Search (27 results, page 1 of 2)

  • × theme_ss:"Suchmaschinen"
  • × theme_ss:"Retrievalalgorithmen"
  1. Berry, M.W.; Browne, M.: Understanding search engines : mathematical modeling and text retrieval (1999) 0.03
    0.028135002 = product of:
      0.12660751 = sum of:
        0.010999769 = weight(_text_:of in 5777) [ClassicSimilarity], result of:
          0.010999769 = score(doc=5777,freq=6.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.17955035 = fieldWeight in 5777, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=5777)
        0.11560774 = weight(_text_:software in 5777) [ClassicSimilarity], result of:
          0.11560774 = score(doc=5777,freq=16.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.743841 = fieldWeight in 5777, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.046875 = fieldNorm(doc=5777)
      0.22222222 = coord(2/9)
    
    Abstract
    This book discusses many of the key design issues for building search engines and emphazises the important role that applied mathematics can play in improving information retrieval. The authors discuss not only important data structures, algorithms, and software but also user-centered issues such as interfaces, manual indexing, and document preparation. They also present some of the current problems in information retrieval that many not be familiar to applied mathematicians and computer scientists and some of the driving computational methods (SVD, SDD) for automated conceptual indexing
    Classification
    ST 230 [Informatik # Monographien # Software und -entwicklung # Software allgemein, (Einführung, Lehrbücher, Methoden der Programmierung) Software engineering, Programmentwicklungssysteme, Softwarewerkzeuge]
    RVK
    ST 230 [Informatik # Monographien # Software und -entwicklung # Software allgemein, (Einführung, Lehrbücher, Methoden der Programmierung) Software engineering, Programmentwicklungssysteme, Softwarewerkzeuge]
    Series
    Software, environments, tools; 8
  2. Furner, J.: ¬A unifying model of document relatedness for hybrid search engines (2003) 0.02
    0.023891404 = product of:
      0.07167421 = sum of:
        0.021062955 = weight(_text_:of in 2717) [ClassicSimilarity], result of:
          0.021062955 = score(doc=2717,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.34381276 = fieldWeight in 2717, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2717)
        0.034687545 = weight(_text_:systems in 2717) [ClassicSimilarity], result of:
          0.034687545 = score(doc=2717,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.28811008 = fieldWeight in 2717, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=2717)
        0.015923709 = product of:
          0.031847417 = sum of:
            0.031847417 = weight(_text_:22 in 2717) [ClassicSimilarity], result of:
              0.031847417 = score(doc=2717,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.23214069 = fieldWeight in 2717, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2717)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Previous work an search-engine design has indicated that information-seekers may benefit from being given the opportunity to exploit multiple sources of evidence of document relatedness. Few existing systems, however, give users more than minimal control over the selections that may be made among methods of exploitation. By applying the methods of "document network analysis" (DNA), a unifying, graph-theoretic model of content-, collaboration-, and context-based systems (CCC) may be developed in which the nature of the similarities between types of document relatedness and document ranking are clarified. The usefulness of the approach to system design suggested by this model may be tested by constructing and evaluating a prototype system (UCXtra) that allows searchers to maintain control over the multiple ways in which document collections may be ranked and re-ranked.
    Date
    11. 9.2004 17:32:22
    Source
    Challenges in knowledge representation and organization for the 21st century: Integration of knowledge across boundaries. Proceedings of the 7th ISKO International Conference Granada, Spain, July 10-13, 2002. Ed.: M. López-Huertas
  3. Bauckhage, C.: Marginalizing over the PageRank damping factor (2014) 0.02
    0.020995347 = product of:
      0.09447906 = sum of:
        0.08389453 = weight(_text_:applications in 928) [ClassicSimilarity], result of:
          0.08389453 = score(doc=928,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.4864132 = fieldWeight in 928, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.078125 = fieldNorm(doc=928)
        0.010584532 = weight(_text_:of in 928) [ClassicSimilarity], result of:
          0.010584532 = score(doc=928,freq=2.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.17277241 = fieldWeight in 928, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.078125 = fieldNorm(doc=928)
      0.22222222 = coord(2/9)
    
