Search (305 results, page 1 of 16)

  • × theme_ss:"Literaturübersicht"
  1. Amba, S.: Expert systems : a literature review (1988) 0.10
    0.09906951 = product of:
      0.22290641 = sum of:
        0.010584532 = weight(_text_:of in 1099) [ClassicSimilarity], result of:
          0.010584532 = score(doc=1099,freq=2.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.17277241 = fieldWeight in 1099, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.078125 = fieldNorm(doc=1099)
        0.040879667 = weight(_text_:systems in 1099) [ClassicSimilarity], result of:
          0.040879667 = score(doc=1099,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.339541 = fieldWeight in 1099, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.078125 = fieldNorm(doc=1099)
        0.068122506 = weight(_text_:software in 1099) [ClassicSimilarity], result of:
          0.068122506 = score(doc=1099,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.43831247 = fieldWeight in 1099, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.078125 = fieldNorm(doc=1099)
        0.103319705 = product of:
          0.20663941 = sum of:
            0.20663941 = weight(_text_:packages in 1099) [ClassicSimilarity], result of:
              0.20663941 = score(doc=1099,freq=2.0), product of:
                0.2706874 = queryWeight, product of:
                  6.9093957 = idf(docFreq=119, maxDocs=44218)
                  0.03917671 = queryNorm
                0.7633876 = fieldWeight in 1099, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  6.9093957 = idf(docFreq=119, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1099)
          0.5 = coord(1/2)
      0.44444445 = coord(4/9)
    
    Abstract
    This review covers (1) the literature published in 1985, 1986 and 1987. It is, however, not a comprehensive review. However, two papers published in 1983 and 1984 have been included. (2) It covers only library and information science literature. (3) It does not include descriptions of commercial software packages
  2. Haas, S.W.: Natural language processing : toward large-scale, robust systems (1996) 0.08
    0.080591865 = product of:
      0.1813317 = sum of:
        0.09491582 = weight(_text_:applications in 7415) [ClassicSimilarity], result of:
          0.09491582 = score(doc=7415,freq=4.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.5503137 = fieldWeight in 7415, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0625 = fieldNorm(doc=7415)
        0.018934188 = weight(_text_:of in 7415) [ClassicSimilarity], result of:
          0.018934188 = score(doc=7415,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.3090647 = fieldWeight in 7415, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=7415)
        0.046250064 = weight(_text_:systems in 7415) [ClassicSimilarity], result of:
          0.046250064 = score(doc=7415,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.38414678 = fieldWeight in 7415, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0625 = fieldNorm(doc=7415)
        0.021231614 = product of:
          0.042463228 = sum of:
            0.042463228 = weight(_text_:22 in 7415) [ClassicSimilarity], result of:
              0.042463228 = score(doc=7415,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.30952093 = fieldWeight in 7415, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=7415)
          0.5 = coord(1/2)
      0.44444445 = coord(4/9)
    
    Abstract
    State of the art review of natural language processing updating an earlier review published in ARIST 22(1987). Discusses important developments that have allowed for significant advances in the field of natural language processing: materials and resources; knowledge based systems and statistical approaches; and a strong emphasis on evaluation. Reviews some natural language processing applications and common problems still awaiting solution. Considers closely related applications such as language generation and th egeneration phase of machine translation which face the same problems as natural language processing. Covers natural language methodologies for information retrieval only briefly
    Source
    Annual review of information science and technology. 31(1996), S.83-119
  3. Gabbard, R.: Recent literature shows accelerated growth in hypermedia tools : an annotated bibliography (1994) 0.07
    0.06991947 = product of:
      0.1573188 = sum of:
        0.09491582 = weight(_text_:applications in 8460) [ClassicSimilarity], result of:
          0.09491582 = score(doc=8460,freq=4.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.5503137 = fieldWeight in 8460, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0625 = fieldNorm(doc=8460)
        0.008467626 = weight(_text_:of in 8460) [ClassicSimilarity], result of:
          0.008467626 = score(doc=8460,freq=2.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.13821793 = fieldWeight in 8460, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=8460)
        0.03270373 = weight(_text_:systems in 8460) [ClassicSimilarity], result of:
          0.03270373 = score(doc=8460,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2716328 = fieldWeight in 8460, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0625 = fieldNorm(doc=8460)
        0.021231614 = product of:
          0.042463228 = sum of:
            0.042463228 = weight(_text_:22 in 8460) [ClassicSimilarity], result of:
              0.042463228 = score(doc=8460,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.30952093 = fieldWeight in 8460, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=8460)
          0.5 = coord(1/2)
      0.44444445 = coord(4/9)
    
