
          0.09491582 = score(doc=7415,freq=4.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.5503137 = fieldWeight in 7415, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0625 = fieldNorm(doc=7415)
        0.018934188 = weight(_text_:of in 7415) [ClassicSimilarity], result of:
          0.018934188 = score(doc=7415,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.3090647 = fieldWeight in 7415, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=7415)
        0.046250064 = weight(_text_:systems in 7415) [ClassicSimilarity], result of:
          0.046250064 = score(doc=7415,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.38414678 = fieldWeight in 7415, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0625 = fieldNorm(doc=7415)
        0.021231614 = product of:
          0.042463228 = sum of:
            0.042463228 = weight(_text_:22 in 7415) [ClassicSimilarity], result of:
              0.042463228 = score(doc=7415,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.30952093 = fieldWeight in 7415, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=7415)
          0.5 = coord(1/2)
      0.44444445 = coord(4/9)
    
    Abstract
    State of the art review of natural language processing updating an earlier review published in ARIST 22(1987). Discusses important developments that have allowed for significant advances in the field of natural language processing: materials and resources; knowledge based systems and statistical approaches; and a strong emphasis on evaluation. Reviews some natural language processing applications and common problems still awaiting solution. Considers closely related applications such as language generation and th egeneration phase of machine translation which face the same problems as natural language processing. Covers natural language methodologies for information retrieval only briefly
    Source
    Annual review of information science and technology. 31(1996), S.83-119
  2. Lonsdale, D.; Mitamura, T.; Nyberg, E.: Acquisition of large lexicons for practical knowledge-based MT (1994/95) 0.08
    0.07804743 = product of:
      0.17560673 = sum of:
        0.07118686 = weight(_text_:applications in 7409) [ClassicSimilarity], result of:
          0.07118686 = score(doc=7409,freq=4.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.41273528 = fieldWeight in 7409, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=7409)
        0.021062955 = weight(_text_:of in 7409) [ClassicSimilarity], result of:
          0.021062955 = score(doc=7409,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.34381276 = fieldWeight in 7409, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=7409)
        0.042483397 = weight(_text_:systems in 7409) [ClassicSimilarity], result of:
          0.042483397 = score(doc=7409,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.35286134 = fieldWeight in 7409, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=7409)
        0.040873505 = weight(_text_:software in 7409) [ClassicSimilarity], result of:
          0.040873505 = score(doc=7409,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.2629875 = fieldWeight in 7409, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.046875 = fieldNorm(doc=7409)
      0.44444445 = coord(4/9)
    
    Abstract
    Although knowledge based MT systems have the potential to achieve high translation accuracy, each successful application system requires a large amount of hand coded lexical knowledge. Systems like KBMT-89 and its descendants have demonstarted how knowledge based translation can produce good results in technical domains with tractable domain semantics. Nevertheless, the magnitude of the development task for large scale applications with 10s of 1000s of of domain concepts precludes a purely hand crafted approach. The current challenge for the next generation of knowledge based MT systems is to utilize online textual resources and corpus analysis software in order to automate the most laborious aspects of the knowledge acquisition process. This partial automation can in turn maximize the productivity of human knowledge engineers and help to make large scale applications of knowledge based MT an viable approach. Discusses the corpus based knowledge acquisition methodology used in KANT, a knowledge based translation system for multilingual document production. This methodology can be generalized beyond the KANT interlinhua approach for use with any system that requires similar kinds of knowledge
  3. Czejdo. B.D.; Tucci, R.P.: ¬A dataflow graphical language for database applications (1994) 0.07
    0.06587547 = product of:
      0.19762641 = sum of:
        0.118644774 = weight(_text_:applications in 559) [ClassicSimilarity], result of:
          0.118644774 = score(doc=559,freq=4.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.68789214 = fieldWeight in 559, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.078125 = fieldNorm(doc=559)
        0.021169065 = weight(_text_:of in 559) [ClassicSimilarity], result of:
          0.021169065 = score(doc=559,freq=8.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.34554482 = fieldWeight in 559, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.078125 = fieldNorm(doc=559)
        0.05781258 = weight(_text_:systems in 559) [ClassicSimilarity], result of:
          0.05781258 = score(doc=559,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.48018348 = fieldWeight in 559, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.078125 = fieldNorm(doc=559)
      0.33333334 = coord(3/9)
    