    Abstract
    In this note, we show how to marginalize over the damping parameter of the PageRank equation so as to obtain a parameter-free version known as TotalRank. Our discussion is meant as a reference and intended to provide a guided tour towards an interesting result that has applications in information retrieval and classification.
  4. Agosti, M.; Pretto, L.: ¬A theoretical study of a generalized version of kleinberg's HITS algorithm (2005) 0.02
    0.01844225 = product of:
      0.082990125 = sum of:
        0.059322387 = weight(_text_:applications in 4) [ClassicSimilarity], result of:
          0.059322387 = score(doc=4,freq=4.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.34394607 = fieldWeight in 4, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4)
        0.023667734 = weight(_text_:of in 4) [ClassicSimilarity], result of:
          0.023667734 = score(doc=4,freq=40.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.38633084 = fieldWeight in 4, product of:
              6.3245554 = tf(freq=40.0), with freq of:
                40.0 = termFreq=40.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4)
      0.22222222 = coord(2/9)
    
    Abstract
    Kleinberg's HITS (Hyperlink-Induced Topic Search) algorithm (Kleinberg 1999), which was originally developed in a Web context, tries to infer the authoritativeness of a Web page in relation to a specific query using the structure of a subgraph of the Web graph, which is obtained considering this specific query. Recent applications of this algorithm in contexts far removed from that of Web searching (Bacchin, Ferro and Melucci 2002, Ng et al. 2001) inspired us to study the algorithm in the abstract, independently of its particular applications, trying to mathematically illuminate its behaviour. In the present paper we detail this theoretical analysis. The original work starts from the definition of a revised and more general version of the algorithm, which includes the classic one as a particular case. We perform an analysis of the structure of two particular matrices, essential to studying the behaviour of the algorithm, and we prove the convergence of the algorithm in the most general case, finding the analytic expression of the vectors to which it converges. Then we study the symmetry of the algorithm and prove the equivalence between the existence of symmetry and the independence from the order of execution of some basic operations on initial vectors. Finally, we expound some interesting consequences of our theoretical results.
  5. Bhansali, D.; Desai, H.; Deulkar, K.: ¬A study of different ranking approaches for semantic search (2015) 0.01
    0.012849791 = product of:
      0.05782406 = sum of:
        0.041947264 = weight(_text_:applications in 2696) [ClassicSimilarity], result of:
          0.041947264 = score(doc=2696,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 2696, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2696)
        0.015876798 = weight(_text_:of in 2696) [ClassicSimilarity], result of:
          0.015876798 = score(doc=2696,freq=18.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.25915858 = fieldWeight in 2696, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2696)
      0.22222222 = coord(2/9)
    
    Abstract
    Search Engines have become an integral part of our day to day life. Our reliance on search engines increases with every passing day. With the amount of data available on Internet increasing exponentially, it becomes important to develop new methods and tools that help to return results relevant to the queries and reduce the time spent on searching. The results should be diverse but at the same time should return results focused on the queries asked. Relation Based Page Rank [4] algorithms are considered to be the next frontier in improvement of Semantic Web Search. The probability of finding relevance in the search results as posited by the user while entering the query is used to measure the relevance. However, its application is limited by the complexity of determining relation between the terms and assigning explicit meaning to each term. Trust Rank is one of the most widely used ranking algorithms for semantic web search. Few other ranking algorithms like HITS algorithm, PageRank algorithm are also used for Semantic Web Searching. In this paper, we will provide a comparison of few ranking approaches.
    Source
    International journal of computer applications. 129(2015) no.5, S12-15
  6. Berry, M.W.; Browne, M.: Understanding search engines : mathematical modeling and text retrieval (2005) 0.01
    0.012591946 = product of:
      0.056663755 = sum of:
        0.009467094 = weight(_text_:of in 7) [ClassicSimilarity], result of:
          0.009467094 = score(doc=7,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.15453234 = fieldWeight in 7, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=7)
        0.04719666 = weight(_text_:software in 7) [ClassicSimilarity], result of:
          0.04719666 = score(doc=7,freq=6.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.3036718 = fieldWeight in 7, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03125 = fieldNorm(doc=7)
      0.22222222 = coord(2/9)
    
