Search (11 results, page 1 of 1)

  • × author_ss:"Zeng, M.L."
  1. Zeng, M.L.; Panzer, M.; Salaba, A.: Expressing classification schemes with OWL 2 Web Ontology Language : exploring issues and opportunities based on experiments using OWL 2 for three classification schemes 0.00
    0.0020677852 = product of:
      0.020677852 = sum of:
        0.020677852 = product of:
          0.062033553 = sum of:
            0.062033553 = weight(_text_:2010 in 3130) [ClassicSimilarity], result of:
              0.062033553 = score(doc=3130,freq=2.0), product of:
                0.14672957 = queryWeight, product of:
                  4.7831497 = idf(docFreq=1005, maxDocs=44218)
                  0.03067635 = queryNorm
                0.4227747 = fieldWeight in 3130, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.7831497 = idf(docFreq=1005, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3130)
          0.33333334 = coord(1/3)
      0.1 = coord(1/10)
    
    Source
    Paradigms and conceptual systems in knowledge organization: Proceedings of the Eleventh International ISKO conference, Rome, 23-26 February 2010, ed. Claudio Gnoli, Indeks, Frankfurt M
  2. Mitchell, J.S.; Zeng, M.L.; Zumer, M.: Modeling classification systems in multicultural and multilingual contexts (2012) 0.00
    0.0011755573 = product of:
      0.011755573 = sum of:
        0.011755573 = product of:
          0.035266716 = sum of:
            0.035266716 = weight(_text_:22 in 1967) [ClassicSimilarity], result of:
              0.035266716 = score(doc=1967,freq=4.0), product of:
                0.10742335 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03067635 = queryNorm
                0.32829654 = fieldWeight in 1967, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1967)
          0.33333334 = coord(1/3)
      0.1 = coord(1/10)
    
    Abstract
    This paper reports on the second part of an initiative of the authors on researching classification systems with the conceptual model defined by the Functional Requirements for Subject Authority Data (FRSAD) final report. In an earlier study, the authors explored whether the FRSAD conceptual model could be extended beyond subject authority data to model classification data. The focus of the current study is to determine if classification data modeled using FRSAD can be used to solve real-world discovery problems in multicultural and multilingual contexts. The paper discusses the relationships between entities (same type or different types) in the context of classification systems that involve multiple translations and /or multicultural implementations. Results of two case studies are presented in detail: (a) two instances of the DDC (DDC 22 in English, and the Swedish-English mixed translation of DDC 22), and (b) Chinese Library Classification. The use cases of conceptual models in practice are also discussed.
  3. Zeng, M.L.; Sula, C.A.; Gracy, K.F.; Hyvönen, E.; Alves Lima, V.M.: JASIST special issue on digital humanities (DH) : guest editorial (2022) 0.00
    0.0010338926 = product of:
      0.010338926 = sum of:
        0.010338926 = product of:
          0.031016776 = sum of:
            0.031016776 = weight(_text_:2010 in 462) [ClassicSimilarity], result of:
              0.031016776 = score(doc=462,freq=2.0), product of:
                0.14672957 = queryWeight, product of:
                  4.7831497 = idf(docFreq=1005, maxDocs=44218)
                  0.03067635 = queryNorm
                0.21138735 = fieldWeight in 462, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.7831497 = idf(docFreq=1005, maxDocs=44218)
                  0.03125 = fieldNorm(doc=462)
          0.33333334 = coord(1/3)
      0.1 = coord(1/10)
    
    Abstract
    More than 15 years ago, A Companion to Digital Humanities marked out the area of digital humanities (DH) "as a discipline in its own right" (Schreibman et al., 2004, p. xxiii). In the years that followed, there is ample evidence that the DH domain, formed by the intersection of humanities disciplines and digital information technology, has undergone remarkable expansion. This growth is reflected in A New Companion to Digital Humanities (Schreibman et al., 2016). The extensively revised contents of the second edition were contributed by a global team of authors who are pioneers of innovative research in the field. Over this formative period, DH has become a widely recognized, impactful mode of scholarship and an institutional unit for collaborative, transdisciplinary, and computationally engaged research, teaching, and publication (Burdick et al., 2012; Svensson, 2010; Van Ruyskensvelde, 2014). The field of DH has advanced tremendously over the last decade and continues to expand. Meanwhile, competing definitions and approaches of DH scholars continue to spark debate. "Complexity" was a theme of the DH2019 international conference, as it demonstrates the multifaceted connections within DH scholarship today (Alliance of Digital Humanities Organizations, 2019). Yet, while it is often assumed that the DH is in flux and not particularly fixed as an institutional or intellectual construct, there are also obviously touchstones within the DH field, most visibly in the relationship between traditional humanities disciplines and technological infrastructures. Thus, it is still meaningful to "bring together the humanistic and the digital through embracing a non-territorial and liminal zone" (Svensson, 2016, p. 477). This is the focus of this JASIST special issue, which mirrors the increasing attention on DH worldwide.
  4. Zeng, M.L.; Kronenberg, F.; Molholt, P.: Toward a conceptual framework for complementary and alternative medicine : challenges and issues (2001) 0.00
    0.0010176711 = product of:
      0.010176711 = sum of:
        0.010176711 = product of:
          0.03053013 = sum of:
            0.03053013 = weight(_text_:problem in 6740) [ClassicSimilarity], result of:
              0.03053013 = score(doc=6740,freq=2.0), product of:
                0.1302053 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.03067635 = queryNorm
                0.23447686 = fieldWeight in 6740, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6740)
          0.33333334 = coord(1/3)
      0.1 = coord(1/10)
    