    Abstract
    Discusses a graphical language for information retrieval and processing. A lot of recent activity has occured in the area of improving access to database systems. However, current results are restricted to simple interfacing of database systems. Proposes a graphical language for specifying complex applications
    Source
    CIT - Journal of computing and information technology. 2(1994) no.1, S.39-50
  4. Liddy, E.D.: Natural language processing for information retrieval and knowledge discovery (1998) 0.06
    0.05638929 = product of:
      0.1268759 = sum of:
        0.05872617 = weight(_text_:applications in 2345) [ClassicSimilarity], result of:
          0.05872617 = score(doc=2345,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.34048924 = fieldWeight in 2345, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2345)
        0.020956306 = weight(_text_:of in 2345) [ClassicSimilarity], result of:
          0.020956306 = score(doc=2345,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.34207192 = fieldWeight in 2345, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2345)
        0.028615767 = weight(_text_:systems in 2345) [ClassicSimilarity], result of:
          0.028615767 = score(doc=2345,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.23767869 = fieldWeight in 2345, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2345)
        0.018577661 = product of:
          0.037155323 = sum of:
            0.037155323 = weight(_text_:22 in 2345) [ClassicSimilarity], result of:
              0.037155323 = score(doc=2345,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.2708308 = fieldWeight in 2345, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2345)
          0.5 = coord(1/2)
      0.44444445 = coord(4/9)
    
    Abstract
    Natural language processing (NLP) is a powerful technology for the vital tasks of information retrieval (IR) and knowledge discovery (KD) which, in turn, feed the visualization systems of the present and future and enable knowledge workers to focus more of their time on the vital tasks of analysis and prediction
    Date
    22. 9.1997 19:16:05
    Imprint
    Urbana-Champaign, IL : Illinois University at Urbana-Champaign, Graduate School of Library and Information Science
    Source
    Visualizing subject access for 21st century information resources: Papers presented at the 1997 Clinic on Library Applications of Data Processing, 2-4 Mar 1997, Graduate School of Library and Information Science, University of Illinois at Urbana-Champaign. Ed.: P.A. Cochrane et al
  5. Rahmstorf, G.: Compositional semantics and concept representation (1991) 0.04
    0.044702347 = product of:
      0.13410704 = sum of:
        0.06711562 = weight(_text_:applications in 6673) [ClassicSimilarity], result of:
          0.06711562 = score(doc=6673,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.38913056 = fieldWeight in 6673, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0625 = fieldNorm(doc=6673)
        0.020741362 = weight(_text_:of in 6673) [ClassicSimilarity], result of:
          0.020741362 = score(doc=6673,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.33856338 = fieldWeight in 6673, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=6673)
        0.046250064 = weight(_text_:systems in 6673) [ClassicSimilarity], result of:
          0.046250064 = score(doc=6673,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.38414678 = fieldWeight in 6673, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0625 = fieldNorm(doc=6673)
      0.33333334 = coord(3/9)
    
    Abstract
    Concept systems are not only used in the sciences, but also in secondary supporting fields, e.g. in libraries, in documentation, in terminology and increasingly also in knowledge representation. It is suggested that the development of concept systems be based on semantic analysis. Methodical steps are described. The principle of morpho-syntactic composition in semantics will serve as a theoretical basis for the suggested method. The implications and limitations of this principle will be demonstrated
    Source
    Classification, data analysis, and knowledge organization: models and methods with applications. Proc. of the 14th annual conf. of the Gesellschaft für Klassifikation, Univ. of Marburg, 12.-14.3.1990. Ed.: H.-H. Bock u. P. Ihm
  6. Croft, W.B.: Knowledge-based and statistical approaches to text retrieval (1993) 0.04
    0.044364154 = product of:
      0.1996387 = sum of:
        0.13423124 = weight(_text_:applications in 7863) [ClassicSimilarity], result of:
          0.13423124 = score(doc=7863,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.7782611 = fieldWeight in 7863, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.125 = fieldNorm(doc=7863)
        0.06540746 = weight(_text_:systems in 7863) [ClassicSimilarity], result of:
          0.06540746 = score(doc=7863,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.5432656 = fieldWeight in 7863, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.125 = fieldNorm(doc=7863)
      0.22222222 = coord(2/9)
    