    Abstract
    The second edition of Understanding Search Engines: Mathematical Modeling and Text Retrieval follows the basic premise of the first edition by discussing many of the key design issues for building search engines and emphasizing the important role that applied mathematics can play in improving information retrieval. The authors discuss important data structures, algorithms, and software as well as user-centered issues such as interfaces, manual indexing, and document preparation. Significant changes bring the text up to date on current information retrieval methods: for example the addition of a new chapter on link-structure algorithms used in search engines such as Google. The chapter on user interface has been rewritten to specifically focus on search engine usability. In addition the authors have added new recommendations for further reading and expanded the bibliography, and have updated and streamlined the index to make it more reader friendly.
    Content
    Inhalt: Introduction Document File Preparation - Manual Indexing - Information Extraction - Vector Space Modeling - Matrix Decompositions - Query Representations - Ranking and Relevance Feedback - Searching by Link Structure - User Interface - Book Format Document File Preparation Document Purification and Analysis - Text Formatting - Validation - Manual Indexing - Automatic Indexing - Item Normalization - Inverted File Structures - Document File - Dictionary List - Inversion List - Other File Structures Vector Space Models Construction - Term-by-Document Matrices - Simple Query Matching - Design Issues - Term Weighting - Sparse Matrix Storage - Low-Rank Approximations Matrix Decompositions QR Factorization - Singular Value Decomposition - Low-Rank Approximations - Query Matching - Software - Semidiscrete Decomposition - Updating Techniques Query Management Query Binding - Types of Queries - Boolean Queries - Natural Language Queries - Thesaurus Queries - Fuzzy Queries - Term Searches - Probabilistic Queries Ranking and Relevance Feedback Performance Evaluation - Precision - Recall - Average Precision - Genetic Algorithms - Relevance Feedback Searching by Link Structure HITS Method - HITS Implementation - HITS Summary - PageRank Method - PageRank Adjustments - PageRank Implementation - PageRank Summary User Interface Considerations General Guidelines - Search Engine Interfaces - Form Fill-in - Display Considerations - Progress Indication - No Penalties for Error - Results - Test and Retest - Final Considerations Further Reading
    Series
    Software, environments, tools; 17
  7. Dominich, S.; Skrop, A.: PageRank and interaction information retrieval (2005) 0.01
    0.011700021 = product of:
      0.052650094 = sum of:
        0.017962547 = weight(_text_:of in 3268) [ClassicSimilarity], result of:
          0.017962547 = score(doc=3268,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2932045 = fieldWeight in 3268, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3268)
        0.034687545 = weight(_text_:systems in 3268) [ClassicSimilarity], result of:
          0.034687545 = score(doc=3268,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.28811008 = fieldWeight in 3268, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=3268)
      0.22222222 = coord(2/9)
    