    Abstract
    A problem facing information retrieval and exchange among international medical practitioners and researchers is the lack of a knowledge structure or conceptual framework that relates concepts used in the Western medical system to those used in non-Western medical systems. This paper presents challenges we have encountered in attempting to develop a general conceptual framework to cover concepts and terminology used for information retrieval in the field of complementary and alternative medicine. This is a broad field that has not been covered appropriately in knowledge organization systems such as classification schemes, thesauri, and terminology databases. The objective of the project is to improve significantly the efficiency and the quality of cross-language and cross-cultural information exchange and knowledge discovery by facilitating concept mapping and information retrieval between Western and Eastern medical traditions. Major facets of the conceptual framework include Diagnostic Categories, Therapeutic Preparations, Human Anatomy, Selected Diseases/Medical Conditions, and Basics of Traditional Systems. The paper discusses issues of subject coverage, the representation of medical concepts in the conceptual framework, incorporation of concept names that have existed in individual traditional systems, and the relationships among concepts. Findings reported are primarily from current work that focuses on Traditional Chinese Medicine.
  5. Mitchell, J.S.; Zeng, M.L.; Zumer, M.: Modeling classification systems in multicultural and multilingual contexts (2014) 0.00
    9.79631E-4 = product of:
      0.009796309 = sum of:
        0.009796309 = product of:
          0.029388927 = sum of:
            0.029388927 = weight(_text_:22 in 1962) [ClassicSimilarity], result of:
              0.029388927 = score(doc=1962,freq=4.0), product of:
                0.10742335 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03067635 = queryNorm
                0.27358043 = fieldWeight in 1962, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1962)
          0.33333334 = coord(1/3)
      0.1 = coord(1/10)
    
    Abstract
    This article reports on the second part of an initiative of the authors on researching classification systems with the conceptual model defined by the Functional Requirements for Subject Authority Data (FRSAD) final report. In an earlier study, the authors explored whether the FRSAD conceptual model could be extended beyond subject authority data to model classification data. The focus of the current study is to determine if classification data modeled using FRSAD can be used to solve real-world discovery problems in multicultural and multilingual contexts. The article discusses the relationships between entities (same type or different types) in the context of classification systems that involve multiple translations and/or multicultural implementations. Results of two case studies are presented in detail: (a) two instances of the Dewey Decimal Classification [DDC] (DDC 22 in English, and the Swedish-English mixed translation of DDC 22), and (b) Chinese Library Classification. The use cases of conceptual models in practice are also discussed.
  6. Salaba, A.; Zeng, M.L.: Extending the "Explore" user task beyond subject authority data into the linked data sphere (2014) 0.00
    9.697851E-4 = product of:
      0.009697851 = sum of:
        0.009697851 = product of:
          0.029093552 = sum of:
            0.029093552 = weight(_text_:22 in 1465) [ClassicSimilarity], result of:
              0.029093552 = score(doc=1465,freq=2.0), product of:
                0.10742335 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03067635 = queryNorm
                0.2708308 = fieldWeight in 1465, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1465)
          0.33333334 = coord(1/3)
      0.1 = coord(1/10)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  7. Golub, K.; Tudhope, D.; Zeng, M.L.; Zumer, M.: Terminology registries for knowledge organization systems : functionality, use, and attributes (2014) 0.00
    8.3124434E-4 = product of:
      0.008312443 = sum of:
        0.008312443 = product of:
          0.02493733 = sum of:
            0.02493733 = weight(_text_:22 in 1347) [ClassicSimilarity], result of:
              0.02493733 = score(doc=1347,freq=2.0), product of:
                0.10742335 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03067635 = queryNorm
                0.23214069 = fieldWeight in 1347, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1347)
          0.33333334 = coord(1/3)
      0.1 = coord(1/10)
    