    Source
    IEEE expert intelligent systems and their applications. 8(1993) no.2, S.8-12
  7. Hutchins, J.: ¬A new era in machine translation research (1995) 0.04
    0.04103616 = product of:
      0.12310848 = sum of:
        0.05872617 = weight(_text_:applications in 3846) [ClassicSimilarity], result of:
          0.05872617 = score(doc=3846,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.34048924 = fieldWeight in 3846, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3846)
        0.014818345 = weight(_text_:of in 3846) [ClassicSimilarity], result of:
          0.014818345 = score(doc=3846,freq=8.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.24188137 = fieldWeight in 3846, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3846)
        0.049563963 = weight(_text_:systems in 3846) [ClassicSimilarity], result of:
          0.049563963 = score(doc=3846,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.41167158 = fieldWeight in 3846, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3846)
      0.33333334 = coord(3/9)
    
    Abstract
    In the 1980s the dominant framework for machine translation research was the approach based on essentially linguistic rules. Describes the new approaches of the 1990s which are based on large text corpora, the alignment of bilingual texts, the use of statistical methods and the use of parallel corpora for example based translation. Most systems are now designed for specialized applications, such as restricted to controlled languages, to a sublanguage or to s specific domain, to a perticular organization or to a particular user type. In addition, the field is widening with research under way on speech translation, on systems for monolingual users not knowing target languages, on systems for multilingual generation directly from structured databases, and in general for uses other than those traditionally associated with translation services
  8. Mustafa el Hadi, W.: Automatic term recognition & extraction tools : examining the new interfaces and their effective communication role in LSP discourse (1998) 0.04
    0.03982502 = product of:
      0.11947505 = sum of:
        0.050336715 = weight(_text_:applications in 67) [ClassicSimilarity], result of:
          0.050336715 = score(doc=67,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2918479 = fieldWeight in 67, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=67)
        0.020082738 = weight(_text_:of in 67) [ClassicSimilarity], result of:
          0.020082738 = score(doc=67,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.32781258 = fieldWeight in 67, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=67)
        0.0490556 = weight(_text_:systems in 67) [ClassicSimilarity], result of:
          0.0490556 = score(doc=67,freq=8.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.4074492 = fieldWeight in 67, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=67)
      0.33333334 = coord(3/9)
    
