Search (614 results, page 1 of 31)

  • × type_ss:"a"
  • × theme_ss:"Suchmaschinen"
  1. Li, L.; Shang, Y.; Zhang, W.: Improvement of HITS-based algorithms on Web documents 0.25
    0.24511816 = product of:
      0.40853024 = sum of:
        0.0735167 = product of:
          0.22055008 = sum of:
            0.22055008 = weight(_text_:3a in 2514) [ClassicSimilarity], result of:
              0.22055008 = score(doc=2514,freq=2.0), product of:
                0.39242527 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.04628742 = queryNorm
                0.56201804 = fieldWeight in 2514, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2514)
          0.33333334 = coord(1/3)
        0.3119049 = weight(_text_:2f in 2514) [ClassicSimilarity], result of:
          0.3119049 = score(doc=2514,freq=4.0), product of:
            0.39242527 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.04628742 = queryNorm
            0.7948135 = fieldWeight in 2514, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=2514)
        0.023108633 = product of:
          0.046217266 = sum of:
            0.046217266 = weight(_text_:web in 2514) [ClassicSimilarity], result of:
              0.046217266 = score(doc=2514,freq=4.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.3059541 = fieldWeight in 2514, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2514)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Content
    Vgl.: http%3A%2F%2Fdelab.csd.auth.gr%2F~dimitris%2Fcourses%2Fir_spring06%2Fpage_rank_computing%2Fp527-li.pdf. Vgl. auch: http://www2002.org/CDROM/refereed/643/.
    Source
    WWW '02: Proceedings of the 11th International Conference on World Wide Web, May 7-11, 2002, Honolulu, Hawaii, USA
  2. Ding, L.; Finin, T.; Joshi, A.; Peng, Y.; Cost, R.S.; Sachs, J.; Pan, R.; Reddivari, P.; Doshi, V.: Swoogle : a Semantic Web search and metadata engine (2004) 0.13
    0.12772577 = product of:
      0.21287626 = sum of:
        0.03970641 = weight(_text_:retrieval in 4704) [ClassicSimilarity], result of:
          0.03970641 = score(doc=4704,freq=4.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.2835858 = fieldWeight in 4704, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=4704)
        0.12993754 = weight(_text_:semantic in 4704) [ClassicSimilarity], result of:
          0.12993754 = score(doc=4704,freq=12.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.67515236 = fieldWeight in 4704, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.046875 = fieldNorm(doc=4704)
        0.0432323 = product of:
          0.0864646 = sum of:
            0.0864646 = weight(_text_:web in 4704) [ClassicSimilarity], result of:
              0.0864646 = score(doc=4704,freq=14.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.57238775 = fieldWeight in 4704, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4704)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Swoogle is a crawler-based indexing and retrieval system for the Semantic Web, i.e., for Web documents in RDF or OWL. It extracts metadata for each discovered document, and computes relations between documents. Discovered documents are also indexed by an information retrieval system which can use either character N-Gram or URIrefs as keywords to find relevant documents and to compute the similarity among a set of documents. One of the interesting properties we compute is rank, a measure of the importance of a Semantic Web document.
    Content
    Vgl. unter: http://www.dblab.ntua.gr/~bikakis/LD/5.pdf Vgl. auch: http://swoogle.umbc.edu/. Vgl. auch: http://ebiquity.umbc.edu/paper/html/id/183/. Vgl. auch: Radhakrishnan, A.: Swoogle : An Engine for the Semantic Web unter: http://www.searchenginejournal.com/swoogle-an-engine-for-the-semantic-web/5469/.
