Search (12 results, page 1 of 1)

  • × author_ss:"Cole, C."
  1. Cole, C.: Activity of understanding a problem during interaction with an 'enabling' information retrieval system : modeling information flow (1999) 0.01
    0.0064261304 = product of:
      0.025704522 = sum of:
        0.017352559 = product of:
          0.052057672 = sum of:
            0.052057672 = weight(_text_:problem in 3675) [ClassicSimilarity], result of:
              0.052057672 = score(doc=3675,freq=4.0), product of:
                0.13082431 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.030822188 = queryNorm
                0.39792046 = fieldWeight in 3675, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3675)
          0.33333334 = coord(1/3)
        0.008351962 = product of:
          0.025055885 = sum of:
            0.025055885 = weight(_text_:22 in 3675) [ClassicSimilarity], result of:
              0.025055885 = score(doc=3675,freq=2.0), product of:
                0.10793405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.030822188 = queryNorm
                0.23214069 = fieldWeight in 3675, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3675)
          0.33333334 = coord(1/3)
      0.25 = coord(2/8)
    
    Abstract
    This article is about the mental coding processes involved in the flow of 'information' when the user is interacting with an 'enabling' information retrieval system. An 'enabling' IR system is designed to stimulate the user's grasping towards a higher understanding of the information need / problem / task that brought the user to the IR system. C. Shannon's (1949/1959) model of the flow of information and K.R. Popper's (1975) 3 worlds concept are used to diagram the flow of information between the user and system when the user receives a stimulating massage, with particluar emphasis on the decoding and encoding operations involved as the user processes the message. The key difference between the model of information flow proposed here and the linear transmission, receiver-oriented model now in use is that we assume that users of a truly interactive, 'enabling' IR system are primarily message senders, not passive receivers of the message, because they must create a new message back to the system, absed on a reconceptualization of their information need, while they are 'online' interacting with the system
    Date
    22. 5.1999 14:51:49
  2. Cole, C.: Intelligent information retrieval: diagnosing information need : Part II: uncertainty expansion in a prototype of a diagnostic IR tool (1998) 0.00
    0.0021069439 = product of:
      0.01685555 = sum of:
        0.01685555 = product of:
          0.05056665 = sum of:
            0.05056665 = weight(_text_:29 in 6432) [ClassicSimilarity], result of:
              0.05056665 = score(doc=6432,freq=2.0), product of:
                0.108422816 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.030822188 = queryNorm
                0.46638384 = fieldWeight in 6432, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6432)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Date
    11. 8.2001 14:48:29
  3. Cole, C.: Interaction with an enabling information retrieval system : modeling the user's decoding and encoding operations (2000) 0.00
    0.0012781365 = product of:
      0.010225092 = sum of:
        0.010225092 = product of:
          0.030675275 = sum of:
            0.030675275 = weight(_text_:problem in 4585) [ClassicSimilarity], result of:
              0.030675275 = score(doc=4585,freq=2.0), product of:
                0.13082431 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.030822188 = queryNorm
                0.23447686 = fieldWeight in 4585, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4585)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Abstract
    With new interactive technology, we can increase user satisfaction by designing information retrieval systems that inform the user while the user is on-line interacting with the system. The purpose of this article is to model the information processing operations of a generic user who has just received an information message from the system and is stimulated by the message into grasping at a higher understanding of his or her information task or problem. The model consists of 3 levels, each of which forms a separate subsystem. In the Perseption subsystem, the user perceives the system message in a visual sense; in the Comprehension subsystem, the user must comprehend the system message; and in the Application subsystem, the user must (a) interpret the system message in terms of the user's task at hand, and (b) create and send a new message back to the system to complete the interaction. Because of the information process stimulated by the interaction, the user's new message forms a query to the system that more accurately represents the user's information need than would have been the case if the interaction had not taken place. This article proposes a device to enable clarification of the user's task, and thus his/her information need at the Application subsystem level of the model