    Abstract
    In this paper we will discuss the possibility of reorienting NLP (Natural Language Processing) systems towards the extraction, not only of terms and their semantic relations, but also towards a variety of other uses; the storage, accessing and retrieving of Language for Special Purposes (LSPZ-20) lexical combinations, the provision of contexts and other information on terms through the integration of more interfaces to terminological data-bases, term managing systems and existing NLP systems. The aim of making such interfaces available is to increase the efficiency of the systems and improve the terminology-oriented text analysis. Since automatic term extraction is the backbone of many applications such as machine translation (MT), indexing, technical writing, thesaurus construction and knowledge representation developments in this area will have asignificant impact
    Source
    Structures and relations in knowledge organization: Proceedings of the 5th International ISKO-Conference, Lille, 25.-29.8.1998. Ed.: W. Mustafa el Hadi et al
  9. Basili, R.; Pazienza, M.T.; Velardi, P.: ¬An empirical symbolic approach to natural language processing (1996) 0.04
    0.035760477 = product of:
      0.107281424 = sum of:
        0.06711562 = weight(_text_:applications in 6753) [ClassicSimilarity], result of:
          0.06711562 = score(doc=6753,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.38913056 = fieldWeight in 6753, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0625 = fieldNorm(doc=6753)
        0.018934188 = weight(_text_:of in 6753) [ClassicSimilarity], result of:
          0.018934188 = score(doc=6753,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.3090647 = fieldWeight in 6753, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=6753)
        0.021231614 = product of:
          0.042463228 = sum of:
            0.042463228 = weight(_text_:22 in 6753) [ClassicSimilarity], result of:
              0.042463228 = score(doc=6753,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.30952093 = fieldWeight in 6753, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6753)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Describes and evaluates the results of a large scale lexical learning system, ARISTO-LEX, that uses a combination of probabilisitc and knowledge based methods for the acquisition of selectional restrictions of words in sublanguages. Presents experimental data obtained from different corpora in different doamins and languages, and shows that the acquired lexical data not only have practical applications in natural language processing, but they are useful for a comparative analysis of sublanguages
    Date
    6. 3.1997 16:22:15
  10. Ingenerf, J.: Disambiguating lexical meaning : conceptual meta-modelling as a means of controlling semantic language analysis (1994) 0.03
    0.033153586 = product of:
      0.09946075 = sum of:
        0.050336715 = weight(_text_:applications in 2572) [ClassicSimilarity], result of:
          0.050336715 = score(doc=2572,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2918479 = fieldWeight in 2572, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=2572)
        0.024596233 = weight(_text_:of in 2572) [ClassicSimilarity], result of:
          0.024596233 = score(doc=2572,freq=30.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.4014868 = fieldWeight in 2572, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2572)
        0.0245278 = weight(_text_:systems in 2572) [ClassicSimilarity], result of:
          0.0245278 = score(doc=2572,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2037246 = fieldWeight in 2572, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=2572)
      0.33333334 = coord(3/9)
    
    Abstract
    A formal terminology consists of a set of conceptual definitions for the semantical reconstruction of a vocabulary on an intensional level of description. The marking of comparatively abstract concepts as semantic categories and their relational positioning on a meta-level is shown to be instrumental in adapting the conceptual design to domain-specific characteristics. Such a meta-model implies that concepts subsumed by categories may share their compositional possibilities as regards the construction of complex structures. Our approach to language processing leads to an automatic derivation of contextual semantic information about the linguistic expressions under review. This information is encoded by means of values of certain attributes defined in a feature-based grammatical framework. A standard process controlling grammatical analysis, the unification of feature structures, is used for its evaluation. One important example for the usefulness of this approach is the disamgiguation of lexical meaning
    Source
    Information systems and data analysis: prospects - foundations - applications. Proc. of the 17th Annual Conference of the Gesellschaft für Klassifikation, Kaiserslautern, March 3-5, 1993. Ed.: H.-H. Bock et al
  11. Godby, J.: WordSmith research project bridges gap between tokens and indexes (1998) 0.03
    0.03114156 = product of:
      0.09342468 = sum of:
        0.0074091726 = weight(_text_:of in 4729) [ClassicSimilarity], result of:
          0.0074091726 = score(doc=4729,freq=2.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.120940685 = fieldWeight in 4729, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4729)
        0.06743785 = weight(_text_:software in 4729) [ClassicSimilarity], result of:
          0.06743785 = score(doc=4729,freq=4.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.43390724 = fieldWeight in 4729, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4729)
        0.018577661 = product of:
          0.037155323 = sum of:
            0.037155323 = weight(_text_:22 in 4729) [ClassicSimilarity], result of:
              0.037155323 = score(doc=4729,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.2708308 = fieldWeight in 4729, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4729)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Reports on an OCLC natural language processing research project to develop methods for identifying terminology in unstructured electronic text, especially material associated with new cultural trends and emerging subjects. Current OCLC production software can only identify single words as indexable terms in full text documents, thus a major goal of the WordSmith project is to develop software that can automatically identify and intelligently organize phrases for uses in database indexes. By analyzing user terminology from local newspapers in the USA, the latest cultural trends and technical developments as well as personal and geographic names have been drawm out. Notes that this new vocabulary can also be mapped into reference works
    Source
    OCLC newsletter. 1998, no.234, Jul/Aug, S.22-24
  12. Rahmstorf, G.: Information retrieval using conceptual representations of phrases (1994) 0.03
    0.030942356 = product of:
      0.09282707 = sum of:
        0.050336715 = weight(_text_:applications in 7862) [ClassicSimilarity], result of:
          0.050336715 = score(doc=7862,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2918479 = fieldWeight in 7862, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=7862)
        0.017962547 = weight(_text_:of in 7862) [ClassicSimilarity], result of:
          0.017962547 = score(doc=7862,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2932045 = fieldWeight in 7862, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=7862)
        0.0245278 = weight(_text_:systems in 7862) [ClassicSimilarity], result of:
          0.0245278 = score(doc=7862,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2037246 = fieldWeight in 7862, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=7862)
      0.33333334 = coord(3/9)
    