    Date
    22. 8.2014 17:12:54
  8. Zeng, M.L.; Gracy, K.F.; Zumer, M.: Using a semantic analysis tool to generate subject access points : a study using Panofsky's theory and two research samples (2014) 0.00
    8.3124434E-4 = product of:
      0.008312443 = sum of:
        0.008312443 = product of:
          0.02493733 = sum of:
            0.02493733 = weight(_text_:22 in 1464) [ClassicSimilarity], result of:
              0.02493733 = score(doc=1464,freq=2.0), product of:
                0.10742335 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03067635 = queryNorm
                0.23214069 = fieldWeight in 1464, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1464)
          0.33333334 = coord(1/3)
      0.1 = coord(1/10)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  9. Zeng, M.L.; Fan, W.; Lin, X.: SKOS for an integrated vocabulary structure (2008) 0.00
    7.837048E-4 = product of:
      0.007837048 = sum of:
        0.007837048 = product of:
          0.023511142 = sum of:
            0.023511142 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
              0.023511142 = score(doc=2654,freq=4.0), product of:
                0.10742335 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03067635 = queryNorm
                0.21886435 = fieldWeight in 2654, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2654)
          0.33333334 = coord(1/3)
      0.1 = coord(1/10)
    
    Abstract
    In order to transfer the Chinese Classified Thesaurus (CCT) into a machine-processable format and provide CCT-based Web services, a pilot study has been conducted in which a variety of selected CCT classes and mapped thesaurus entries are encoded with SKOS. OWL and RDFS are also used to encode the same contents for the purposes of feasibility and cost-benefit comparison. CCT is a collected effort led by the National Library of China. It is an integration of the national standards Chinese Library Classification (CLC) 4th edition and Chinese Thesaurus (CT). As a manually created mapping product, CCT provides for each of the classes the corresponding thesaurus terms, and vice versa. The coverage of CCT includes four major clusters: philosophy, social sciences and humanities, natural sciences and technologies, and general works. There are 22 main-classes, 52,992 sub-classes and divisions, 110,837 preferred thesaurus terms, 35,690 entry terms (non-preferred terms), and 59,738 pre-coordinated headings (Chinese Classified Thesaurus, 2005) Major challenges of encoding this large vocabulary comes from its integrated structure. CCT is a result of the combination of two structures (illustrated in Figure 1): a thesaurus that uses ISO-2788 standardized structure and a classification scheme that is basically enumerative, but provides some flexibility for several kinds of synthetic mechanisms Other challenges include the complex relationships caused by differences of granularities of two original schemes and their presentation with various levels of SKOS elements; as well as the diverse coordination of entries due to the use of auxiliary tables and pre-coordinated headings derived from combining classes, subdivisions, and thesaurus terms, which do not correspond to existing unique identifiers. The poster reports the progress, shares the sample SKOS entries, and summarizes problems identified during the SKOS encoding process. Although OWL Lite and OWL Full provide richer expressiveness, the cost-benefit issues and the final purposes of encoding CCT raise questions of using such approaches.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  10. Zhang, J.; Zeng, M.L.: ¬A new similarity measure for subject hierarchical structures (2014) 0.00
    6.927037E-4 = product of:
      0.0069270367 = sum of:
        0.0069270367 = product of:
          0.02078111 = sum of:
            0.02078111 = weight(_text_:22 in 1778) [ClassicSimilarity], result of:
              0.02078111 = score(doc=1778,freq=2.0), product of:
                0.10742335 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03067635 = queryNorm
                0.19345059 = fieldWeight in 1778, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1778)
          0.33333334 = coord(1/3)
      0.1 = coord(1/10)
    
    Date
    8. 4.2015 16:22:13
  11. Gracy, K.F.; Zeng, M.L.; Skirvin, L.: Exploring methods to improve access to Music resources by aligning library Data with Linked Data : a report of methodologies and preliminary findings (2013) 0.00
    5.5416295E-4 = product of:
      0.0055416296 = sum of:
        0.0055416296 = product of:
          0.016624888 = sum of:
            0.016624888 = weight(_text_:22 in 1096) [ClassicSimilarity], result of:
              0.016624888 = score(doc=1096,freq=2.0), product of:
                0.10742335 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03067635 = queryNorm
                0.15476047 = fieldWeight in 1096, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1096)
          0.33333334 = coord(1/3)
      0.1 = coord(1/10)
    
    Date
    28.10.2013 17:22:17