    Theme
    Semantic Web
  3. Garcés, P.J.; Olivas, J.A.; Romero, F.P.: Concept-matching IR systems versus word-matching information retrieval systems : considering fuzzy interrelations for indexing Web pages (2006) 0.12
    0.11717674 = product of:
      0.19529456 = sum of:
        0.040525187 = weight(_text_:retrieval in 5288) [ClassicSimilarity], result of:
          0.040525187 = score(doc=5288,freq=6.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.28943354 = fieldWeight in 5288, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5288)
        0.062516235 = weight(_text_:semantic in 5288) [ClassicSimilarity], result of:
          0.062516235 = score(doc=5288,freq=4.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.32483283 = fieldWeight in 5288, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5288)
        0.09225313 = sum of:
          0.060896598 = weight(_text_:web in 5288) [ClassicSimilarity], result of:
            0.060896598 = score(doc=5288,freq=10.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.40312994 = fieldWeight in 5288, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5288)
          0.031356532 = weight(_text_:22 in 5288) [ClassicSimilarity], result of:
            0.031356532 = score(doc=5288,freq=2.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.19345059 = fieldWeight in 5288, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5288)
      0.6 = coord(3/5)
    
    Abstract
    This article presents a semantic-based Web retrieval system that is capable of retrieving the Web pages that are conceptually related to the implicit concepts of the query. The concept of concept is managed from a fuzzy point of view by means of semantic areas. In this context, the proposed system improves most search engines that are based on matching words. The key of the system is to use a new version of the Fuzzy Interrelations and Synonymy-Based Concept Representation Model (FIS-CRM) to extract and represent the concepts contained in both the Web pages and the user query. This model, which was integrated into other tools such as the Fuzzy Interrelations and Synonymy based Searcher (FISS) metasearcher and the fz-mail system, considers the fuzzy synonymy and the fuzzy generality interrelations as a means of representing word interrelations (stored in a fuzzy synonymy dictionary and ontologies). The new version of the model, which is based on the study of the cooccurrences of synonyms, integrates a soft method for disambiguating word senses. This method also considers the context of the word to be disambiguated and the thematic ontologies and sets of synonyms stored in the dictionary.
    Date
    22. 7.2006 17:14:12
    Footnote
    Beitrag in einer Special Topic Section on Soft Approaches to Information Retrieval and Information Access on the Web
  4. Jindal, V.; Bawa, S.; Batra, S.: ¬A review of ranking approaches for semantic search on Web (2014) 0.09
    0.088055015 = product of:
      0.14675835 = sum of:
        0.048630223 = weight(_text_:retrieval in 2799) [ClassicSimilarity], result of:
          0.048630223 = score(doc=2799,freq=6.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.34732026 = fieldWeight in 2799, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=2799)
        0.075019486 = weight(_text_:semantic in 2799) [ClassicSimilarity], result of:
          0.075019486 = score(doc=2799,freq=4.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.38979942 = fieldWeight in 2799, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.046875 = fieldNorm(doc=2799)
        0.023108633 = product of:
          0.046217266 = sum of:
            0.046217266 = weight(_text_:web in 2799) [ClassicSimilarity], result of:
              0.046217266 = score(doc=2799,freq=4.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.3059541 = fieldWeight in 2799, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2799)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    With ever increasing information being available to the end users, search engines have become the most powerful tools for obtaining useful information scattered on the Web. However, it is very common that even most renowned search engines return result sets with not so useful pages to the user. Research on semantic search aims to improve traditional information search and retrieval methods where the basic relevance criteria rely primarily on the presence of query keywords within the returned pages. This work is an attempt to explore different relevancy ranking approaches based on semantics which are considered appropriate for the retrieval of relevant information. In this paper, various pilot projects and their corresponding outcomes have been investigated based on methodologies adopted and their most distinctive characteristics towards ranking. An overview of selected approaches and their comparison by means of the classification criteria has been presented. With the help of this comparison, some common concepts and outstanding features have been identified.
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  5. Bhansali, D.; Desai, H.; Deulkar, K.: ¬A study of different ranking approaches for semantic search (2015) 0.08
    0.08123621 = product of:
      0.13539368 = sum of:
        0.023397226 = weight(_text_:retrieval in 2696) [ClassicSimilarity], result of:
          0.023397226 = score(doc=2696,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.16710453 = fieldWeight in 2696, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2696)
        0.0884113 = weight(_text_:semantic in 2696) [ClassicSimilarity], result of:
          0.0884113 = score(doc=2696,freq=8.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.45938298 = fieldWeight in 2696, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2696)
        0.02358515 = product of:
          0.0471703 = sum of:
            0.0471703 = weight(_text_:web in 2696) [ClassicSimilarity], result of:
              0.0471703 = score(doc=2696,freq=6.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.3122631 = fieldWeight in 2696, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2696)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Search Engines have become an integral part of our day to day life. Our reliance on search engines increases with every passing day. With the amount of data available on Internet increasing exponentially, it becomes important to develop new methods and tools that help to return results relevant to the queries and reduce the time spent on searching. The results should be diverse but at the same time should return results focused on the queries asked. Relation Based Page Rank [4] algorithms are considered to be the next frontier in improvement of Semantic Web Search. The probability of finding relevance in the search results as posited by the user while entering the query is used to measure the relevance. However, its application is limited by the complexity of determining relation between the terms and assigning explicit meaning to each term. Trust Rank is one of the most widely used ranking algorithms for semantic web search. Few other ranking algorithms like HITS algorithm, PageRank algorithm are also used for Semantic Web Searching. In this paper, we will provide a comparison of few ranking approaches.