    Abstract
    The information retrieval problem is described starting from an analysis of the concepts 'user's information request' and 'information offerings of texts'. It is shown that natural language phrases are a more adequate medium for expressing information requests and information offerings than character string based query and indexing languages complemented by Boolean oprators. The phrases must be represented as concepts to reach a language invariant level for rule based relevance analysis. The special type of representation called advanced thesaurus is used for the semantic representation of natural language phrases and for relevance processing. The analysis of the retrieval problem leads to a symmetric system structure
    Source
    Information systems and data analysis: prospects - foundations - applications. Proc. of the 17th Annual Conference of the Gesellschaft für Klassifikation, Kaiserslautern, March 3-5, 1993. Ed.: H.-H. Bock et al
  13. Hodgson, J.P.E.: Knowledge representation and language in AI (1991) 0.03
    0.030681659 = product of:
      0.09204497 = sum of:
        0.014968789 = weight(_text_:of in 1529) [ClassicSimilarity], result of:
          0.014968789 = score(doc=1529,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.24433708 = fieldWeight in 1529, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1529)
        0.02890629 = weight(_text_:systems in 1529) [ClassicSimilarity], result of:
          0.02890629 = score(doc=1529,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.24009174 = fieldWeight in 1529, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1529)
        0.048169892 = weight(_text_:software in 1529) [ClassicSimilarity], result of:
          0.048169892 = score(doc=1529,freq=4.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.30993375 = fieldWeight in 1529, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1529)
      0.33333334 = coord(3/9)
    
    Abstract
    The aim of this book is to highlight the relationship between knowledge representation and language in artificial intelligence, and in particular on the way in which the choice of representation influences the language used to discuss a problem - and vice versa. Opening with a discussion of knowledge representation methods, and following this with a look at reasoning methods, the author begins to make his case for the intimate relationship between language and representation. He shows how each representation method fits particularly well with some reasoning methods and less so with others, using specific languages as examples. The question of representation change, an important and complex issue about which very little is known, is addressed. Dr Hodgson gathers together recent work on problem solving, showing how, in some cases, it has been possible to use representation changes to recast problems into a language that makes them easier to solve. The author maintains throughout that the relationships that this book explores lie at the heart of the construction of large systems, examining a number of the current large AI systems from the viewpoint of representation and language to prove his point.
    Classification
    ST 285 Informatik / Monographien / Software und -entwicklung / Computer supported cooperative work (CSCW), Groupware
    RVK
    ST 285 Informatik / Monographien / Software und -entwicklung / Computer supported cooperative work (CSCW), Groupware
  14. Beardon, C.; Lumsden, D.; Holmes, G.: Natural language and computational linguistics (1991) 0.03
    0.02636355 = product of:
      0.118635975 = sum of:
        0.10067343 = weight(_text_:applications in 645) [ClassicSimilarity], result of:
          0.10067343 = score(doc=645,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.5836958 = fieldWeight in 645, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.09375 = fieldNorm(doc=645)
        0.017962547 = weight(_text_:of in 645) [ClassicSimilarity], result of:
          0.017962547 = score(doc=645,freq=4.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2932045 = fieldWeight in 645, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.09375 = fieldNorm(doc=645)
      0.22222222 = coord(2/9)
    
