Search (150 results, page 1 of 8)

  • × type_ss:"a"
  • × theme_ss:"Automatisches Klassifizieren"
  1. Hotho, A.; Bloehdorn, S.: Data Mining 2004 : Text classification by boosting weak learners based on terms and concepts (2004) 0.26
    0.25871408 = product of:
      0.46568534 = sum of:
        0.062223002 = product of:
          0.186669 = sum of:
            0.186669 = weight(_text_:3a in 562) [ClassicSimilarity], result of:
              0.186669 = score(doc=562,freq=2.0), product of:
                0.3321406 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03917671 = queryNorm
                0.56201804 = fieldWeight in 562, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=562)
          0.33333334 = coord(1/3)
        0.186669 = weight(_text_:2f in 562) [ClassicSimilarity], result of:
          0.186669 = score(doc=562,freq=2.0), product of:
            0.3321406 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03917671 = queryNorm
            0.56201804 = fieldWeight in 562, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=562)
        0.014200641 = weight(_text_:of in 562) [ClassicSimilarity], result of:
          0.014200641 = score(doc=562,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.23179851 = fieldWeight in 562, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=562)
        0.186669 = weight(_text_:2f in 562) [ClassicSimilarity], result of:
          0.186669 = score(doc=562,freq=2.0), product of:
            0.3321406 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03917671 = queryNorm
            0.56201804 = fieldWeight in 562, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=562)
        0.015923709 = product of:
          0.031847417 = sum of:
            0.031847417 = weight(_text_:22 in 562) [ClassicSimilarity], result of:
              0.031847417 = score(doc=562,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.23214069 = fieldWeight in 562, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=562)
          0.5 = coord(1/2)
      0.5555556 = coord(5/9)
    
    Abstract
    Document representations for text classification are typically based on the classical Bag-Of-Words paradigm. This approach comes with deficiencies that motivate the integration of features on a higher semantic level than single words. In this paper we propose an enhancement of the classical document representation through concepts extracted from background knowledge. Boosting is used for actual classification. Experimental evaluations on two well known text corpora support our approach through consistent improvement of the results.
    Content
    Vgl.: http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CEAQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.91.4940%26rep%3Drep1%26type%3Dpdf&ei=dOXrUMeIDYHDtQahsIGACg&usg=AFQjCNHFWVh6gNPvnOrOS9R3rkrXCNVD-A&sig2=5I2F5evRfMnsttSgFF9g7Q&bvm=bv.1357316858,d.Yms.
    Date
    8. 1.2013 10:22:32
    Source
    Proceedings of the 4th IEEE International Conference on Data Mining (ICDM 2004), 1-4 November 2004, Brighton, UK
  2. Sebastiani, F.: Classification of text, automatic (2006) 0.08
    0.078104936 = product of:
      0.1757361 = sum of:
        0.05872617 = weight(_text_:applications in 5003) [ClassicSimilarity], result of:
          0.05872617 = score(doc=5003,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.34048924 = fieldWeight in 5003, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5003)
        0.020956306 = weight(_text_:of in 5003) [ClassicSimilarity], result of:
          0.020956306 = score(doc=5003,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.34207192 = fieldWeight in 5003, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5003)
        0.028615767 = weight(_text_:systems in 5003) [ClassicSimilarity], result of:
          0.028615767 = score(doc=5003,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.23767869 = fieldWeight in 5003, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5003)
        0.06743785 = weight(_text_:software in 5003) [ClassicSimilarity], result of:
          0.06743785 = score(doc=5003,freq=4.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.43390724 = fieldWeight in 5003, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5003)
      0.44444445 = coord(4/9)
    