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  6. Trkulja, V.: Suche ist überall, Semantic Web setzt sich durch, Renaissance der Taxonomien (2005) 0.08
    0.0785025 = product of:
      0.19625624 = sum of:
        0.15003897 = weight(_text_:semantic in 3295) [ClassicSimilarity], result of:
          0.15003897 = score(doc=3295,freq=4.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.77959883 = fieldWeight in 3295, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.09375 = fieldNorm(doc=3295)
        0.046217266 = product of:
          0.09243453 = sum of:
            0.09243453 = weight(_text_:web in 3295) [ClassicSimilarity], result of:
              0.09243453 = score(doc=3295,freq=4.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.6119082 = fieldWeight in 3295, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3295)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Theme
    Semantic Web
  7. Fluhr, C.: Crosslingual access to photo databases (2012) 0.07
    0.07314605 = product of:
      0.12191008 = sum of:
        0.028076671 = weight(_text_:retrieval in 93) [ClassicSimilarity], result of:
          0.028076671 = score(doc=93,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.20052543 = fieldWeight in 93, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=93)
        0.075019486 = weight(_text_:semantic in 93) [ClassicSimilarity], result of:
          0.075019486 = score(doc=93,freq=4.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.38979942 = fieldWeight in 93, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.046875 = fieldNorm(doc=93)
        0.01881392 = product of:
          0.03762784 = sum of:
            0.03762784 = weight(_text_:22 in 93) [ClassicSimilarity], result of:
              0.03762784 = score(doc=93,freq=2.0), product of:
                0.16209066 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04628742 = queryNorm
                0.23214069 = fieldWeight in 93, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=93)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    This paper is about search of photos in photo databases of agencies which sell photos over the Internet. The problem is far from the behavior of photo databases managed by librarians and also far from the corpora generally used for research purposes. The descriptions use mainly single words and it is well known that it is not the best way to have a good search. This increases the problem of semantic ambiguity. This problem of semantic ambiguity is crucial for cross-language querying. On the other hand, users are not aware of documentation techniques and use generally very simple queries but want to get precise answers. This paper gives the experience gained in a 3 year use (2006-2008) of a cross-language access to several of the main international commercial photo databases. The languages used were French, English, and German.
    Date
    17. 4.2012 14:25:22
    Source
    Next generation search engines: advanced models for information retrieval. Eds.: C. Jouis, u.a
  8. Sleem-Amer, M.; Bigorgne, I.; Brizard, S.; Santos, L.D.P.D.; Bouhairi, Y. El; Goujon, B.; Lorin, S.; Martineau, C.; Rigouste, L.; Varga, L.: Intelligent semantic search engines for opinion and sentiment mining (2012) 0.07
    0.07153252 = product of:
      0.11922086 = sum of:
        0.023397226 = weight(_text_:retrieval in 100) [ClassicSimilarity], result of:
          0.023397226 = score(doc=100,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.16710453 = fieldWeight in 100, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=100)
        0.076566435 = weight(_text_:semantic in 100) [ClassicSimilarity], result of:
          0.076566435 = score(doc=100,freq=6.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.39783734 = fieldWeight in 100, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=100)
        0.019257195 = product of:
          0.03851439 = sum of:
            0.03851439 = weight(_text_:web in 100) [ClassicSimilarity], result of:
              0.03851439 = score(doc=100,freq=4.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.25496176 = fieldWeight in 100, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=100)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Over the last years, research and industry players have become increasingly interested in analyzing opinions and sentiments expressed on the social media web for product marketing and business intelligence. In order to adapt to this need search engines not only have to be able to retrieve lists of documents but to directly access, analyze, and interpret topics and opinions. This article covers an intermediate phase of the ongoing industrial research project 'DoXa' aiming at developing a semantic opinion and sentiment mining search engine for the French language. The DoXa search engine enables topic related opinion and sentiment extraction beyond positive and negative polarity using rich linguistic resources. Centering the work on two distinct business use cases, the authors analyze both unstructured Web 2.0 contents (e.g., blogs and forums) and structured questionnaire data sets. The focus is on discovering hidden patterns in the data. To this end, the authors present work in progress on opinion topic relation extraction and visual analytics, linguistic resource construction as well as the combination of OLAP technology with semantic search.