    Abstract
    An annotated bibliography on hypermedia divided into 3 sections: material on hypertext/hypermedia that is not tied to any hardware platforms or operating systems; materials detailing those hypertext/hypermedia applications for DOS and Windows, HyperCard Macintosh hypertext/hypermedia applications. Includes journal articles, monographs, conference proceedings, and specific product announcements, evaluations, and reviews from 1990 until the summer of 1993
    Source
    Reference services review. 22(1994) no.2, S.31-40
  4. Corbett, L.E.: Serials: review of the literature 2000-2003 (2006) 0.06
    0.055950508 = product of:
      0.16785152 = sum of:
        0.017552461 = weight(_text_:of in 1088) [ClassicSimilarity], result of:
          0.017552461 = score(doc=1088,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.28651062 = fieldWeight in 1088, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1088)
        0.020439833 = weight(_text_:systems in 1088) [ClassicSimilarity], result of:
          0.020439833 = score(doc=1088,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 1088, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1088)
        0.12985922 = sum of:
          0.103319705 = weight(_text_:packages in 1088) [ClassicSimilarity], result of:
            0.103319705 = score(doc=1088,freq=2.0), product of:
              0.2706874 = queryWeight, product of:
                6.9093957 = idf(docFreq=119, maxDocs=44218)
                0.03917671 = queryNorm
              0.3816938 = fieldWeight in 1088, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                6.9093957 = idf(docFreq=119, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1088)
          0.026539518 = weight(_text_:22 in 1088) [ClassicSimilarity], result of:
            0.026539518 = score(doc=1088,freq=2.0), product of:
              0.13719016 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03917671 = queryNorm
              0.19345059 = fieldWeight in 1088, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1088)
      0.33333334 = coord(3/9)
    
    Abstract
    The topic of electronic journals (e-journals) dominated the serials literature from 2000 to 2003. This review is limited to the events and issues within the broad topics of cost, management, and archiving. Coverage of cost includes such initiatives as PEAK, JACC, BioMed Central, SPARC, open access, the "Big Deal," and "going e-only." Librarians combated the continued price increase trend for journals, fueled in part by publisher mergers, with the economies found with bundled packages and consortial subscriptions. Serials management topics include usage statistics; core title lists; staffing needs; the "A-Z list" and other services from such companies as Serials Solutions; "deep linking"; link resolvers such as SFX; development of standards or guidelines, such as COUNTER and ERMI; tracking of license terms; vendor mergers; and the demise of integrated library systems and a subscription agent's bankruptcy. Librarians archived print volumes in storage facilities due to space shortages. Librarians and publishers struggled with electronic archiving concepts, discussing questions of who, where, and how. Projects such as LOCKSS tested potential solutions, but missing online content due to the Tasini court case and retractions posed more archiving difficulties. The serials literature captured much of the upheaval resulting from the rapid pace of changes, many linked to the advent of e-journals.
    Date
    10. 9.2000 17:38:22
  5. Zhu, B.; Chen, H.: Information visualization (2004) 0.05
    0.050138313 = product of:
      0.1128112 = sum of:
        0.029363085 = weight(_text_:applications in 4276) [ClassicSimilarity], result of:
          0.029363085 = score(doc=4276,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.17024462 = fieldWeight in 4276, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4276)
        0.02191663 = weight(_text_:of in 4276) [ClassicSimilarity], result of:
          0.02191663 = score(doc=4276,freq=70.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.35774738 = fieldWeight in 4276, product of:
              8.3666 = tf(freq=70.0), with freq of:
                70.0 = termFreq=70.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4276)
        0.020234404 = weight(_text_:systems in 4276) [ClassicSimilarity], result of:
          0.020234404 = score(doc=4276,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.16806422 = fieldWeight in 4276, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4276)
        0.041297078 = weight(_text_:software in 4276) [ClassicSimilarity], result of:
          0.041297078 = score(doc=4276,freq=6.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.26571283 = fieldWeight in 4276, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4276)
      0.44444445 = coord(4/9)
    