    Abstract
    Automatic text classification (ATC) is a discipline at the crossroads of information retrieval (IR), machine learning (ML), and computational linguistics (CL), and consists in the realization of text classifiers, i.e. software systems capable of assigning texts to one or more categories, or classes, from a predefined set. Applications range from the automated indexing of scientific articles, to e-mail routing, spam filtering, authorship attribution, and automated survey coding. This article will focus on the ML approach to ATC, whereby a software system (called the learner) automatically builds a classifier for the categories of interest by generalizing from a "training" set of pre-classified texts.
    Source
    Encyclopedia of language and linguistics. 2nd ed. Ed.: K. Brown. Vol. 14
  3. Ruocco, A.S.; Frieder, O.: Clustering and classification of large document bases in a parallel environment (1997) 0.04
    0.04161918 = product of:
      0.124857545 = sum of:
        0.05872617 = weight(_text_:applications in 1661) [ClassicSimilarity], result of:
          0.05872617 = score(doc=1661,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.34048924 = fieldWeight in 1661, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1661)
        0.016567415 = weight(_text_:of in 1661) [ClassicSimilarity], result of:
          0.016567415 = score(doc=1661,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2704316 = fieldWeight in 1661, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1661)
        0.049563963 = weight(_text_:systems in 1661) [ClassicSimilarity], result of:
          0.049563963 = score(doc=1661,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.41167158 = fieldWeight in 1661, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1661)
      0.33333334 = coord(3/9)
    
    Abstract
    Proposes the use of parallel computing systems to overcome the computationally intense clustering process. Examines 2 operations: clustering a document set and classifying the document set. Uses a subset of the TIPSTER corpus, specifically, articles from the Wall Street Journal. Document set classification was performed without the large storage requirements for ancillary data matrices. The time performance of the parallel systems was an improvement over sequential systems times, and produced the same clustering and classification scheme. Results show near linear speed up in higher threshold clustering applications
    Source
    Journal of the American Society for Information Science. 48(1997) no.10, S.932-943
  4. Dubin, D.: Dimensions and discriminability (1998) 0.03
    0.03275338 = product of:
      0.098260134 = sum of:
        0.05872617 = weight(_text_:applications in 2338) [ClassicSimilarity], result of:
          0.05872617 = score(doc=2338,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.34048924 = fieldWeight in 2338, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2338)
        0.020956306 = weight(_text_:of in 2338) [ClassicSimilarity], result of:
          0.020956306 = score(doc=2338,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.34207192 = fieldWeight in 2338, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2338)
        0.018577661 = product of:
          0.037155323 = sum of:
            0.037155323 = weight(_text_:22 in 2338) [ClassicSimilarity], result of:
              0.037155323 = score(doc=2338,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.2708308 = fieldWeight in 2338, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2338)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Visualization interfaces can improve subject access by highlighting the inclusion of document representation components in similarity and discrimination relationships. Within a set of retrieved documents, what kinds of groupings can index terms and subject headings make explicit? The role of controlled vocabulary in classifying search output is examined
    Date
    22. 9.1997 19:16:05
    Imprint
    Urbana-Champaign, IL : Illinois University at Urbana-Champaign, Graduate School of Library and Information Science
    Source
    Visualizing subject access for 21st century information resources: Papers presented at the 1997 Clinic on Library Applications of Data Processing, 2-4 Mar 1997, Graduate School of Library and Information Science, University of Illinois at Urbana-Champaign. Ed.: P.A. Cochrane et al
  5. Yao, H.; Etzkorn, L.H.; Virani, S.: Automated classification and retrieval of reusable software components (2008) 0.03
    0.030120917 = product of:
      0.13554412 = sum of:
        0.017552461 = weight(_text_:of in 1382) [ClassicSimilarity], result of:
          0.017552461 = score(doc=1382,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.28651062 = fieldWeight in 1382, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1382)
        0.117991656 = weight(_text_:software in 1382) [ClassicSimilarity], result of:
          0.117991656 = score(doc=1382,freq=24.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.75917953 = fieldWeight in 1382, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1382)
      0.22222222 = coord(2/9)
    