  4. Cole, C.; Leide, J.; Beheshti, J.; Large, A.; Brooks, M.: Investigating the Anomalous States of Knowledge hypothesis in a real-life problem situation : a study of history and psychology undergraduates seeking information for a course essay (2005) 0.00
    0.0012781365 = product of:
      0.010225092 = sum of:
        0.010225092 = product of:
          0.030675275 = sum of:
            0.030675275 = weight(_text_:problem in 4814) [ClassicSimilarity], result of:
              0.030675275 = score(doc=4814,freq=2.0), product of:
                0.13082431 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.030822188 = queryNorm
                0.23447686 = fieldWeight in 4814, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4814)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
  5. Spink, A.; Cole, C.: Human information behavior : integrating diverse approaches and information use (2006) 0.00
    0.0012781365 = product of:
      0.010225092 = sum of:
        0.010225092 = product of:
          0.030675275 = sum of:
            0.030675275 = weight(_text_:problem in 4915) [ClassicSimilarity], result of:
              0.030675275 = score(doc=4915,freq=2.0), product of:
                0.13082431 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.030822188 = queryNorm
                0.23447686 = fieldWeight in 4915, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4915)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Abstract
    For millennia humans have sought, organized, and used information as they learned and evolved patterns of human information behaviors to resolve their human problems and survive. However, despite the current focus an living in an "information age," we have a limited evolutionary understanding of human information behavior. In this article the authors examine the current three interdisciplinary approaches to conceptualizing how humans have sought information including (a) the everyday life information seeking-sense-making approach, (b) the information foraging approach, and (c) the problem-solution perspective an information seeking approach. In addition, due to the lack of clarity regarding the rote of information use in information behavior, a fourth information approach is provided based an a theory of information use. The use theory proposed starts from an evolutionary psychology notion that humans are able to adapt to their environment and survive because of our modular cognitive architecture. Finally, the authors begin the process of conceptualizing these diverse approaches, and the various aspects or elements of these approaches, within an integrated model with consideration of information use. An initial integrated model of these different approaches with information use is proposed.
  6. Cole, C.: ¬A theory of information need for information retrieval that connects information to knowledge (2011) 0.00
    0.0012781365 = product of:
      0.010225092 = sum of:
        0.010225092 = product of:
          0.030675275 = sum of:
            0.030675275 = weight(_text_:problem in 4474) [ClassicSimilarity], result of:
              0.030675275 = score(doc=4474,freq=2.0), product of:
                0.13082431 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.030822188 = queryNorm
                0.23447686 = fieldWeight in 4474, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4474)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Abstract
    This article proposes a theory of information need for information retrieval (IR). Information need traditionally denotes the start state for someone seeking information, which includes information search using an IR system. There are two perspectives on information need. The dominant, computer science perspective is that the user needs to find an answer to a well-defined question which is easy for the user to formulate into a query to the system. Ironically, information science's best known model of information need (Taylor, 1968) deems it to be a "black box"-unknowable and nonspecifiable by the user in a query to the information system. Information science has instead devoted itself to studying eight adjacent or surrogate concepts (information seeking, search and use; problem, problematic situation and task; sense making and evolutionary adaptation/information foraging). Based on an analysis of these eight adjacent/surrogate concepts, we create six testable propositions for a theory of information need. The central assumption of the theory is that while computer science sees IR as an information- or answer-finding system, focused on the user finding an answer, an information science or user-oriented theory of information need envisages a knowledge formulation/acquisition system.