    COMPASS
    Computers / Use of / Natural language
    Series
    Ellis Horwood series in computers and their applications
    Subject
    Computers / Use of / Natural language
  15. Pollitt, A.S.; Ellis, G.: Multilingual access to document databases (1993) 0.03
    0.025467023 = product of:
      0.07640107 = sum of:
        0.010999769 = weight(_text_:of in 1302) [ClassicSimilarity], result of:
          0.010999769 = score(doc=1302,freq=6.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.17955035 = fieldWeight in 1302, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1302)
        0.0245278 = weight(_text_:systems in 1302) [ClassicSimilarity], result of:
          0.0245278 = score(doc=1302,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2037246 = fieldWeight in 1302, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=1302)
        0.040873505 = weight(_text_:software in 1302) [ClassicSimilarity], result of:
          0.040873505 = score(doc=1302,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.2629875 = fieldWeight in 1302, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.046875 = fieldNorm(doc=1302)
      0.33333334 = coord(3/9)
    
    Abstract
    This paper examines the reasons why approaches to facilitate document retrieval which apply AI (Artificial Intelligence) or Expert Systems techniques, relying on so-called "natural language" query statements from the end-user will result in sub-optimal solutions. It does so by reflecting on the nature of language and the fundamental problems in document retrieval. Support is given to the work of thesaurus builders and indexers with illustrations of how their work may be utilised in a generally applicable computer-based document retrieval system using Multilingual MenUSE software. The EuroMenUSE interface providing multilingual document access to EPOQUE, the European Parliament's Online Query System is described.
  16. Sokirko, A.V.: Programnaya realizatsiya Russkogo abshchesemanticheskogo slovarya (1997) 0.02
    0.024735238 = product of:
      0.111308575 = sum of:
        0.014968789 = weight(_text_:of in 2258) [ClassicSimilarity], result of:
          0.014968789 = score(doc=2258,freq=4.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.24433708 = fieldWeight in 2258, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.078125 = fieldNorm(doc=2258)
        0.096339785 = weight(_text_:software in 2258) [ClassicSimilarity], result of:
          0.096339785 = score(doc=2258,freq=4.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.6198675 = fieldWeight in 2258, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.078125 = fieldNorm(doc=2258)
      0.22222222 = coord(2/9)
    
    Abstract
    Discusses the Dolphi2 for Windows software which has been used for the development of the Russian Semantic Dictionay ROSS. Although not a relational database as such, Dolphi actively uses standard objects of relational databases
    Footnote
    Übers. des Titels: Software for the Russian Semantic Dictionary
  17. Blanchon, E.: Terminology software : pt.1.2 (1995) 0.02
    0.024486635 = product of:
      0.110189855 = sum of:
        0.014818345 = weight(_text_:of in 6408) [ClassicSimilarity], result of:
          0.014818345 = score(doc=6408,freq=2.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.24188137 = fieldWeight in 6408, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.109375 = fieldNorm(doc=6408)
        0.09537151 = weight(_text_:software in 6408) [ClassicSimilarity], result of:
          0.09537151 = score(doc=6408,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.61363745 = fieldWeight in 6408, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.109375 = fieldNorm(doc=6408)
      0.22222222 = coord(2/9)
    