    Abstract
    The authors describe their research which improves software reuse by using an automated approach to semantically search for and retrieve reusable software components in large software component repositories and on the World Wide Web (WWW). Using automation and smart (semantic) techniques, their approach speeds up the search and retrieval of reusable software components, while retaining good accuracy, and therefore improves the affordability of software reuse. A program understanding of software components and natural language understanding of user queries was employed. Then the software component descriptions were compared by matching the resulting semantic representations of the user queries to the semantic representations of the software components to search for software components that best match the user queries. A proof of concept system was developed to test the authors' approach. The results of this proof of concept system were compared to human experts, and statistical analysis was performed on the collected experimental data. The results from these experiments demonstrate that this automated semantic-based approach for software reusable component classification and retrieval is successful when compared to the labor-intensive results from the experts, thus showing that this approach can significantly benefit software reuse classification and retrieval.
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.4, S.613-627
  6. Yi, K.: Automatic text classification using library classification schemes : trends, issues and challenges (2007) 0.03
    0.030045634 = product of:
      0.0901369 = sum of:
        0.05872617 = weight(_text_:applications in 2560) [ClassicSimilarity], result of:
          0.05872617 = score(doc=2560,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.34048924 = fieldWeight in 2560, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2560)
        0.0128330635 = weight(_text_:of in 2560) [ClassicSimilarity], result of:
          0.0128330635 = score(doc=2560,freq=6.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.20947541 = fieldWeight in 2560, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2560)
        0.018577661 = product of:
          0.037155323 = sum of:
            0.037155323 = weight(_text_:22 in 2560) [ClassicSimilarity], result of:
              0.037155323 = score(doc=2560,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.2708308 = fieldWeight in 2560, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2560)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    The proliferation of digital resources and their integration into a traditional library setting has created a pressing need for an automated tool that organizes textual information based on library classification schemes. Automated text classification is a research field of developing tools, methods, and models to automate text classification. This article describes the current popular approach for text classification and major text classification projects and applications that are based on library classification schemes. Related issues and challenges are discussed, and a number of considerations for the challenges are examined.
    Date
    22. 9.2008 18:31:54
  7. Humphrey, S.M.; Névéol, A.; Browne, A.; Gobeil, J.; Ruch, P.; Darmoni, S.J.: Comparing a rule-based versus statistical system for automatic categorization of MEDLINE documents according to biomedical specialty (2009) 0.03
    0.028607449 = product of:
      0.085822344 = sum of:
        0.041947264 = weight(_text_:applications in 3300) [ClassicSimilarity], result of:
          0.041947264 = score(doc=3300,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 3300, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3300)
        0.014968789 = weight(_text_:of in 3300) [ClassicSimilarity], result of:
          0.014968789 = score(doc=3300,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.24433708 = fieldWeight in 3300, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3300)
        0.02890629 = weight(_text_:systems in 3300) [ClassicSimilarity], result of:
          0.02890629 = score(doc=3300,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.24009174 = fieldWeight in 3300, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3300)
      0.33333334 = coord(3/9)
    
    Abstract
    Automatic document categorization is an important research problem in Information Science and Natural Language Processing. Many applications, including, Word Sense Disambiguation and Information Retrieval in large collections, can benefit from such categorization. This paper focuses on automatic categorization of documents from the biomedical literature into broad discipline-based categories. Two different systems are described and contrasted: CISMeF, which uses rules based on human indexing of the documents by the Medical Subject Headings (MeSH) controlled vocabulary in order to assign metaterms (MTs), and Journal Descriptor Indexing (JDI), based on human categorization of about 4,000 journals and statistical associations between journal descriptors (JDs) and textwords in the documents. We evaluate and compare the performance of these systems against a gold standard of humanly assigned categories for 100 MEDLINE documents, using six measures selected from trec_eval. The results show that for five of the measures performance is comparable, and for one measure JDI is superior. We conclude that these results favor JDI, given the significantly greater intellectual overhead involved in human indexing and maintaining a rule base for mapping MeSH terms to MTs. We also note a JDI method that associates JDs with MeSH indexing rather than textwords, and it may be worthwhile to investigate whether this JDI method (statistical) and CISMeF (rule-based) might be combined and then evaluated showing they are complementary to one another.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.12, S.2530-2539
  8. Wang, J.: ¬An extensive study on automated Dewey Decimal Classification (2009) 0.03
    0.02546304 = product of:
      0.07638912 = sum of:
        0.041947264 = weight(_text_:applications in 3172) [ClassicSimilarity], result of:
          0.041947264 = score(doc=3172,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 3172, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3172)
        0.0140020205 = weight(_text_:of in 3172) [ClassicSimilarity], result of:
          0.0140020205 = score(doc=3172,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.22855641 = fieldWeight in 3172, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3172)
        0.020439833 = weight(_text_:systems in 3172) [ClassicSimilarity], result of:
          0.020439833 = score(doc=3172,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 3172, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3172)
      0.33333334 = coord(3/9)
    
