Search (4 results, page 1 of 1)

  • × theme_ss:"Wissensrepräsentation"
  • × theme_ss:"Computerlinguistik"
  1. Hodgson, J.P.E.: Knowledge representation and language in AI (1991) 0.10
    0.09879459 = product of:
      0.26345223 = sum of:
        0.10618362 = weight(_text_:supported in 1529) [ClassicSimilarity], result of:
          0.10618362 = score(doc=1529,freq=4.0), product of:
            0.22949564 = queryWeight, product of:
              5.9223356 = idf(docFreq=321, maxDocs=44218)
              0.03875087 = queryNorm
            0.4626825 = fieldWeight in 1529, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.9223356 = idf(docFreq=321, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1529)
        0.10731792 = weight(_text_:cooperative in 1529) [ClassicSimilarity], result of:
          0.10731792 = score(doc=1529,freq=4.0), product of:
            0.23071818 = queryWeight, product of:
              5.953884 = idf(docFreq=311, maxDocs=44218)
              0.03875087 = queryNorm
            0.4651472 = fieldWeight in 1529, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.953884 = idf(docFreq=311, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1529)
        0.049950704 = weight(_text_:work in 1529) [ClassicSimilarity], result of:
          0.049950704 = score(doc=1529,freq=6.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.35119468 = fieldWeight in 1529, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1529)
      0.375 = coord(3/8)
    
    Abstract
    The aim of this book is to highlight the relationship between knowledge representation and language in artificial intelligence, and in particular on the way in which the choice of representation influences the language used to discuss a problem - and vice versa. Opening with a discussion of knowledge representation methods, and following this with a look at reasoning methods, the author begins to make his case for the intimate relationship between language and representation. He shows how each representation method fits particularly well with some reasoning methods and less so with others, using specific languages as examples. The question of representation change, an important and complex issue about which very little is known, is addressed. Dr Hodgson gathers together recent work on problem solving, showing how, in some cases, it has been possible to use representation changes to recast problems into a language that makes them easier to solve. The author maintains throughout that the relationships that this book explores lie at the heart of the construction of large systems, examining a number of the current large AI systems from the viewpoint of representation and language to prove his point.
    Classification
    ST 285 Informatik / Monographien / Software und -entwicklung / Computer supported cooperative work (CSCW), Groupware
    RVK
    ST 285 Informatik / Monographien / Software und -entwicklung / Computer supported cooperative work (CSCW), Groupware
  2. Shen, M.; Liu, D.-R.; Huang, Y.-S.: Extracting semantic relations to enrich domain ontologies (2012) 0.01
    0.007137301 = product of:
      0.057098407 = sum of:
        0.057098407 = weight(_text_:work in 267) [ClassicSimilarity], result of:
          0.057098407 = score(doc=267,freq=4.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.40144894 = fieldWeight in 267, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.0546875 = fieldNorm(doc=267)
      0.125 = coord(1/8)
    
    Abstract
    Domain ontologies facilitate the organization, sharing and reuse of domain knowledge, and enable various vertical domain applications to operate successfully. Most methods for automatically constructing ontologies focus on taxonomic relations, such as is-kind-of and is- part-of relations. However, much of the domain-specific semantics is ignored. This work proposes a semi-unsupervised approach for extracting semantic relations from domain-specific text documents. The approach effectively utilizes text mining and existing taxonomic relations in domain ontologies to discover candidate keywords that can represent semantic relations. A preliminary experiment on the natural science domain (Taiwan K9 education) indicates that the proposed method yields valuable recommendations. This work enriches domain ontologies by adding distilled semantics.
  3. Rajasurya, S.; Muralidharan, T.; Devi, S.; Swamynathan, S.: Semantic information retrieval using ontology in university domain (2012) 0.01
    0.005098072 = product of:
      0.040784575 = sum of:
        0.040784575 = weight(_text_:work in 2861) [ClassicSimilarity], result of:
          0.040784575 = score(doc=2861,freq=4.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.28674924 = fieldWeight in 2861, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2861)
      0.125 = coord(1/8)
    
    Abstract
    Today's conventional search engines hardly do provide the essential content relevant to the user's search query. This is because the context and semantics of the request made by the user is not analyzed to the full extent. So here the need for a semantic web search arises. SWS is upcoming in the area of web search which combines Natural Language Processing and Artificial Intelligence. The objective of the work done here is to design, develop and implement a semantic search engine- SIEU(Semantic Information Extraction in University Domain) confined to the university domain. SIEU uses ontology as a knowledge base for the information retrieval process. It is not just a mere keyword search. It is one layer above what Google or any other search engines retrieve by analyzing just the keywords. Here the query is analyzed both syntactically and semantically. The developed system retrieves the web results more relevant to the user query through keyword expansion. The results obtained here will be accurate enough to satisfy the request made by the user. The level of accuracy will be enhanced since the query is analyzed semantically. The system will be of great use to the developers and researchers who work on web. The Google results are re-ranked and optimized for providing the relevant links. For ranking an algorithm has been applied which fetches more apt results for the user query.
  4. Pepper, S.; Arnaud, P.J.L.: Absolutely PHAB : toward a general model of associative relations (2020) 0.01
    0.005098072 = product of:
      0.040784575 = sum of:
        0.040784575 = weight(_text_:work in 103) [ClassicSimilarity], result of:
          0.040784575 = score(doc=103,freq=4.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.28674924 = fieldWeight in 103, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=103)
      0.125 = coord(1/8)
    
    Abstract
    There have been many attempts at classifying the semantic modification relations (R) of N + N compounds but this work has not led to the acceptance of a definitive scheme, so that devising a reusable classification is a worthwhile aim. The scope of this undertaking is extended to other binominal lexemes, i.e. units that contain two thing-morphemes without explicitly stating R, like prepositional units, N + relational adjective units, etc. The 25-relation taxonomy of Bourque (2014) was tested against over 15,000 binominal lexemes from 106 languages and extended to a 29-relation scheme ("Bourque2") through the introduction of two new reversible relations. Bourque2 is then mapped onto Hatcher's (1960) four-relation scheme (extended by the addition of a fifth relation, similarity , as "Hatcher2"). This results in a two-tier system usable at different degrees of granularities. On account of its semantic proximity to compounding, metonymy is then taken into account, following Janda's (2011) suggestion that it plays a role in word formation; Peirsman and Geeraerts' (2006) inventory of 23 metonymic patterns is mapped onto Bourque2, confirming the identity of metonymic and binominal modification relations. Finally, Blank's (2003) and Koch's (2001) work on lexical semantics justifies the addition to the scheme of a third, superordinate level which comprises the three Aristotelean principles of similarity, contiguity and contrast.