    Abstract
    Advanced technology has resulted in the generation of about one million terabytes of information every year. Ninety-reine percent of this is available in digital format (Keim, 2001). More information will be generated in the next three years than was created during all of previous human history (Keim, 2001). Collecting information is no longer a problem, but extracting value from information collections has become progressively more difficult. Various search engines have been developed to make it easier to locate information of interest, but these work well only for a person who has a specific goal and who understands what and how information is stored. This usually is not the Gase. Visualization was commonly thought of in terms of representing human mental processes (MacEachren, 1991; Miller, 1984). The concept is now associated with the amplification of these mental processes (Card, Mackinlay, & Shneiderman, 1999). Human eyes can process visual cues rapidly, whereas advanced information analysis techniques transform the computer into a powerful means of managing digitized information. Visualization offers a link between these two potent systems, the human eye and the computer (Gershon, Eick, & Card, 1998), helping to identify patterns and to extract insights from large amounts of information. The identification of patterns is important because it may lead to a scientific discovery, an interpretation of clues to solve a crime, the prediction of catastrophic weather, a successful financial investment, or a better understanding of human behavior in a computermediated environment. Visualization technology shows considerable promise for increasing the value of large-scale collections of information, as evidenced by several commercial applications of TreeMap (e.g., http://www.smartmoney.com) and Hyperbolic tree (e.g., http://www.inxight.com) to visualize large-scale hierarchical structures. Although the proliferation of visualization technologies dates from the 1990s where sophisticated hardware and software made increasingly faster generation of graphical objects possible, the role of visual aids in facilitating the construction of mental images has a long history. Visualization has been used to communicate ideas, to monitor trends implicit in data, and to explore large volumes of data for hypothesis generation. Imagine traveling to a strange place without a map, having to memorize physical and chemical properties of an element without Mendeleyev's periodic table, trying to understand the stock market without statistical diagrams, or browsing a collection of documents without interactive visual aids. A collection of information can lose its value simply because of the effort required for exhaustive exploration. Such frustrations can be overcome by visualization.
    Visualization can be classified as scientific visualization, software visualization, or information visualization. Although the data differ, the underlying techniques have much in common. They use the same elements (visual cues) and follow the same rules of combining visual cues to deliver patterns. They all involve understanding human perception (Encarnacao, Foley, Bryson, & Feiner, 1994) and require domain knowledge (Tufte, 1990). Because most decisions are based an unstructured information, such as text documents, Web pages, or e-mail messages, this chapter focuses an the visualization of unstructured textual documents. The chapter reviews information visualization techniques developed over the last decade and examines how they have been applied in different domains. The first section provides the background by describing visualization history and giving overviews of scientific, software, and information visualization as well as the perceptual aspects of visualization. The next section assesses important visualization techniques that convert abstract information into visual objects and facilitate navigation through displays an a computer screen. It also explores information analysis algorithms that can be applied to identify or extract salient visualizable structures from collections of information. Information visualization systems that integrate different types of technologies to address problems in different domains are then surveyed; and we move an to a survey and critique of visualization system evaluation studies. The chapter concludes with a summary and identification of future research directions.
    Source
    Annual review of information science and technology. 39(2005), S.139-177
  6. MacFarlane, A.; Missaoui, S.; Makri, S.; Gutierrez Lopez, M.: Sender vs. recipient-orientated information systems revisited (2022) 0.04
    0.036260955 = product of:
      0.10878286 = sum of:
        0.03355781 = weight(_text_:applications in 607) [ClassicSimilarity], result of:
          0.03355781 = score(doc=607,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.19456528 = fieldWeight in 607, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03125 = fieldNorm(doc=607)
        0.01404197 = weight(_text_:of in 607) [ClassicSimilarity], result of:
          0.01404197 = score(doc=607,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2292085 = fieldWeight in 607, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=607)
        0.06118308 = weight(_text_:systems in 607) [ClassicSimilarity], result of:
          0.06118308 = score(doc=607,freq=28.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.5081784 = fieldWeight in 607, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03125 = fieldNorm(doc=607)
      0.33333334 = coord(3/9)
    