    Abstract
    The PageRank method is used by the Google Web search engine to compute the importance of Web pages. Two different views have been developed for the Interpretation of the PageRank method and values: (a) stochastic (random surfer): the PageRank values can be conceived as the steady-state distribution of a Markov chain, and (b) algebraic: the PageRank values form the eigenvector corresponding to eigenvalue 1 of the Web link matrix. The Interaction Information Retrieval (1**2 R) method is a nonclassical information retrieval paradigm, which represents a connectionist approach based an dynamic systems. In the present paper, a different Interpretation of PageRank is proposed, namely, a dynamic systems viewpoint, by showing that the PageRank method can be formally interpreted as a particular case of the Interaction Information Retrieval method; and thus, the PageRank values may be interpreted as neutral equilibrium points of the Web.
    Source
    Journal of the American Society for Information Science and Technology. 56(2005) no.1, S.63-69
  8. Back, J.: ¬An evaluation of relevancy ranking techniques used by Internet search engines (2000) 0.01
    0.011549704 = product of:
      0.051973667 = sum of:
        0.014818345 = weight(_text_:of in 3445) [ClassicSimilarity], result of:
          0.014818345 = score(doc=3445,freq=2.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.24188137 = fieldWeight in 3445, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.109375 = fieldNorm(doc=3445)
        0.037155323 = product of:
          0.074310645 = sum of:
            0.074310645 = weight(_text_:22 in 3445) [ClassicSimilarity], result of:
              0.074310645 = score(doc=3445,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.5416616 = fieldWeight in 3445, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3445)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Date
    25. 8.2005 17:42:22
  9. Kanaeva, Z.: Ranking: Google und CiteSeer (2005) 0.01
    0.010487429 = product of:
      0.04719343 = sum of:
        0.028615767 = weight(_text_:systems in 3276) [ClassicSimilarity], result of:
          0.028615767 = score(doc=3276,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.23767869 = fieldWeight in 3276, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3276)
        0.018577661 = product of:
          0.037155323 = sum of:
            0.037155323 = weight(_text_:22 in 3276) [ClassicSimilarity], result of:
              0.037155323 = score(doc=3276,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.2708308 = fieldWeight in 3276, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3276)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Im Rahmen des klassischen Information Retrieval wurden verschiedene Verfahren für das Ranking sowie die Suche in einer homogenen strukturlosen Dokumentenmenge entwickelt. Die Erfolge der Suchmaschine Google haben gezeigt dass die Suche in einer zwar inhomogenen aber zusammenhängenden Dokumentenmenge wie dem Internet unter Berücksichtigung der Dokumentenverbindungen (Links) sehr effektiv sein kann. Unter den von der Suchmaschine Google realisierten Konzepten ist ein Verfahren zum Ranking von Suchergebnissen (PageRank), das in diesem Artikel kurz erklärt wird. Darüber hinaus wird auf die Konzepte eines Systems namens CiteSeer eingegangen, welches automatisch bibliographische Angaben indexiert (engl. Autonomous Citation Indexing, ACI). Letzteres erzeugt aus einer Menge von nicht vernetzten wissenschaftlichen Dokumenten eine zusammenhängende Dokumentenmenge und ermöglicht den Einsatz von Banking-Verfahren, die auf den von Google genutzten Verfahren basieren.
    Date
    20. 3.2005 16:23:22
  10. Austin, D.: How Google finds your needle in the Web's haystack : as we'll see, the trick is to ask the web itself to rank the importance of pages... (2006) 0.01
    0.009496141 = product of:
      0.042732634 = sum of:
        0.018889757 = weight(_text_:of in 93) [ClassicSimilarity], result of:
          0.018889757 = score(doc=93,freq=52.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.30833945 = fieldWeight in 93, product of:
              7.2111025 = tf(freq=52.0), with freq of:
                52.0 = termFreq=52.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.02734375 = fieldNorm(doc=93)
        0.023842877 = weight(_text_:software in 93) [ClassicSimilarity], result of:
          0.023842877 = score(doc=93,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.15340936 = fieldWeight in 93, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.02734375 = fieldNorm(doc=93)
      0.22222222 = coord(2/9)
    