  7. Cole, C.: ¬The consciousness' drive : information need and the search for meaning (2018) 0.00
    0.0010845349 = product of:
      0.008676279 = sum of:
        0.008676279 = product of:
          0.026028836 = sum of:
            0.026028836 = weight(_text_:problem in 480) [ClassicSimilarity], result of:
              0.026028836 = score(doc=480,freq=4.0), product of:
                0.13082431 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.030822188 = queryNorm
                0.19896023 = fieldWeight in 480, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=480)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Abstract
    What is the uniquely human factor in finding and using information to produce new knowledge? Is there an underlying aspect of our thinking that cannot be imitated by the AI-equipped machines that will increasingly dominate our lives? This book answers these questions, and tells us about our consciousness - its drive or intention in seeking information in the world around us, and how we are able to construct new knowledge from this information. The book is divided into three parts, each with an introduction and a conclusion that relate the theories and models presented to the real-world experience of someone using a search engine. First, Part I defines the exceptionality of human consciousness and its need for new information and how, uniquely among all other species, we frame our interactions with the world. Part II then investigates the problem of finding our real information need during information searches, and how our exceptional ability to frame our interactions with the world blocks us from finding the information we really need. Lastly, Part III details the solution to this framing problem and its operational implications for search engine design for everyone whose objective is the production of new knowledge. In this book, Charles Cole deliberately writes in a conversational style for a broader readership, keeping references to research material to the bare minimum. Replicating the structure of a detective novel, he builds his arguments towards a climax at the end of the book. For our video-game, video-on-demand times, he has visualized the ideas that form the book's thesis in over 90 original diagrams. And above all, he establishes a link between information need and knowledge production in evolutionary psychology, and thus bases his arguments in our origins as a species: how we humans naturally think, and how we naturally search for new information because our consciousness drives us to need it.
  8. Cole, C.: Calculating the information content of an information process for a domain expert using Shannon's mathematical theory of communication : a preliminary analysis (1997) 0.00
    0.0010534719 = product of:
      0.008427775 = sum of:
        0.008427775 = product of:
          0.025283325 = sum of:
            0.025283325 = weight(_text_:29 in 2051) [ClassicSimilarity], result of:
              0.025283325 = score(doc=2051,freq=2.0), product of:
                0.108422816 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.030822188 = queryNorm
                0.23319192 = fieldWeight in 2051, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2051)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Date
    21. 9.1998 9:29:48
  9. Cole, C.: Name collection by Ph.D. history students : inducing expertise (2000) 0.00
    8.7789324E-4 = product of:
      0.007023146 = sum of:
        0.007023146 = product of:
          0.021069437 = sum of:
            0.021069437 = weight(_text_:29 in 4588) [ClassicSimilarity], result of:
              0.021069437 = score(doc=4588,freq=2.0), product of:
                0.108422816 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.030822188 = queryNorm
                0.19432661 = fieldWeight in 4588, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4588)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Date
    4. 4.2000 13:29:38
  10. Beheshti, J.; Cole, C.; Abuhimed, D.; Lamoureux, I.: Tracking middle school students' information behavior via Kuhlthau's ISP Model : temporality (2015) 0.00
    8.7789324E-4 = product of:
      0.007023146 = sum of:
        0.007023146 = product of:
          0.021069437 = sum of:
            0.021069437 = weight(_text_:29 in 1819) [ClassicSimilarity], result of:
              0.021069437 = score(doc=1819,freq=2.0), product of:
                0.108422816 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.030822188 = queryNorm
                0.19432661 = fieldWeight in 1819, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1819)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Date
    26. 4.2015 19:49:29
  11. Cole, C.; Behesthi, J.; Large, A.; Lamoureux, I.; Abuhimed, D.; AlGhamdi, M.: Seeking information for a middle school history project : the concept of implicit knowledge in the students' transition from Kuhlthau's Stage 3 to Stage 4 (2013) 0.00
    8.699961E-4 = product of:
      0.0069599687 = sum of:
        0.0069599687 = product of:
          0.020879906 = sum of:
            0.020879906 = weight(_text_:22 in 667) [ClassicSimilarity], result of:
              0.020879906 = score(doc=667,freq=2.0), product of:
                0.10793405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.030822188 = queryNorm
                0.19345059 = fieldWeight in 667, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=667)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Date
    22. 3.2013 19:41:17
  12. Spink, A.; Cole, C.: ¬A multitasking framework for cognitive information retrieval (2005) 0.00
    6.9599686E-4 = product of:
      0.005567975 = sum of:
        0.005567975 = product of:
          0.016703924 = sum of:
            0.016703924 = weight(_text_:22 in 642) [ClassicSimilarity], result of:
              0.016703924 = score(doc=642,freq=2.0), product of:
                0.10793405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.030822188 = queryNorm
                0.15476047 = fieldWeight in 642, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=642)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Date
    19. 1.2007 12:55:22