    Abstract
    Purpose Belkin and Robertson (1976a) reflected on the ethical implications of theoretical research in information science and warned that there was potential for abuse of knowledge gained by undertaking such research and applying it to information systems. In particular, they identified the domains of advertising and political propaganda that posed particular problems. The purpose of this literature review is to revisit these ideas in the light of recent events in global information systems that demonstrate that their fears were justified. Design/methodology/approach The authors revisit the theory in information science that Belkin and Robertson used to build their argument, together with the discussion on ethics that resulted from this work in the late 1970s and early 1980s. The authors then review recent literature in the field of information systems, specifically information retrieval, social media and recommendation systems that highlight the problems identified by Belkin and Robertson. Findings Information science theories have been used in conjunction with empirical evidence gathered from user interactions that have been detrimental to both individuals and society. It is argued in the paper that the information science and systems communities should find ways to return control to the user wherever possible, and the ways to achieve this are considered. Research limitations/implications The ethical issues identified require a multidisciplinary approach with research in information science, computer science, information systems, business, sociology, psychology, journalism, government and politics, etc. required. This is too large a scope to deal with in a literature review, and we focus only on the design and implementation of information systems (Zimmer, 2008a) through an information science and information systems perspective. Practical implications The authors argue that information systems such as search technologies, social media applications and recommendation systems should be designed with the recipient of the information in mind (Paisley and Parker, 1965), not the sender of that information. Social implications Information systems designed ethically and with users in mind will go some way to addressing the ill effects typified by the problems for individuals and society evident in global information systems. Originality/value The authors synthesize the evidence from the literature to provide potential technological solutions to the ethical issues identified, with a set of recommendations to information systems designers and implementers.
    Source
    Journal of documentation. 78(2022) no.2, S.485-509
  7. El-Sherbini, M.A.: Cataloging and classification : review of the literature 2005-06 (2008) 0.03
    0.034337863 = product of:
      0.10301359 = sum of:
        0.06711562 = weight(_text_:applications in 249) [ClassicSimilarity], result of:
          0.06711562 = score(doc=249,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.38913056 = fieldWeight in 249, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0625 = fieldNorm(doc=249)
        0.014666359 = weight(_text_:of in 249) [ClassicSimilarity], result of:
          0.014666359 = score(doc=249,freq=6.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.23940048 = fieldWeight in 249, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=249)
        0.021231614 = product of:
          0.042463228 = sum of:
            0.042463228 = weight(_text_:22 in 249) [ClassicSimilarity], result of:
              0.042463228 = score(doc=249,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.30952093 = fieldWeight in 249, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=249)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    This paper reviews library literature on cataloging and classification published in 2005-06. It covers pertinent literature in the following areas: the future of cataloging; Functional Requirement for Bibliographic Records (FRBR); metadata and its applications and relation to Machine-Readable Cataloging (MARC); cataloging tools and standards; authority control; and recruitment, training, and the changing role of catalogers.
    Date
    10. 9.2000 17:38:22
  8. Chowdhury, G.G.: Natural language processing (2002) 0.03
    0.034328938 = product of:
      0.10298681 = sum of:
        0.050336715 = weight(_text_:applications in 4284) [ClassicSimilarity], result of:
          0.050336715 = score(doc=4284,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2918479 = fieldWeight in 4284, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=4284)
        0.017962547 = weight(_text_:of in 4284) [ClassicSimilarity], result of:
          0.017962547 = score(doc=4284,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2932045 = fieldWeight in 4284, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4284)
        0.034687545 = weight(_text_:systems in 4284) [ClassicSimilarity], result of:
          0.034687545 = score(doc=4284,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.28811008 = fieldWeight in 4284, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=4284)
      0.33333334 = coord(3/9)
    
    Abstract
    Natural Language Processing (NLP) is an area of research and application that explores how computers can be used to understand and manipulate natural language text or speech to do useful things. NLP researchers aim to gather knowledge an how human beings understand and use language so that appropriate tools and techniques can be developed to make computer systems understand and manipulate natural languages to perform desired tasks. The foundations of NLP lie in a number of disciplines, namely, computer and information sciences, linguistics, mathematics, electrical and electronic engineering, artificial intelligence and robotics, and psychology. Applications of NLP include a number of fields of study, such as machine translation, natural language text processing and summarization, user interfaces, multilingual and cross-language information retrieval (CLIR), speech recognition, artificial intelligence, and expert systems. One important application area that is relatively new and has not been covered in previous ARIST chapters an NLP relates to the proliferation of the World Wide Web and digital libraries.
    Source
    Annual review of information science and technology. 37(2003), S.51-90
  9. Bookstein, A.: Probability and Fuzzy-set applications to information retrieval (1985) 0.03
    0.033592556 = product of:
      0.1511665 = sum of:
        0.13423124 = weight(_text_:applications in 781) [ClassicSimilarity], result of:
          0.13423124 = score(doc=781,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.7782611 = fieldWeight in 781, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.125 = fieldNorm(doc=781)
        0.016935252 = weight(_text_:of in 781) [ClassicSimilarity], result of:
          0.016935252 = score(doc=781,freq=2.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.27643585 = fieldWeight in 781, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.125 = fieldNorm(doc=781)
      0.22222222 = coord(2/9)
    
    Source
    Annual review of information science and technology. 20(1985), S.117-151
  10. Marsh, S.; Dibben, M.R.: ¬The role of trust in information science and technology (2002) 0.03
    0.032587454 = product of:
      0.09776236 = sum of:
        0.050336715 = weight(_text_:applications in 4289) [ClassicSimilarity], result of:
          0.050336715 = score(doc=4289,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2918479 = fieldWeight in 4289, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=4289)
        0.022897845 = weight(_text_:of in 4289) [ClassicSimilarity], result of:
          0.022897845 = score(doc=4289,freq=26.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.37376386 = fieldWeight in 4289, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4289)
        0.0245278 = weight(_text_:systems in 4289) [ClassicSimilarity], result of:
          0.0245278 = score(doc=4289,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2037246 = fieldWeight in 4289, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=4289)
      0.33333334 = coord(3/9)
    