    Abstract
    In this paper, we present a theoretical analysis and extensive experiments on the automated assignment of Dewey Decimal Classification (DDC) classes to bibliographic data with a supervised machine-learning approach. Library classification systems, such as the DDC, impose great obstacles on state-of-art text categorization (TC) technologies, including deep hierarchy, data sparseness, and skewed distribution. We first analyze statistically the document and category distributions over the DDC, and discuss the obstacles imposed by bibliographic corpora and library classification schemes on TC technology. To overcome these obstacles, we propose an innovative algorithm to reshape the DDC structure into a balanced virtual tree by balancing the category distribution and flattening the hierarchy. To improve the classification effectiveness to a level acceptable to real-world applications, we propose an interactive classification model that is able to predict a class of any depth within a limited number of user interactions. The experiments are conducted on a large bibliographic collection created by the Library of Congress within the science and technology domains over 10 years. With no more than three interactions, a classification accuracy of nearly 90% is achieved, thus providing a practical solution to the automatic bibliographic classification problem.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.11, S.2269-2286
  9. Piros, A.: Automatic interpretation of complex UDC numbers : towards support for library systems (2015) 0.02
    0.024787461 = product of:
      0.07436238 = sum of:
        0.012701438 = weight(_text_:of in 2301) [ClassicSimilarity], result of:
          0.012701438 = score(doc=2301,freq=18.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.20732687 = fieldWeight in 2301, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=2301)
        0.023125032 = weight(_text_:systems in 2301) [ClassicSimilarity], result of:
          0.023125032 = score(doc=2301,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.19207339 = fieldWeight in 2301, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03125 = fieldNorm(doc=2301)
        0.03853591 = weight(_text_:software in 2301) [ClassicSimilarity], result of:
          0.03853591 = score(doc=2301,freq=4.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.24794699 = fieldWeight in 2301, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03125 = fieldNorm(doc=2301)
      0.33333334 = coord(3/9)
    
    Abstract
    Analytico-synthetic and faceted classifications, such as Universal Decimal Classification (UDC) express content of documents with complex, pre-combined classification codes. Without classification authority control that would help manage and access structured notations, the use of UDC codes in searching and browsing is limited. Existing UDC parsing solutions are usually created for a particular database system or a specific task and are not widely applicable. The approach described in this paper provides a solution by which the analysis and interpretation of UDC notations would be stored into an intermediate format (in this case, in XML) by automatic means without any data or information loss. Due to its richness, the output file can be converted into different formats, such as standard mark-up and data exchange formats or simple lists of the recommended entry points of a UDC number. The program can also be used to create authority records containing complex UDC numbers which can be comprehensively analysed in order to be retrieved effectively. The Java program, as well as the corresponding schema definition it employs, is under continuous development. The current version of the interpreter software is now available online for testing purposes at the following web site: http://interpreter-eto.rhcloud.com. The future plan is to implement conversion methods for standard formats and to create standard online interfaces in order to make it possible to use the features of software as a service. This would result in the algorithm being able to be employed both in existing and future library systems to analyse UDC numbers without any significant programming effort.
    Source
    Classification and authority control: expanding resource discovery: proceedings of the International UDC Seminar 2015, 29-30 October 2015, Lisbon, Portugal. Eds.: Slavic, A. u. M.I. Cordeiro
  10. AlQenaei, Z.M.; Monarchi, D.E.: ¬The use of learning techniques to analyze the results of a manual classification system (2016) 0.02
    0.024767645 = product of:
      0.074302934 = sum of:
        0.019801848 = weight(_text_:of in 2836) [ClassicSimilarity], result of:
          0.019801848 = score(doc=2836,freq=28.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.32322758 = fieldWeight in 2836, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2836)
        0.020439833 = weight(_text_:systems in 2836) [ClassicSimilarity], result of:
          0.020439833 = score(doc=2836,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 2836, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2836)
        0.034061253 = weight(_text_:software in 2836) [ClassicSimilarity], result of:
          0.034061253 = score(doc=2836,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.21915624 = fieldWeight in 2836, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2836)
      0.33333334 = coord(3/9)
    