    Source
    Next generation search engines: advanced models for information retrieval. Eds.: C. Jouis, u.a
  9. Amato, G.; Rabitti, F.; Savino, P.: Multimedia document search on the Web (1998) 0.06
    0.059691615 = product of:
      0.14922903 = sum of:
        0.03743556 = weight(_text_:retrieval in 3605) [ClassicSimilarity], result of:
          0.03743556 = score(doc=3605,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.26736724 = fieldWeight in 3605, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=3605)
        0.11179347 = sum of:
          0.061623022 = weight(_text_:web in 3605) [ClassicSimilarity], result of:
            0.061623022 = score(doc=3605,freq=4.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.4079388 = fieldWeight in 3605, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0625 = fieldNorm(doc=3605)
          0.05017045 = weight(_text_:22 in 3605) [ClassicSimilarity], result of:
            0.05017045 = score(doc=3605,freq=2.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.30952093 = fieldWeight in 3605, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=3605)
      0.4 = coord(2/5)
    
    Abstract
    Presents a multimedia model which describes the various multimedia components, their structure and their relationships with a pre-defined taxonomy of concepts, in order to support search engine information retrieval process
    Date
    1. 8.1996 22:08:06
    Footnote
    Contribution to a special issue devoted to the Proceedings of the 7th International World Wide Web Conference, held 14-18 April 1998, Brisbane, Australia
  10. Nait-Baha, L.; Jackiewicz, A.; Djioua, B.; Laublet, P.: Query reformulation for information retrieval on the Web using the point of view methodology : preliminary results (2001) 0.06
    0.05847824 = product of:
      0.09746373 = sum of:
        0.028076671 = weight(_text_:retrieval in 249) [ClassicSimilarity], result of:
          0.028076671 = score(doc=249,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.20052543 = fieldWeight in 249, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=249)
        0.05304678 = weight(_text_:semantic in 249) [ClassicSimilarity], result of:
          0.05304678 = score(doc=249,freq=2.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.2756298 = fieldWeight in 249, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.046875 = fieldNorm(doc=249)
        0.01634027 = product of:
          0.03268054 = sum of:
            0.03268054 = weight(_text_:web in 249) [ClassicSimilarity], result of:
              0.03268054 = score(doc=249,freq=2.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.21634221 = fieldWeight in 249, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=249)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    The work we are presenting is devoted to the information collected on the WWW. By the term collected we mean the whole process of retrieving, extracting and presenting results to the user. This research is part of the RAP (Research, Analyze, Propose) project in which we propose to combine two methods: (i) query reformulation using linguistic markers according to a given point of view; and (ii) text semantic analysis by means of contextual exploration results (Descles, 1991). The general project architecture describing the interactions between the users, the RAP system and the WWW search engines is presented in Nait-Baha et al. (1998). We will focus this paper on showing how we use linguistic markers to reformulate the queries according to a given point of view
  11. Kurzke, C.; Galle, M.; Bathelt, M.: WebAssistant : a user profile specific information retrieval assistant (1998) 0.06
    0.057077475 = product of:
      0.14269368 = sum of:
        0.032756116 = weight(_text_:retrieval in 3559) [ClassicSimilarity], result of:
          0.032756116 = score(doc=3559,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.23394634 = fieldWeight in 3559, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3559)
        0.10993756 = sum of:
          0.06603842 = weight(_text_:web in 3559) [ClassicSimilarity], result of:
            0.06603842 = score(doc=3559,freq=6.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.43716836 = fieldWeight in 3559, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0546875 = fieldNorm(doc=3559)
          0.043899145 = weight(_text_:22 in 3559) [ClassicSimilarity], result of:
            0.043899145 = score(doc=3559,freq=2.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.2708308 = fieldWeight in 3559, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=3559)
      0.4 = coord(2/5)
    
    Abstract
    Describes the concept of a proxy based information classification and filtering utility, named Web Assistant. On the behalf of users a private view of the WWW is generated based on a previously determined profile. This profile is created by monitoring the user anf group activities when browsing WWW pages. Additional features are integrated to allow for easy interoperability workgroups with similar project interests, maintain personal and common hotlists with automatic modification checks and a sophisticated search engine front-end
    Date
    1. 8.1996 22:08:06
    Footnote
    Contribution to a special issue devoted to the Proceedings of the 7th International World Wide Web Conference, held 14-18 April 1998, Brisbane, Australia
    Theme
    Web-Agenten
  12. Jenkins, C.: Automatic classification of Web resources using Java and Dewey Decimal Classification (1998) 0.06
    0.057077475 = product of:
      0.14269368 = sum of:
        0.032756116 = weight(_text_:retrieval in 1673) [ClassicSimilarity], result of:
          0.032756116 = score(doc=1673,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.23394634 = fieldWeight in 1673, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1673)
        0.10993756 = sum of:
          0.06603842 = weight(_text_:web in 1673) [ClassicSimilarity], result of:
            0.06603842 = score(doc=1673,freq=6.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.43716836 = fieldWeight in 1673, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1673)
          0.043899145 = weight(_text_:22 in 1673) [ClassicSimilarity], result of:
            0.043899145 = score(doc=1673,freq=2.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.2708308 = fieldWeight in 1673, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1673)
      0.4 = coord(2/5)
    
    Abstract
    The Wolverhampton Web Library (WWLib) is a WWW search engine that provides access to UK based information. The experimental version developed in 1995, was a success but highlighted the need for a much higher degree of automation. An interesting feature of the experimental WWLib was that it organised information according to DDC. Discusses the advantages of classification and describes the automatic classifier that is being developed in Java as part of the new, fully automated WWLib
    Date
    1. 8.1996 22:08:06
    Footnote
    Contribution to a special issue devoted to the Proceedings of the 7th International World Wide Web Conference, held 14-18 April 1998, Brisbane, Australia; vgl. auch: http://www7.scu.edu.au/programme/posters/1846/com1846.htm.
    Theme
    Klassifikationssysteme im Online-Retrieval
  13. Spree, U.; Feißt, N.; Lühr, A.; Piesztal, B.; Schroeder, N.; Wollschläger, P.: Semantic search : State-of-the-Art-Überblick zu semantischen Suchlösungen im WWW (2011) 0.06
    0.05608489 = product of:
      0.14021222 = sum of:
        0.10719301 = weight(_text_:semantic in 345) [ClassicSimilarity], result of:
          0.10719301 = score(doc=345,freq=6.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.55697227 = fieldWeight in 345, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0546875 = fieldNorm(doc=345)
        0.03301921 = product of:
          0.06603842 = sum of:
            0.06603842 = weight(_text_:web in 345) [ClassicSimilarity], result of:
              0.06603842 = score(doc=345,freq=6.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.43716836 = fieldWeight in 345, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=345)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    In diesem Kapitel wird ein Überblick über bestehende semantische Suchmaschinen gegeben. Insgesamt werden 95 solcher Suchdienste identifiziert und im Rahmen einer Inhaltsanalyse verglichen. Es kann festgestellt werden, dass die Semantische Suche sich wesentlich von den im Rahmen des Semantic Web propagierten Technologien unterscheidet und Semantik in den betrachteten Suchmaschinen weiter zu fassen ist. Die betrachteten Suchmaschinen werden in ein Stufenmodell, welches nach dem Grad der Semantik unterscheidet, eingeordnet. Das Kapitel schließt mit 8 Thesen zum aktuellen Stand der semantischen Suche.