    Abstract
    This chapter discusses the notion of trust as it relates to information science and technology, specifically user interfaces, autonomous agents, and information systems. We first present an in-depth discussion of the concept of trust in and of itself, moving an to applications and considerations of trust in relation to information technologies. We consider trust from a "soft" perspective-thus, although security concepts such as cryptography, virus protection, authentication, and so forth reinforce (or damage) the feelings of trust we may have in a system, they are not themselves constitutive of "trust." We discuss information technology from a human-centric viewpoint, where trust is a less well-structured but much more powerful phenomenon. With the proliferation of electronic commerce (e-commerce) and the World Wide Web (WWW, or Web), much has been made of the ability of individuals to explore the vast quantities of information available to them, to purchase goods (as diverse as vacations and cars) online, and to publish information an their personal Web sites.
    Source
    Annual review of information science and technology. 37(2003), S.465-498
  11. Winget, M.A.: Videogame preservation and massively multiplayer online role-playing games : a review of the literature (2011) 0.03
    0.027787952 = product of:
      0.08336385 = sum of:
        0.017962547 = weight(_text_:of in 4760) [ClassicSimilarity], result of:
          0.017962547 = score(doc=4760,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2932045 = fieldWeight in 4760, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4760)
        0.0245278 = weight(_text_:systems in 4760) [ClassicSimilarity], result of:
          0.0245278 = score(doc=4760,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2037246 = fieldWeight in 4760, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=4760)
        0.040873505 = weight(_text_:software in 4760) [ClassicSimilarity], result of:
          0.040873505 = score(doc=4760,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.2629875 = fieldWeight in 4760, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.046875 = fieldNorm(doc=4760)
      0.33333334 = coord(3/9)
    
    Abstract
    Videogames are important cultural and economic artifacts. They also present challenges that anticipate the problems inherent in any complex digital interactive system. Not only are they digital and hence very difficult to preserve but they also are software systems that have significant hardware, peripheral, and network dependencies, which are difficult to collect and formally represent. This article reviews the literature related to videogame preservation. In addition to covering the traditional technology-related issues inherent in all digital preservation endeavors, this review also attempts to describe the complexities and relationships between the traditional acts of technology preservation, representation, and collection development. Future work should include the identification of important user groups, an examination of games' context of use, and the development of representational models to describe interaction of players with the game and the interactions between players playing the game.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.10, S.1869-1883
  12. Martin, K.E.; Mundle, K.: Positioning libraries for a new bibliographic universe (2014) 0.03
    0.027272148 = product of:
      0.08181644 = sum of:
        0.050336715 = weight(_text_:applications in 2608) [ClassicSimilarity], result of:
          0.050336715 = score(doc=2608,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2918479 = fieldWeight in 2608, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=2608)
        0.015556021 = weight(_text_:of in 2608) [ClassicSimilarity], result of:
          0.015556021 = score(doc=2608,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.25392252 = fieldWeight in 2608, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2608)
        0.015923709 = product of:
          0.031847417 = sum of:
            0.031847417 = weight(_text_:22 in 2608) [ClassicSimilarity], result of:
              0.031847417 = score(doc=2608,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.23214069 = fieldWeight in 2608, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2608)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    This paper surveys the English-language literature on cataloging and classification published during 2011 and 2012, covering both theory and application. A major theme of the literature centered on Resource Description and Access (RDA), as the period covered in this review includes the conclusion of the RDA test, revisions to RDA, and the implementation decision. Explorations in the theory and practical applications of the Functional Requirements for Bibliographic Records (FRBR), upon which RDA is organized, are also heavily represented. Library involvement with linked data through the creation of prototypes and vocabularies are explored further during the period. Other areas covered in the review include: classification, controlled vocabularies and name authority, evaluation and history of cataloging, special formats cataloging, cataloging and discovery services, non-AACR2/RDA metadata, cataloging workflows, and the education and careers of catalogers.
    Date
    10. 9.2000 17:38:22
  13. Miksa, S.D.: ¬The challenges of change : a review of cataloging and classification literature, 2003-2004 (2007) 0.02
    0.024892237 = product of:
      0.07467671 = sum of:
        0.020741362 = weight(_text_:of in 266) [ClassicSimilarity], result of:
          0.020741362 = score(doc=266,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.33856338 = fieldWeight in 266, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=266)
        0.03270373 = weight(_text_:systems in 266) [ClassicSimilarity], result of:
          0.03270373 = score(doc=266,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2716328 = fieldWeight in 266, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0625 = fieldNorm(doc=266)
        0.021231614 = product of:
          0.042463228 = sum of:
            0.042463228 = weight(_text_:22 in 266) [ClassicSimilarity], result of:
              0.042463228 = score(doc=266,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.30952093 = fieldWeight in 266, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=266)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    This paper reviews the enormous changes in cataloging and classification reflected in the literature of 2003 and 2004, and discusses major themes and issues. Traditional cataloging and classification tools have been re-vamped and new resources have emerged. Most notable themes are: the continuing influence of the Functional Requirements for Bibliographic Control (FRBR); the struggle to understand the ever-broadening concept of an "information entity"; steady developments in metadata-encoding standards; and the globalization of information systems, including multilinguistic challenges.
    Date
    10. 9.2000 17:38:22
  14. Khoo, S.G.; Na, J.-C.: Semantic relations in information science (2006) 0.02
    0.024699276 = product of:
      0.07409783 = sum of:
        0.043592874 = weight(_text_:applications in 1978) [ClassicSimilarity], result of:
          0.043592874 = score(doc=1978,freq=6.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2527477 = fieldWeight in 1978, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1978)
        0.018241053 = weight(_text_:of in 1978) [ClassicSimilarity], result of:
          0.018241053 = score(doc=1978,freq=66.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2977506 = fieldWeight in 1978, product of:
              8.124039 = tf(freq=66.0), with freq of:
                66.0 = termFreq=66.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1978)
        0.0122639 = weight(_text_:systems in 1978) [ClassicSimilarity], result of:
          0.0122639 = score(doc=1978,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1018623 = fieldWeight in 1978, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1978)
      0.33333334 = coord(3/9)
    