    Abstract
    Imagine a library containing 25 billion documents but with no centralized organization and no librarians. In addition, anyone may add a document at any time without telling anyone. You may feel sure that one of the documents contained in the collection has a piece of information that is vitally important to you, and, being impatient like most of us, you'd like to find it in a matter of seconds. How would you go about doing it? Posed in this way, the problem seems impossible. Yet this description is not too different from the World Wide Web, a huge, highly-disorganized collection of documents in many different formats. Of course, we're all familiar with search engines (perhaps you found this article using one) so we know that there is a solution. This article will describe Google's PageRank algorithm and how it returns pages from the web's collection of 25 billion documents that match search criteria so well that "google" has become a widely used verb. Most search engines, including Google, continually run an army of computer programs that retrieve pages from the web, index the words in each document, and store this information in an efficient format. Each time a user asks for a web search using a search phrase, such as "search engine," the search engine determines all the pages on the web that contains the words in the search phrase. (Perhaps additional information such as the distance between the words "search" and "engine" will be noted as well.) Here is the problem: Google now claims to index 25 billion pages. Roughly 95% of the text in web pages is composed from a mere 10,000 words. This means that, for most searches, there will be a huge number of pages containing the words in the search phrase. What is needed is a means of ranking the importance of the pages that fit the search criteria so that the pages can be sorted with the most important pages at the top of the list. One way to determine the importance of pages is to use a human-generated ranking. For instance, you may have seen pages that consist mainly of a large number of links to other resources in a particular area of interest. Assuming the person maintaining this page is reliable, the pages referenced are likely to be useful. Of course, the list may quickly fall out of date, and the person maintaining the list may miss some important pages, either unintentionally or as a result of an unstated bias. Google's PageRank algorithm assesses the importance of web pages without human evaluation of the content. In fact, Google feels that the value of its service is largely in its ability to provide unbiased results to search queries; Google claims, "the heart of our software is PageRank." As we'll see, the trick is to ask the web itself to rank the importance of pages.
  11. Thelwall, M.: Can Google's PageRank be used to find the most important academic Web pages? (2003) 0.01
    0.008907516 = product of:
      0.04008382 = sum of:
        0.015556021 = weight(_text_:of in 4457) [ClassicSimilarity], result of:
          0.015556021 = score(doc=4457,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.25392252 = fieldWeight in 4457, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4457)
        0.0245278 = weight(_text_:systems in 4457) [ClassicSimilarity], result of:
          0.0245278 = score(doc=4457,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2037246 = fieldWeight in 4457, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=4457)
      0.22222222 = coord(2/9)
    
    Abstract
    Google's PageRank is an influential algorithm that uses a model of Web use that is dominated by its link structure in order to rank pages by their estimated value to the Web community. This paper reports on the outcome of applying the algorithm to the Web sites of three national university systems in order to test whether it is capable of identifying the most important Web pages. The results are also compared with simple inlink counts. It was discovered that the highest inlinked pages do not always have the highest PageRank, indicating that the two metrics are genuinely different, even for the top pages. More significantly, however, internal links dominated external links for the high ranks in either method and superficial reasons accounted for high scores in both cases. It is concluded that PageRank is not useful for identifying the top pages in a site and that it must be combined with a powerful text matching techniques in order to get the quality of information retrieval results provided by Google.
    Source
    Journal of documentation. 59(2003) no.2, S.205-217
  12. Lempel, R.; Moran, S.: SALSA: the stochastic approach for link-structure analysis (2001) 0.01
    0.00826121 = product of:
      0.037175447 = sum of:
        0.016735615 = weight(_text_:of in 10) [ClassicSimilarity], result of:
          0.016735615 = score(doc=10,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.27317715 = fieldWeight in 10, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=10)
        0.020439833 = weight(_text_:systems in 10) [ClassicSimilarity], result of:
          0.020439833 = score(doc=10,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 10, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=10)
      0.22222222 = coord(2/9)
    