    Source
    Handbuch Internet-Suchmaschinen, 2: Neue Entwicklungen in der Web-Suche. Hrsg.: D. Lewandowski
    Theme
    Semantic Web
  14. Mukherjea, S.; Hirata, K.; Hara, Y.: Towards a multimedia World-Wide Web information retrieval engine (1997) 0.05
    0.053575445 = product of:
      0.13393861 = sum of:
        0.03970641 = weight(_text_:retrieval in 2678) [ClassicSimilarity], result of:
          0.03970641 = score(doc=2678,freq=4.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.2835858 = fieldWeight in 2678, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=2678)
        0.0942322 = sum of:
          0.056604367 = weight(_text_:web in 2678) [ClassicSimilarity], result of:
            0.056604367 = score(doc=2678,freq=6.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.37471575 = fieldWeight in 2678, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.046875 = fieldNorm(doc=2678)
          0.03762784 = weight(_text_:22 in 2678) [ClassicSimilarity], result of:
            0.03762784 = score(doc=2678,freq=2.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.23214069 = fieldWeight in 2678, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2678)
      0.4 = coord(2/5)
    
    Abstract
    Describes a search engine that integrate text and image search. 1 or more Web site can be indexed for both textual and image information, allowing the user to search based on keywords or images or both. Another problem with the current search engines is that they show the results as pages of scrolled lists; this is not very user-friendly. The search engine allows the user to visualise to results in various ways. Explains the indexing and searching techniques of the search engine and highlights several features of the querying interface to make the retrieval process more efficient. Use examples to show the usefulness of the technology
    Date
    1. 8.1996 22:08:06
    Footnote
    Contribution to a special issue of papers from the 6th International World Wide Web conference, held 7-11 Apr 1997, Santa Clara, California
  15. Herrera-Viedma, E.; Pasi, G.: Soft approaches to information retrieval and information access on the Web : an introduction to the special topic section (2006) 0.05
    0.053022902 = product of:
      0.13255726 = sum of:
        0.04584901 = weight(_text_:retrieval in 5285) [ClassicSimilarity], result of:
          0.04584901 = score(doc=5285,freq=12.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.32745665 = fieldWeight in 5285, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=5285)
        0.08670825 = sum of:
          0.061623022 = weight(_text_:web in 5285) [ClassicSimilarity], result of:
            0.061623022 = score(doc=5285,freq=16.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.4079388 = fieldWeight in 5285, product of:
                4.0 = tf(freq=16.0), with freq of:
                  16.0 = termFreq=16.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.03125 = fieldNorm(doc=5285)
          0.025085226 = weight(_text_:22 in 5285) [ClassicSimilarity], result of:
            0.025085226 = score(doc=5285,freq=2.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.15476047 = fieldWeight in 5285, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=5285)
      0.4 = coord(2/5)
    
    Abstract
    The World Wide Web is a popular and interactive medium used to collect, disseminate, and access an increasingly huge amount of information, which constitutes the mainstay of the so-called information and knowledge society. Because of its spectacular growth, related to both Web resources (pages, sites, and services) and number of users, the Web is nowadays the main information repository and provides some automatic systems for locating, accessing, and retrieving information. However, an open and crucial question remains: how to provide fast and effective retrieval of the information relevant to specific users' needs. This is a very hard and complex task, since it is pervaded with subjectivity, vagueness, and uncertainty. The expression soft computing refers to techniques and methodologies that work synergistically with the aim of providing flexible information processing tolerant of imprecision, vagueness, partial truth, and approximation. So, soft computing represents a good candidate to design effective systems for information access and retrieval on the Web. One of the most representative tools of soft computing is fuzzy set theory. This special topic section collects research articles witnessing some recent advances in improving the processes of information access and retrieval on the Web by using soft computing tools, and in particular, by using fuzzy sets and/or integrating them with other soft computing tools. In this introductory article, we first review the problem of Web retrieval and the concept of soft computing technology. We then briefly introduce the articles in this section and conclude by highlighting some future research directions that could benefit from the use of soft computing technologies.
    Date
    22. 7.2006 16:59:33
    Footnote
    Beitrag in einer Special Topic Section on Soft Approaches to Information Retrieval and Information Access on the Web
  16. Ardo, A.; Lundberg, S.: ¬A regional distributed WWW search and indexing service : the DESIRE way (1998) 0.05
    0.052426238 = product of:
      0.13106559 = sum of:
        0.028076671 = weight(_text_:retrieval in 4190) [ClassicSimilarity], result of:
          0.028076671 = score(doc=4190,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.20052543 = fieldWeight in 4190, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=4190)
        0.10298892 = sum of:
          0.06536108 = weight(_text_:web in 4190) [ClassicSimilarity], result of:
            0.06536108 = score(doc=4190,freq=8.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.43268442 = fieldWeight in 4190, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.046875 = fieldNorm(doc=4190)
          0.03762784 = weight(_text_:22 in 4190) [ClassicSimilarity], result of:
            0.03762784 = score(doc=4190,freq=2.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.23214069 = fieldWeight in 4190, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=4190)
      0.4 = coord(2/5)
    
    Abstract