    Abstract
    This chapter examines the nature of semantic relations and their main applications in information science. The nature and types of semantic relations are discussed from the perspectives of linguistics and psychology. An overview of the semantic relations used in knowledge structures such as thesauri and ontologies is provided, as well as the main techniques used in the automatic extraction of semantic relations from text. The chapter then reviews the use of semantic relations in information extraction, information retrieval, question-answering, and automatic text summarization applications. Concepts and relations are the foundation of knowledge and thought. When we look at the world, we perceive not a mass of colors but objects to which we automatically assign category labels. Our perceptual system automatically segments the world into concepts and categories. Concepts are the building blocks of knowledge; relations act as the cement that links concepts into knowledge structures. We spend much of our lives identifying regular associations and relations between objects, events, and processes so that the world has an understandable structure and predictability. Our lives and work depend on the accuracy and richness of this knowledge structure and its web of relations. Relations are needed for reasoning and inferencing. Chaffin and Herrmann (1988b, p. 290) noted that "relations between ideas have long been viewed as basic to thought, language, comprehension, and memory." Aristotle's Metaphysics (Aristotle, 1961; McKeon, expounded on several types of relations. The majority of the 30 entries in a section of the Metaphysics known today as the Philosophical Lexicon referred to relations and attributes, including cause, part-whole, same and opposite, quality (i.e., attribute) and kind-of, and defined different types of each relation. Hume (1955) pointed out that there is a connection between successive ideas in our minds, even in our dreams, and that the introduction of an idea in our mind automatically recalls an associated idea. He argued that all the objects of human reasoning are divided into relations of ideas and matters of fact and that factual reasoning is founded on the cause-effect relation. His Treatise of Human Nature identified seven kinds of relations: resemblance, identity, relations of time and place, proportion in quantity or number, degrees in quality, contrariety, and causation. Mill (1974, pp. 989-1004) discoursed on several types of relations, claiming that all things are either feelings, substances, or attributes, and that attributes can be a quality (which belongs to one object) or a relation to other objects.
    Linguists in the structuralist tradition (e.g., Lyons, 1977; Saussure, 1959) have asserted that concepts cannot be defined on their own but only in relation to other concepts. Semantic relations appear to reflect a logical structure in the fundamental nature of thought (Caplan & Herrmann, 1993). Green, Bean, and Myaeng (2002) noted that semantic relations play a critical role in how we represent knowledge psychologically, linguistically, and computationally, and that many systems of knowledge representation start with a basic distinction between entities and relations. Green (2001, p. 3) said that "relationships are involved as we combine simple entities to form more complex entities, as we compare entities, as we group entities, as one entity performs a process on another entity, and so forth. Indeed, many things that we might initially regard as basic and elemental are revealed upon further examination to involve internal structure, or in other words, internal relationships." Concepts and relations are often expressed in language and text. Language is used not just for communicating concepts and relations, but also for representing, storing, and reasoning with concepts and relations. We shall examine the nature of semantic relations from a linguistic and psychological perspective, with an emphasis on relations expressed in text. The usefulness of semantic relations in information science, especially in ontology construction, information extraction, information retrieval, question-answering, and text summarization is discussed. Research and development in information science have focused on concepts and terms, but the focus will increasingly shift to the identification, processing, and management of relations to achieve greater effectiveness and refinement in information science techniques. Previous chapters in ARIST on natural language processing (Chowdhury, 2003), text mining (Trybula, 1999), information retrieval and the philosophy of language (Blair, 2003), and query expansion (Efthimiadis, 1996) provide a background for this discussion, as semantic relations are an important part of these applications.
    Source
    Annual review of information science and technology. 40(2006), S.157-228
  15. Billick, D.: ¬A selective bibliography on library imaging technology and applications (1995) 0.02
    0.023753524 = product of:
      0.10689086 = sum of:
        0.09491582 = weight(_text_:applications in 3072) [ClassicSimilarity], result of:
          0.09491582 = score(doc=3072,freq=4.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.5503137 = fieldWeight in 3072, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0625 = fieldNorm(doc=3072)
        0.011975031 = weight(_text_:of in 3072) [ClassicSimilarity], result of:
          0.011975031 = score(doc=3072,freq=4.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.19546966 = fieldWeight in 3072, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=3072)
      0.22222222 = coord(2/9)
    