    Abstract
    Today, when searching for information on the WWW, one usually performs a query through a term-based search engine. These engines return, as the query's result, a list of Web pages whose contents matches the query. For broad-topic queries, such searches often result in a huge set of retrieved documents, many of which are irrelevant to the user. However, much information is contained in the link-structure of the WWW. Information such as which pages are linked to others can be used to augment search algorithms. In this context, Jon Kleinberg introduced the notion of two distinct types of Web pages: hubs and authorities. Kleinberg argued that hubs and authorities exhibit a mutually reinforcing relationship: a good hub will point to many authorities, and a good authority will be pointed at by many hubs. In light of this, he dervised an algoirthm aimed at finding authoritative pages. We present SALSA, a new stochastic approach for link-structure analysis, which examines random walks on graphs derived from the link-structure. We show that both SALSA and Kleinberg's Mutual Reinforcement approach employ the same metaalgorithm. We then prove that SALSA is quivalent to a weighted in degree analysis of the link-sturcutre of WWW subgraphs, making it computationally more efficient than the Mutual reinforcement approach. We compare that results of applying SALSA to the results derived through Kleinberg's approach. These comparisions reveal a topological Phenomenon called the TKC effectwhich, in certain cases, prevents the Mutual reinforcement approach from identifying meaningful authorities.
    Source
    ACM transactions on information systems. 19(2001) no.2, S.131-160
  13. Behnert, C.; Plassmeier, K.; Borst, T.; Lewandowski, D.: Evaluierung von Rankingverfahren für bibliothekarische Informationssysteme (2019) 0.01
    0.005298417 = product of:
      0.047685754 = sum of:
        0.047685754 = weight(_text_:software in 5023) [ClassicSimilarity], result of:
          0.047685754 = score(doc=5023,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.30681872 = fieldWeight in 5023, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5023)
      0.11111111 = coord(1/9)
    
    Abstract
    Dieser Beitrag beschreibt eine Studie zur Entwicklung und Evaluierung von Rankingverfahren für bibliothekarische Informationssysteme. Dazu wurden mögliche Faktoren für das Relevanzranking ausgehend von den Verfahren in Websuchmaschinen identifiziert, auf den Bibliothekskontext übertragen und systematisch evaluiert. Mithilfe eines Testsystems, das auf dem ZBW-Informationsportal EconBiz und einer web-basierten Software zur Evaluierung von Suchsystemen aufsetzt, wurden verschiedene Relevanzfaktoren (z. B. Popularität in Verbindung mit Aktualität) getestet. Obwohl die getesteten Rankingverfahren auf einer theoretischen Ebene divers sind, konnten keine einheitlichen Verbesserungen gegenüber den Baseline-Rankings gemessen werden. Die Ergebnisse deuten darauf hin, dass eine Adaptierung des Rankings auf individuelle Nutzer bzw. Nutzungskontexte notwendig sein könnte, um eine höhere Performance zu erzielen.
  14. Tober, M.; Hennig, L.; Furch, D.: SEO Ranking-Faktoren und Rang-Korrelationen 2014 : Google Deutschland (2014) 0.00
    0.0023590683 = product of:
      0.021231614 = sum of:
        0.021231614 = product of:
          0.042463228 = sum of:
            0.042463228 = weight(_text_:22 in 1484) [ClassicSimilarity], result of:
              0.042463228 = score(doc=1484,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.30952093 = fieldWeight in 1484, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1484)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Date
    13. 9.2014 14:45:22
  15. Bar-Ilan, J.; Levene, M.; Mat-Hassan, M.: Methods for evaluating dynamic changes in search engine rankings : a case study (2006) 0.00
    0.0021557522 = product of:
      0.019401768 = sum of:
        0.019401768 = weight(_text_:of in 616) [ClassicSimilarity], result of:
          0.019401768 = score(doc=616,freq=42.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.31669703 = fieldWeight in 616, product of:
              6.4807405 = tf(freq=42.0), with freq of:
                42.0 = termFreq=42.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=616)
      0.11111111 = coord(1/9)
    