    Abstract
    Classification is the process of assigning objects to pre-defined classes based on observations or characteristics of those objects, and there are many approaches to performing this task. The overall objective of this study is to demonstrate the use of two learning techniques to analyze the results of a manual classification system. Our sample consisted of 1,026 documents, from the ACM Computing Classification System, classified by their authors as belonging to one of the groups of the classification system: "H.3 Information Storage and Retrieval." A singular value decomposition of the documents' weighted term-frequency matrix was used to represent each document in a 50-dimensional vector space. The analysis of the representation using both supervised (decision tree) and unsupervised (clustering) techniques suggests that two pairs of the ACM classes are closely related to each other in the vector space. Class 1 (Content Analysis and Indexing) is closely related to Class 3 (Information Search and Retrieval), and Class 4 (Systems and Software) is closely related to Class 5 (Online Information Services). Further analysis was performed to test the diffusion of the words in the two classes using both cosine and Euclidean distance.
  11. Golub, K.; Soergel, D.; Buchanan, G.; Tudhope, D.; Lykke, M.; Hiom, D.: ¬A framework for evaluating automatic indexing or classification in the context of retrieval (2016) 0.02
    0.023156626 = product of:
      0.06946988 = sum of:
        0.014968789 = weight(_text_:of in 3311) [ClassicSimilarity], result of:
          0.014968789 = score(doc=3311,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.24433708 = fieldWeight in 3311, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3311)
        0.020439833 = weight(_text_:systems in 3311) [ClassicSimilarity], result of:
          0.020439833 = score(doc=3311,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 3311, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3311)
        0.034061253 = weight(_text_:software in 3311) [ClassicSimilarity], result of:
          0.034061253 = score(doc=3311,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.21915624 = fieldWeight in 3311, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3311)
      0.33333334 = coord(3/9)
    
    Abstract
    Tools for automatic subject assignment help deal with scale and sustainability in creating and enriching metadata, establishing more connections across and between resources and enhancing consistency. Although some software vendors and experimental researchers claim the tools can replace manual subject indexing, hard scientific evidence of their performance in operating information environments is scarce. A major reason for this is that research is usually conducted in laboratory conditions, excluding the complexities of real-life systems and situations. The article reviews and discusses issues with existing evaluation approaches such as problems of aboutness and relevance assessments, implying the need to use more than a single "gold standard" method when evaluating indexing and retrieval, and proposes a comprehensive evaluation framework. The framework is informed by a systematic review of the literature on evaluation approaches: evaluating indexing quality directly through assessment by an evaluator or through comparison with a gold standard, evaluating the quality of computer-assisted indexing directly in the context of an indexing workflow, and evaluating indexing quality indirectly through analyzing retrieval performance.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.1, S.3-16
  12. Jenkins, C.: Automatic classification of Web resources using Java and Dewey Decimal Classification (1998) 0.02
    0.021780707 = product of:
      0.06534212 = sum of:
        0.018148692 = weight(_text_:of in 1673) [ClassicSimilarity], result of:
          0.018148692 = score(doc=1673,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.29624295 = fieldWeight in 1673, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1673)
        0.028615767 = weight(_text_:systems in 1673) [ClassicSimilarity], result of:
          0.028615767 = score(doc=1673,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.23767869 = fieldWeight in 1673, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1673)
        0.018577661 = product of:
          0.037155323 = sum of:
            0.037155323 = weight(_text_:22 in 1673) [ClassicSimilarity], result of:
              0.037155323 = score(doc=1673,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.2708308 = fieldWeight in 1673, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1673)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    The Wolverhampton Web Library (WWLib) is a WWW search engine that provides access to UK based information. The experimental version developed in 1995, was a success but highlighted the need for a much higher degree of automation. An interesting feature of the experimental WWLib was that it organised information according to DDC. Discusses the advantages of classification and describes the automatic classifier that is being developed in Java as part of the new, fully automated WWLib
    Date
    1. 8.1996 22:08:06
    Footnote
    Contribution to a special issue devoted to the Proceedings of the 7th International World Wide Web Conference, held 14-18 April 1998, Brisbane, Australia; vgl. auch: http://www7.scu.edu.au/programme/posters/1846/com1846.htm.
    Source
    Computer networks and ISDN systems. 30(1998) nos.1/7, S.646-648
  13. Montesi, M.; Navarrete, T.: Classifying web genres in context : A case study documenting the web genres used by a software engineer (2008) 0.02
    0.018887917 = product of:
      0.08499563 = sum of:
        0.014200641 = weight(_text_:of in 2100) [ClassicSimilarity], result of:
          0.014200641 = score(doc=2100,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.23179851 = fieldWeight in 2100, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2100)
        0.070794985 = weight(_text_:software in 2100) [ClassicSimilarity], result of:
          0.070794985 = score(doc=2100,freq=6.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.4555077 = fieldWeight in 2100, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.046875 = fieldNorm(doc=2100)
      0.22222222 = coord(2/9)
    