    Creates an open, metadata aware system for distributed, collaborative WWW indexing. The system has 3 main components: a harvester (for collecting information), a database (for making the collection searchable), and a user interface (for making the information available). all components can be distributed across networked computers, thus supporting scalability. The system is metadata aware and thus allows searches on several fields including title, document author and URL. Nordic Web Index (NWI) is an application using this system to create a regional Nordic Web-indexing service. NWI is built using 5 collaborating service points within the Nordic countries. The NWI databases can be used to build additional services
    Date
    1. 8.1996 22:08:06
    Footnote
    Contribution to a special issue devoted to the Proceedings of the 7th International World Wide Web Conference, held 14-18 April 1998, Brisbane, Australia
    Object
    Nordic Web Index
    Theme
    Klassifikationssysteme im Online-Retrieval
  17. Drabenstott, K.M.: Web search strategies (2000) 0.05
    0.05238045 = product of:
      0.13095112 = sum of:
        0.01871778 = weight(_text_:retrieval in 1188) [ClassicSimilarity], result of:
          0.01871778 = score(doc=1188,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.13368362 = fieldWeight in 1188, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=1188)
        0.11223334 = sum of:
          0.087148115 = weight(_text_:web in 1188) [ClassicSimilarity], result of:
            0.087148115 = score(doc=1188,freq=32.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.5769126 = fieldWeight in 1188, product of:
                5.656854 = tf(freq=32.0), with freq of:
                  32.0 = termFreq=32.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.03125 = fieldNorm(doc=1188)
          0.025085226 = weight(_text_:22 in 1188) [ClassicSimilarity], result of:
            0.025085226 = score(doc=1188,freq=2.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.15476047 = fieldWeight in 1188, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=1188)
      0.4 = coord(2/5)
    
    Abstract
    Surfing the World Wide Web used to be cool, dude, real cool. But things have gotten hot - so hot that finding something useful an the Web is no longer cool. It is suffocating Web searchers in the smoke and debris of mountain-sized lists of hits, decisions about which search engines they should use, whether they will get lost in the dizzying maze of a subject directory, use the right syntax for the search engine at hand, enter keywords that are likely to retrieve hits an the topics they have in mind, or enlist a browser that has sufficient functionality to display the most promising hits. When it comes to Web searching, in a few short years we have gone from the cool image of surfing the Web into the frying pan of searching the Web. We can turn down the heat by rethinking what Web searchers are doing and introduce some order into the chaos. Web search strategies that are tool-based-oriented to specific Web searching tools such as search en gines, subject directories, and meta search engines-have been widely promoted, and these strategies are just not working. It is time to dissect what Web searching tools expect from searchers and adjust our search strategies to these new tools. This discussion offers Web searchers help in the form of search strategies that are based an strategies that librarians have been using for a long time to search commercial information retrieval systems like Dialog, NEXIS, Wilsonline, FirstSearch, and Data-Star.
    Content
    "Web searching is different from searching commercial IR systems. We can learn from search strategies recommended for searching IR systems, but most won't be effective for Web searching. Web searchers need strate gies that let search engines do the job they were designed to do. This article presents six new Web searching strategies that do just that."
    Date
    22. 9.1997 19:16:05
  18. Loia, V.; Pedrycz, W.; Senatore, S.; Sessa, M.I.: Web navigation support by means of proximity-driven assistant agents (2006) 0.05
    0.050723035 = product of:
      0.12680759 = sum of:
        0.023397226 = weight(_text_:retrieval in 5283) [ClassicSimilarity], result of:
          0.023397226 = score(doc=5283,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.16710453 = fieldWeight in 5283, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5283)
        0.10341036 = sum of:
          0.07205383 = weight(_text_:web in 5283) [ClassicSimilarity], result of:
            0.07205383 = score(doc=5283,freq=14.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.47698978 = fieldWeight in 5283, product of:
                3.7416575 = tf(freq=14.0), with freq of:
                  14.0 = termFreq=14.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5283)
          0.031356532 = weight(_text_:22 in 5283) [ClassicSimilarity], result of:
            0.031356532 = score(doc=5283,freq=2.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.19345059 = fieldWeight in 5283, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5283)
      0.4 = coord(2/5)
    
    Abstract
    The explosive growth of the Web and the consequent exigency of the Web personalization domain have gained a key position in the direction of customization of the Web information to the needs of specific users, taking advantage of the knowledge acquired from the analysis of the user's navigational behavior (usage data) in correlation with other information collected in the Web context, namely, structure, content, and user profile data. This work presents an agent-based framework designed to help a user in achieving personalized navigation, by recommending related documents according to the user's responses in similar-pages searching mode. Our agent-based approach is grounded in the integration of different techniques and methodologies into a unique platform featuring user profiling, fuzzy multisets, proximity-oriented fuzzy clustering, and knowledge-based discovery technologies. Each of these methodologies serves to solve one facet of the general problem (discovering documents relevant to the user by searching the Web) and is treated by specialized agents that ultimately achieve the final functionality through cooperation and task distribution.