    Abstract
    Purpose - The objective of this paper is to characterize the changes in the rankings of the top ten results of major search engines over time and to compare the rankings between these engines. Design/methodology/approach - The papers compare rankings of the top-ten results of the search engines Google and AlltheWeb on ten identical queries over a period of three weeks. Only the top-ten results were considered, since users do not normally inspect more than the first results page returned by a search engine. The experiment was repeated twice, in October 2003 and in January 2004, in order to assess changes to the top-ten results of some of the queries during the three months interval. In order to assess the changes in the rankings, three measures were computed for each data collection point and each search engine. Findings - The findings in this paper show that the rankings of AlltheWeb were highly stable over each period, while the rankings of Google underwent constant yet minor changes, with occasional major ones. Changes over time can be explained by the dynamic nature of the web or by fluctuations in the search engines' indexes. The top-ten results of the two search engines had surprisingly low overlap. With such small overlap, the task of comparing the rankings of the two engines becomes extremely challenging. Originality/value - The paper shows that because of the abundance of information on the web, ranking search results is of extreme importance. The paper compares several measures for computing the similarity between rankings of search tools, and shows that none of the measures is fully satisfactory as a standalone measure. It also demonstrates the apparent differences in the ranking algorithms of two widely used search engines.
    Source
    Journal of documentation. 62(2006) no.6, S.708-729
  16. Thelwall, M.; Vaughan, L.: New versions of PageRank employing alternative Web document models (2004) 0.00
    0.0019958385 = product of:
      0.017962547 = sum of:
        0.017962547 = weight(_text_:of in 674) [ClassicSimilarity], result of:
          0.017962547 = score(doc=674,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2932045 = fieldWeight in 674, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=674)
      0.11111111 = coord(1/9)
    
    Abstract
    Introduces several new versions of PageRank (the link based Web page ranking algorithm), based on an information science perspective on the concept of the Web document. Although the Web page is the typical indivisible unit of information in search engine results and most Web information retrieval algorithms, other research has suggested that aggregating pages based on directories and domains gives promising alternatives, particularly when Web links are the object of study. The new algorithms introduced based on these alternatives were used to rank four sets of Web pages. The ranking results were compared with human subjects' rankings. The results of the tests were somewhat inconclusive: the new approach worked well for the set that includes pages from different Web sites; however, it does not work well in ranking pages that are from the same site. It seems that the new algorithms may be effective for some tasks but not for others, especially when only low numbers of links are involved or the pages to be ranked are from the same site or directory.
  17. Watters, C.; Amoudi, A.: Geosearcher : location-based ranking of search engine results (2003) 0.00
    0.0019502735 = product of:
      0.017552461 = sum of:
        0.017552461 = weight(_text_:of in 5152) [ClassicSimilarity], result of:
          0.017552461 = score(doc=5152,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.28651062 = fieldWeight in 5152, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5152)
      0.11111111 = coord(1/9)
    
    Abstract
    Waters and Amoudi describe GeoSearcher, a prototype ranking program that arranges search engine results along a geo-spatial dimension without the provision of geo-spatial meta-tags or the use of geo-spatial feature extraction. GeoSearcher uses URL analysis, IptoLL, Whois, and the Getty Thesaurus of Geographic Names to determine site location. It accepts the first 200 sites returned by a search engine, identifies the coordinates, calculates their distance from a reference point and ranks in ascending order by this value. For any retrieved site the system checks if it has already been located in the current session, then sends the domain name to Whois to generate a return of a two letter country code and an area code. With no success the name is stripped one level and resent. If this fails the top level domain is tested for being a country code. Any remaining unmatched names go to IptoLL. Distance is calculated using the center point of the geographic area and a provided reference location. A test run on a set of 100 URLs from a search was successful in locating 90 sites. Eighty three pages could be manually found and 68 had sufficient information to verify location determination. Of these 65 ( 95%) had been assigned reasonably correct geographic locations. A random set of URLs used instead of a search result, yielded 80% success.
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.2, S.140-151
  18. Wills, R.S.: Google's PageRank : the math behind the search engine (2006) 0.00
    0.0018219431 = product of:
      0.016397487 = sum of:
        0.016397487 = weight(_text_:of in 5954) [ClassicSimilarity], result of:
          0.016397487 = score(doc=5954,freq=30.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.26765788 = fieldWeight in 5954, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=5954)
      0.11111111 = coord(1/9)
    