    Abstract
    This case study analyzes the Internet-based resources that a software engineer uses in his daily work. Methodologically, we studied the web browser history of the participant, classifying all the web pages he had seen over a period of 12 days into web genres. We interviewed him before and after the analysis of the web browser history. In the first interview, he spoke about his general information behavior; in the second, he commented on each web genre, explaining why and how he used them. As a result, three approaches allow us to describe the set of 23 web genres obtained: (a) the purposes they serve for the participant; (b) the role they play in the various work and search phases; (c) and the way they are used in combination with each other. Further observations concern the way the participant assesses quality of web-based resources, and his information behavior as a software engineer.
  14. Hu, G.; Zhou, S.; Guan, J.; Hu, X.: Towards effective document clustering : a constrained K-means based approach (2008) 0.02
    0.017406443 = product of:
      0.078329 = sum of:
        0.05872617 = weight(_text_:applications in 2113) [ClassicSimilarity], result of:
          0.05872617 = score(doc=2113,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.34048924 = fieldWeight in 2113, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2113)
        0.01960283 = weight(_text_:of in 2113) [ClassicSimilarity], result of:
          0.01960283 = score(doc=2113,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.31997898 = fieldWeight in 2113, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2113)
      0.22222222 = coord(2/9)
    
    Abstract
    Document clustering is an important tool for document collection organization and browsing. In real applications, some limited knowledge about cluster membership of a small number of documents is often available, such as some pairs of documents belonging to the same cluster. This kind of prior knowledge can be served as constraints for the clustering process. We integrate the constraints into the trace formulation of the sum of square Euclidean distance function of K-means. Then, the combined criterion function is transformed into trace maximization, which is further optimized by eigen-decomposition. Our experimental evaluation shows that the proposed semi-supervised clustering method can achieve better performance, compared to three existing methods.
  15. Losee, R.M.: Text windows and phrases differing by discipline, location in document, and syntactic structure (1996) 0.02
    0.016731909 = product of:
      0.075293586 = sum of:
        0.05872617 = weight(_text_:applications in 6962) [ClassicSimilarity], result of:
          0.05872617 = score(doc=6962,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.34048924 = fieldWeight in 6962, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6962)
        0.016567415 = weight(_text_:of in 6962) [ClassicSimilarity], result of:
          0.016567415 = score(doc=6962,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2704316 = fieldWeight in 6962, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6962)
      0.22222222 = coord(2/9)
    