    Date
    22. 7.2006 16:59:13
    Footnote
    Beitrag in einer Special Topic Section on Soft Approaches to Information Retrieval and Information Access on the Web
  19. Chaudiron, S.; Ihadjadene, M.: Studying Web search engines from a user perspective : key concepts and main approaches (2012) 0.05
    0.046260145 = product of:
      0.115650356 = sum of:
        0.023397226 = weight(_text_:retrieval in 109) [ClassicSimilarity], result of:
          0.023397226 = score(doc=109,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.16710453 = fieldWeight in 109, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=109)
        0.09225313 = sum of:
          0.060896598 = weight(_text_:web in 109) [ClassicSimilarity], result of:
            0.060896598 = score(doc=109,freq=10.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.40312994 = fieldWeight in 109, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0390625 = fieldNorm(doc=109)
          0.031356532 = weight(_text_:22 in 109) [ClassicSimilarity], result of:
            0.031356532 = score(doc=109,freq=2.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.19345059 = fieldWeight in 109, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=109)
      0.4 = coord(2/5)
    
    Abstract
    This chapter shows that the wider use of Web search engines, reconsidering the theoretical and methodological frameworks to grasp new information practices. Beginning with an overview of the recent challenges implied by the dynamic nature of the Web, this chapter then traces the information behavior related concepts in order to present the different approaches from the user perspective. The authors pay special attention to the concept of "information practice" and other related concepts such as "use", "activity", and "behavior" largely used in the literature but not always strictly defined. The authors provide an overview of user-oriented studies that are meaningful to understand the different contexts of use of electronic information access systems, focusing on five approaches: the system-oriented approaches, the theories of information seeking, the cognitive and psychological approaches, the management science approaches, and the marketing approaches. Future directions of work are then shaped, including social searching and the ethical, cultural, and political dimensions of Web search engines. The authors conclude considering the importance of Critical theory to better understand the role of Web Search engines in our modern society.
    Date
    20. 4.2012 13:22:37
    Source
    Next generation search engines: advanced models for information retrieval. Eds.: C. Jouis, u.a
  20. Liu, Y.; Zhang, M.; Cen, R.; Ru, L.; Ma, S.: Data cleansing for Web information retrieval using query independent features (2007) 0.05
    0.045856494 = product of:
      0.114641234 = sum of:
        0.06190324 = weight(_text_:retrieval in 607) [ClassicSimilarity], result of:
          0.06190324 = score(doc=607,freq=14.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.442117 = fieldWeight in 607, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=607)
        0.052738 = product of:
          0.105476 = sum of:
            0.105476 = weight(_text_:web in 607) [ClassicSimilarity], result of:
              0.105476 = score(doc=607,freq=30.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.69824153 = fieldWeight in 607, product of:
                  5.477226 = tf(freq=30.0), with freq of:
                    30.0 = termFreq=30.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=607)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Understanding what kinds of Web pages are the most useful for Web search engine users is a critical task in Web information retrieval (IR). Most previous works used hyperlink analysis algorithms to solve this problem. However, little research has been focused on query-independent Web data cleansing for Web IR. In this paper, we first provide analysis of the differences between retrieval target pages and ordinary ones based on more than 30 million Web pages obtained from both the Text Retrieval Conference (TREC) and a widely used Chinese search engine, SOGOU (www.sogou.com). We further propose a learning-based data cleansing algorithm for reducing Web pages that are unlikely to be useful for user requests. We found that there exists a large proportion of low-quality Web pages in both the English and the Chinese Web page corpus, and retrieval target pages can be identified using query-independent features and cleansing algorithms. The experimental results showed that our algorithm is effective in reducing a large portion of Web pages with a small loss in retrieval target pages. It makes it possible for Web IR tools to meet a large fraction of users' needs with only a small part of pages on the Web. These results may help Web search engines make better use of their limited storage and computation resources to improve search performance.
    Footnote
    Beitrag eines Themenschwerpunktes "Mining Web resources for enhancing information retrieval"

Years

Languages

  • e 379
  • d 222
  • nl 5
  • f 4
  • sp 3
  • ja 1
  • More… Less…