    Abstract
    List of programs
  18. Conceptual structures : theory, tools and applications. 6th International Conference on Conceptual Structures, ICCS'98, Montpellier, France, August, 10-12, 1998, Proceedings (1998) 0.02
    0.023753524 = product of:
      0.10689086 = sum of:
        0.09491582 = weight(_text_:applications in 1378) [ClassicSimilarity], result of:
          0.09491582 = score(doc=1378,freq=4.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.5503137 = fieldWeight in 1378, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0625 = fieldNorm(doc=1378)
        0.011975031 = weight(_text_:of in 1378) [ClassicSimilarity], result of:
          0.011975031 = score(doc=1378,freq=4.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.19546966 = fieldWeight in 1378, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=1378)
      0.22222222 = coord(2/9)
    
    Abstract
    This book constitutes the refereed proceedings of the 6th International Conference on Conceptual Structures, ICCS'98, held in Montpellier, France, in August 1998. The 20 revised full papers and 10 research reports presented were carefully selected from a total of 66 submissions; also included are three invited contributions. The volume is divided in topical sections on knowledge representation and knowledge engineering, tools, conceptual graphs and other models, relationships with logics, algorithms and complexity, natural language processing, and applications.
  19. Rahmstorf, G.: Concept structures for large vocabularies (1998) 0.02
    0.022471227 = product of:
      0.06741368 = sum of:
        0.016802425 = weight(_text_:of in 75) [ClassicSimilarity], result of:
          0.016802425 = score(doc=75,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2742677 = fieldWeight in 75, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=75)
        0.034687545 = weight(_text_:systems in 75) [ClassicSimilarity], result of:
          0.034687545 = score(doc=75,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.28811008 = fieldWeight in 75, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=75)
        0.015923709 = product of:
          0.031847417 = sum of:
            0.031847417 = weight(_text_:22 in 75) [ClassicSimilarity], result of:
              0.031847417 = score(doc=75,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.23214069 = fieldWeight in 75, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=75)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    A technology is described which supports the acquisition, visualisation and manipulation of large vocabularies with associated structures. It is used for dictionary production, terminology data bases, thesauri, library classification systems etc. Essential features of the technology are a lexicographic user interface, variable word description, unlimited list of word readings, a concept language, automatic transformations of formulas into graphic structures, structure manipulation operations and retransformation into formulas. The concept language includes notations for undefined concepts. The structure of defined concepts can be constructed interactively. The technology supports the generation of large vocabularies with structures representing word senses. Concept structures and ordering systems for indexing and retrieval can be constructed separately and connected by associating relations.
    Date
    30.12.2001 19:01:22
    Source
    Structures and relations in knowledge organization: Proceedings of the 5th International ISKO-Conference, Lille, 25.-29.8.1998. Ed.: W. Mustafa el Hadi et al
  20. Kay, M.: ¬The proper place of men and machines in language translation (1997) 0.02
    0.02226542 = product of:
      0.06679626 = sum of:
        0.01960283 = weight(_text_:of in 1178) [ClassicSimilarity], result of:
          0.01960283 = score(doc=1178,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.31997898 = fieldWeight in 1178, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1178)
        0.028615767 = weight(_text_:systems in 1178) [ClassicSimilarity], result of:
          0.028615767 = score(doc=1178,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.23767869 = fieldWeight in 1178, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1178)
        0.018577661 = product of:
          0.037155323 = sum of:
            0.037155323 = weight(_text_:22 in 1178) [ClassicSimilarity], result of:
              0.037155323 = score(doc=1178,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.2708308 = fieldWeight in 1178, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1178)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Machine translation stands no chance of filling actual needs for translation because, although there has been progress in relevant areas of computer science, advance in linguistics have not touched the core problems. Cooperative man-machine systems need to be developed, Proposes a translator's amanuensis, incorporating into a word processor some simple facilities peculiar to translation. Gradual enhancements of such a system could lead to the original goal of machine translation
    Content
    Reprint of a Xerox PARC Working Paper which appeared in 1980
    Date
    31. 7.1996 9:22:19
    Footnote
    Contribution to a special issue devoted to the theme of new tools for human translators

Languages

Types

  • a 162
  • m 19
  • s 11
  • el 6
  • d 2
  • b 1
  • n 1
  • r 1
  • More… Less…

Classifications