    Abstract
    Knowledge of window style, content, location, and grammatical structure may be used to classify documents as originating within a particular discipline or may be used to place a document on a theory vs. practice spectrum. Examines characteristics of phrases and text windows, including their number, location in documents, and grammatical construction, in addition to studying variations in these window characteristics across disciplines. Examines some of the linguistic regularities for individual disciplines, and suggests families of regularities that may provide helpful for the automatic classification of documents, as well as for information retrieval and filtering applications
  16. Gauch, S.; Chandramouli, A.; Ranganathan, S.: Training a hierarchical classifier using inter document relationships (2009) 0.02
    0.015648767 = product of:
      0.07041945 = sum of:
        0.050336715 = weight(_text_:applications in 2697) [ClassicSimilarity], result of:
          0.050336715 = score(doc=2697,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2918479 = fieldWeight in 2697, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=2697)
        0.020082738 = weight(_text_:of in 2697) [ClassicSimilarity], result of:
          0.020082738 = score(doc=2697,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.32781258 = fieldWeight in 2697, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2697)
      0.22222222 = coord(2/9)
    
    Abstract
    Text classifiers automatically classify documents into appropriate concepts for different applications. Most classification approaches use flat classifiers that treat each concept as independent, even when the concept space is hierarchically structured. In contrast, hierarchical text classification exploits the structural relationships between the concepts. In this article, we explore the effectiveness of hierarchical classification for a large concept hierarchy. Since the quality of the classification is dependent on the quality and quantity of the training data, we evaluate the use of documents selected from subconcepts to address the sparseness of training data for the top-level classifiers and the use of document relationships to identify the most representative training documents. By selecting training documents using structural and similarity relationships, we achieve a statistically significant improvement of 39.8% (from 54.5-76.2%) in the accuracy of the hierarchical classifier over that of the flat classifier for a large, three-level concept hierarchy.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.1, S.47-58
  17. Ko, Y.: ¬A new term-weighting scheme for text classification using the odds of positive and negative class probabilities (2015) 0.01
    0.014341635 = product of:
      0.064537354 = sum of:
        0.050336715 = weight(_text_:applications in 2339) [ClassicSimilarity], result of:
          0.050336715 = score(doc=2339,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2918479 = fieldWeight in 2339, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=2339)
        0.014200641 = weight(_text_:of in 2339) [ClassicSimilarity], result of:
          0.014200641 = score(doc=2339,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.23179851 = fieldWeight in 2339, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2339)
      0.22222222 = coord(2/9)
    
    Abstract
    Text classification (TC) is a core technique for text mining and information retrieval. It has been applied to many applications in many different research and industrial areas. Term-weighting schemes assign an appropriate weight to each term to obtain a high TC performance. Although term weighting is one of the important modules for TC and TC has different peculiarities from those in information retrieval, many term-weighting schemes used in information retrieval, such as term frequency-inverse document frequency (tf-idf), have been used in TC in the same manner. The peculiarity of TC that differs most from information retrieval is the existence of class information. This article proposes a new term-weighting scheme that uses class information using positive and negative class distributions. As a result, the proposed scheme, log tf-TRR, consistently performs better than do other schemes using class information as well as traditional schemes such as tf-idf.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.12, S.2553-2565
  18. Ahmed, M.; Mukhopadhyay, M.; Mukhopadhyay, P.: Automated knowledge organization : AI ML based subject indexing system for libraries (2023) 0.01
    0.014232597 = product of:
      0.06404669 = sum of:
        0.015876798 = weight(_text_:of in 977) [ClassicSimilarity], result of:
          0.015876798 = score(doc=977,freq=18.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.25915858 = fieldWeight in 977, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=977)
        0.048169892 = weight(_text_:software in 977) [ClassicSimilarity], result of:
          0.048169892 = score(doc=977,freq=4.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.30993375 = fieldWeight in 977, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0390625 = fieldNorm(doc=977)
      0.22222222 = coord(2/9)
    