    Abstract
    Approximately 91 million American adults use the Internet on a typical day The number-one Internet activity is reading and writing e-mail. Search engine use is next in line and continues to increase in popularity. In fact, survey findings indicate that nearly 60 million American adults use search engines on a given day. Even though there are many Internet search engines, Google, Yahoo!, and MSN receive over 81% of all search requests. Despite claims that the quality of search provided by Yahoo! and MSN now equals that of Google, Google continues to thrive as the search engine of choice, receiving over 46% of all search requests, nearly double the volume of Yahoo! and over four times that of MSN. I use Google's search engine on a daily basis and rarely request information from other search engines. One day, I decided to visit the homepages of Google. Yahoo!, and MSN to compare the quality of search results. Coffee was on my mind that day, so I entered the simple query "coffee" in the search box at each homepage. Table 1 shows the top ten (unsponsored) results returned by each search engine. Although ordered differently, two webpages, www.peets.com and www.coffeegeek.com, appear in all three top ten lists. In addition, each pairing of top ten lists has two additional results in common. Depending on the information I hoped to obtain about coffee by using the search engines, I could argue that any one of the three returned better results: however, I was not looking for a particular webpage, so all three listings of search results seemed of equal quality. Thus, I plan to continue using Google. My decision is indicative of the problem Yahoo!, MSN, and other search engine companies face in the quest to obtain a larger percentage of Internet search volume. Search engine users are loyal to one or a few search engines and are generally happy with search results. Thus, as long as Google continues to provide results deemed high in quality, Google likely will remain the top search engine. But what set Google apart from its competitors in the first place? The answer is PageRank. In this article I explain this simple mathematical algorithm that revolutionized Web search.
  19. White, R.W.; Jose, J.M.; Ruthven, I.: Using top-ranking sentences to facilitate effective information access (2005) 0.00
    0.0017640886 = product of:
      0.015876798 = sum of:
        0.015876798 = weight(_text_:of in 3881) [ClassicSimilarity], result of:
          0.015876798 = score(doc=3881,freq=18.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.25915858 = fieldWeight in 3881, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3881)
      0.11111111 = coord(1/9)
    
    Abstract
    Web searchers typically fall to view search results beyond the first page nor fully examine those results presented to them. In this article we describe an approach that encourages a deeper examination of the contents of the document set retrieved in response to a searcher's query. The approach shifts the focus of perusal and interaction away from potentially uninformative document surrogates (such as titles, sentence fragments, and URLs) to actual document content, and uses this content to drive the information seeking process. Current search interfaces assume searchers examine results document-by-document. In contrast our approach extracts, ranks, and presents the contents of the top-ranked document set. We use query-relevant topranking sentences extracted from the top documents at retrieval time as fine-grained representations of topranked document content and, when combined in a ranked list, an overview of these documents. The interaction of the searcher provides implicit evidence that is used to reorder the sentences where appropriate. We evaluate our approach in three separate user studies, each applying these sentences in a different way. The findings of these studies show that top-ranking sentences can facilitate effective information access.
    Source
    Journal of the American Society for Information Science and Technology. 56(2005) no.10, S.1113-1125
  20. Jindal, V.; Bawa, S.; Batra, S.: ¬A review of ranking approaches for semantic search on Web (2014) 0.00
    0.0017284468 = product of:
      0.015556021 = sum of:
        0.015556021 = weight(_text_:of in 2799) [ClassicSimilarity], result of:
          0.015556021 = score(doc=2799,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.25392252 = fieldWeight in 2799, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2799)
      0.11111111 = coord(1/9)
    
    Abstract
    With ever increasing information being available to the end users, search engines have become the most powerful tools for obtaining useful information scattered on the Web. However, it is very common that even most renowned search engines return result sets with not so useful pages to the user. Research on semantic search aims to improve traditional information search and retrieval methods where the basic relevance criteria rely primarily on the presence of query keywords within the returned pages. This work is an attempt to explore different relevancy ranking approaches based on semantics which are considered appropriate for the retrieval of relevant information. In this paper, various pilot projects and their corresponding outcomes have been investigated based on methodologies adopted and their most distinctive characteristics towards ranking. An overview of selected approaches and their comparison by means of the classification criteria has been presented. With the help of this comparison, some common concepts and outstanding features have been identified.

Languages

  • e 22
  • d 5

Types

  • a 22
  • m 3
  • el 2
  • r 1
  • More… Less…