    Abstract
    Selectively surveys recent materials (mostly from 1990 to 1994) on basic imaging technologies like scanners, storage media, display units and compression; and reviews in a summary way publications of general interest to library professionals. Emphasizes material from the public and academic library domains. Excludes museum librarianship, records management and commercial/ industrial applications although a few references are included as representative of various approaches to exploiting imaging capabilities
  16. Williams, P.; Nicholas, D.; Gunter, B.: E-learning: what the literature tells us about distance education : an overview (2005) 0.02
    0.022628155 = product of:
      0.06788446 = sum of:
        0.03355781 = weight(_text_:applications in 662) [ClassicSimilarity], result of:
          0.03355781 = score(doc=662,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.19456528 = fieldWeight in 662, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03125 = fieldNorm(doc=662)
        0.011201616 = weight(_text_:of in 662) [ClassicSimilarity], result of:
          0.011201616 = score(doc=662,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.18284513 = fieldWeight in 662, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=662)
        0.023125032 = weight(_text_:systems in 662) [ClassicSimilarity], result of:
          0.023125032 = score(doc=662,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.19207339 = fieldWeight in 662, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03125 = fieldNorm(doc=662)
      0.33333334 = coord(3/9)
    
    Abstract
    Purpose - The CIBER group at University College London are currently evaluating a distance education initiative funded by the Department of Health, providing in-service training to NHS staff via DiTV and satellite to PC systems. This paper aims to provide the context for the project by outlining a short history of distance education, describing the media used in providing remote education, and to review research literature on achievement, attitude, barriers to learning and learner characteristics. Design/methodology/approach - Literature review, with particular, although not exclusive, emphasis on health. Findings - The literature shows little difference in achievement between distance and traditional learners, although using a variety of media, both to deliver pedagogic material and to facilitate communication, does seem to enhance learning. Similarly, attitudinal studies appear to show that the greater number of channels offered, the more positive students are about their experiences. With regard to barriers to completing courses, the main problems appear to be family or work obligations. Research limitations/implications - The research work this review seeks to consider is examining "on-demand" showing of filmed lectures via a DiTV system. The literature on DiTV applications research, however, is dominated by studies of simultaneous viewing by on-site and remote students, rather than "on-demand". Practical implications - Current research being carried out by the authors should enhance the findings accrued by the literature, by exploring the impact of "on-demand" video material, delivered by DiTV - something no previous research appears to have examined. Originality/value - Discusses different electronic systems and their exploitation for distance education, and cross-references these with several aspects evaluated in the literature: achievement, attitude, barriers to take-up or success, to provide a holistic picture hitherto missing from the literature.
  17. Genereux, C.: Building connections : a review of the serials literature 2004 through 2005 (2007) 0.02
    0.022471227 = product of:
      0.06741368 = sum of:
        0.016802425 = weight(_text_:of in 2548) [ClassicSimilarity], result of:
          0.016802425 = score(doc=2548,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2742677 = fieldWeight in 2548, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2548)
        0.034687545 = weight(_text_:systems in 2548) [ClassicSimilarity], result of:
          0.034687545 = score(doc=2548,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.28811008 = fieldWeight in 2548, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=2548)
        0.015923709 = product of:
          0.031847417 = sum of:
            0.031847417 = weight(_text_:22 in 2548) [ClassicSimilarity], result of:
              0.031847417 = score(doc=2548,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.23214069 = fieldWeight in 2548, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2548)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    This review of 2004 and 2005 serials literature covers the themes of cost, management, and access. Interwoven through the serials literature of these two years are the importance of collaboration, communication, and linkages between scholars, publishers, subscription agents and other intermediaries, and librarians. The emphasis in the literature is on electronic serials and their impact on publishing, libraries, and vendors. In response to the crisis of escalating journal prices and libraries' dissatisfaction with the Big Deal licensing agreements, Open Access journals and publishing models were promoted. Libraries subscribed to or licensed increasing numbers of electronic serials. As a result, libraries sought ways to better manage licensing and subscription data (not handled by traditional integrated library systems) by implementing electronic resources management systems. In order to provide users with better, faster, and more current information on and access to electronic serials, libraries implemented tools and services to provide A-Z title lists, title by title coverage data, MARC records, and OpenURL link resolvers.
    Date
    10. 9.2000 17:38:22
  18. Drenth, H.; Morris, A.; Tseng, G.: Expert systems as information intermediaries (1991) 0.02
    0.021565046 = product of:
      0.09704271 = sum of:
        0.016935252 = weight(_text_:of in 3695) [ClassicSimilarity], result of:
          0.016935252 = score(doc=3695,freq=8.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.27643585 = fieldWeight in 3695, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=3695)
        0.08010746 = weight(_text_:systems in 3695) [ClassicSimilarity], result of:
          0.08010746 = score(doc=3695,freq=12.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.6653617 = fieldWeight in 3695, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0625 = fieldNorm(doc=3695)
      0.22222222 = coord(2/9)
    