    Abstract
    The research study as reported here is an attempt to explore the possibilities of an AI/ML-based semi-automated indexing system in a library setup to handle large volumes of documents. It uses the Python virtual environment to install and configure an open source AI environment (named Annif) to feed the LOD (Linked Open Data) dataset of Library of Congress Subject Headings (LCSH) as a standard KOS (Knowledge Organisation System). The framework deployed the Turtle format of LCSH after cleaning the file with Skosify, applied an array of backend algorithms (namely TF-IDF, Omikuji, and NN-Ensemble) to measure relative performance, and selected Snowball as an analyser. The training of Annif was conducted with a large set of bibliographic records populated with subject descriptors (MARC tag 650$a) and indexed by trained LIS professionals. The training dataset is first treated with MarcEdit to export it in a format suitable for OpenRefine, and then in OpenRefine it undergoes many steps to produce a bibliographic record set suitable to train Annif. The framework, after training, has been tested with a bibliographic dataset to measure indexing efficiencies, and finally, the automated indexing framework is integrated with data wrangling software (OpenRefine) to produce suggested headings on a mass scale. The entire framework is based on open-source software, open datasets, and open standards.
    Source
    DESIDOC journal of library and information technology. 43(2023) no.1, S.45-54
  19. Huang, Y.-L.: ¬A theoretic and empirical research of cluster indexing for Mandarine Chinese full text document (1998) 0.01
    0.013932516 = product of:
      0.06269632 = sum of:
        0.022227516 = weight(_text_:of in 513) [ClassicSimilarity], result of:
          0.022227516 = score(doc=513,freq=18.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.36282203 = fieldWeight in 513, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=513)
        0.04046881 = weight(_text_:systems in 513) [ClassicSimilarity], result of:
          0.04046881 = score(doc=513,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.33612844 = fieldWeight in 513, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=513)
      0.22222222 = coord(2/9)
    
    Abstract
    Since most popular commercialized systems for full text retrieval are designed with full text scaning and Boolean logic query mode, these systems use an oversimplified relationship between the indexing form and the content of document. Reports the use of Singular Value Decomposition (SVD) to develop a Cluster Indexing Model (CIM) based on a Vector Space Model (VSM) in orer to explore the index theory of cluster indexing for chinese full text documents. From a series of experiments, it was found that the indexing performance of CIM is better than traditional VSM, and has almost equivalent effectiveness of the authority control of index terms
    Source
    Bulletin of library and information science. 1998, no.24, S.44-68
  20. Chung, Y.M.; Lee, J.Y.: ¬A corpus-based approach to comparative evaluation of statistical term association measures (2001) 0.01
    0.013876473 = product of:
      0.062444124 = sum of:
        0.041947264 = weight(_text_:applications in 5769) [ClassicSimilarity], result of:
          0.041947264 = score(doc=5769,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 5769, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5769)
        0.02049686 = weight(_text_:of in 5769) [ClassicSimilarity], result of:
          0.02049686 = score(doc=5769,freq=30.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.33457235 = fieldWeight in 5769, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5769)
      0.22222222 = coord(2/9)
    
    Abstract
    Statistical association measures have been widely applied in information retrieval research, usually employing a clustering of documents or terms on the basis of their relationships. Applications of the association measures for term clustering include automatic thesaurus construction and query expansion. This research evaluates the similarity of six association measures by comparing the relationship and behavior they demonstrate in various analyses of a test corpus. Analysis techniques include comparisons of highly ranked term pairs and term clusters, analyses of the correlation among the association measures using Pearson's correlation coefficient and MDS mapping, and an analysis of the impact of a term frequency on the association values by means of z-score. The major findings of the study are as follows: First, the most similar association measures are mutual information and Yule's coefficient of colligation Y, whereas cosine and Jaccard coefficients, as well as X**2 statistic and likelihood ratio, demonstrate quite similar behavior for terms with high frequency. Second, among all the measures, the X**2 statistic is the least affected by the frequency of terms. Third, although cosine and Jaccard coefficients tend to emphasize high frequency terms, mutual information and Yule's Y seem to overestimate rare terms
    Source
    Journal of the American Society for Information Science and technology. 52(2001) no.4, S.283-296

Years

Languages

  • e 142
  • d 6
  • chi 1
  • More… Less…