    Abstract
    Points out that expert systems have great potential to enhance access to information retrieval systems as they use expertise to carry out tasks such as diagnosis and planning and make expertise available to nonexperts. Potential end users of online information retrieval systems are frequently deterred by the complexity of theses systems. Expert systems can mediate between the searcher and the information retrieval system and might be the key both to increasing and end user searching and to improving the quality of searches overall
    Source
    Annual review of information science and technology. 26(1991), S.113-154
  19. Harter, S.P.; Hert, C.A.: Evaluation of information retrieval systems : approaches, issues, and methods (1997) 0.02
    0.020783085 = product of:
      0.09352388 = sum of:
        0.023429861 = weight(_text_:of in 2264) [ClassicSimilarity], result of:
          0.023429861 = score(doc=2264,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.38244802 = fieldWeight in 2264, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2264)
        0.07009402 = weight(_text_:systems in 2264) [ClassicSimilarity], result of:
          0.07009402 = score(doc=2264,freq=12.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.58219147 = fieldWeight in 2264, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2264)
      0.22222222 = coord(2/9)
    
    Abstract
    State of the art review of information retrieval systems, defined as systems retrieving documents a sopposed to numerical data. Explains the classic Cranfield studies that have served as a standard for retrieval testing since the 1960s and discusses the Cranfield model and its relevance based measures of retrieval effectiveness. Details sosme of the problems with the Cranfield instruments and issues of validity and reliability, generalizability, usefulness and basic concepts. Discusses the evaluation of the Internet search engines in light of the Cranfield model, noting the very real differences between batch systems (Cranfield) and interactive systems (Internet). Because the Internet collection is not fixed, it is impossible to determine recall as a measure of retrieval effectiveness. considers future directions in evaluating information retrieval systems
    Source
    Annual review of information science and technology. 32(1997), S.3-94
  20. Chen, H.; Chau, M.: Web mining : machine learning for Web applications (2003) 0.02
    0.01981098 = product of:
      0.08914941 = sum of:
        0.07118686 = weight(_text_:applications in 4242) [ClassicSimilarity], result of:
          0.07118686 = score(doc=4242,freq=4.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.41273528 = fieldWeight in 4242, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=4242)
        0.017962547 = weight(_text_:of in 4242) [ClassicSimilarity], result of:
          0.017962547 = score(doc=4242,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2932045 = fieldWeight in 4242, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4242)
      0.22222222 = coord(2/9)
    
    Abstract
    With more than two billion pages created by millions of Web page authors and organizations, the World Wide Web is a tremendously rich knowledge base. The knowledge comes not only from the content of the pages themselves, but also from the unique characteristics of the Web, such as its hyperlink structure and its diversity of content and languages. Analysis of these characteristics often reveals interesting patterns and new knowledge. Such knowledge can be used to improve users' efficiency and effectiveness in searching for information an the Web, and also for applications unrelated to the Web, such as support for decision making or business management. The Web's size and its unstructured and dynamic content, as well as its multilingual nature, make the extraction of useful knowledge a challenging research problem. Furthermore, the Web generates a large amount of data in other formats that contain valuable information. For example, Web server logs' information about user access patterns can be used for information personalization or improving Web page design.
    Source
    Annual review of information science and technology. 38(2004), S.289-330

Languages

  • e 296
  • d 5
  • m 1
  • pt 1
  • ru 1
  • sp 1
  • More… Less…

Types

  • a 269
  • b 45
  • m 17
  • s 8
  • el 7
  • r 5
  • ? 1
  • i 1
  • More… Less…