Search (103 results, page 1 of 6)

  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  1. Dousa, T.M.: Categories and the architectonics of system in Julius Otto Kaiser's method of systematic indexing (2014) 0.01
    0.009527097 = product of:
      0.03334484 = sum of:
        0.021075837 = product of:
          0.052689593 = sum of:
            0.01830946 = weight(_text_:retrieval in 1418) [ClassicSimilarity], result of:
              0.01830946 = score(doc=1418,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.16710453 = fieldWeight in 1418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1418)
            0.034380134 = weight(_text_:system in 1418) [ClassicSimilarity], result of:
              0.034380134 = score(doc=1418,freq=6.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.30135927 = fieldWeight in 1418, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1418)
          0.4 = coord(2/5)
        0.0122690005 = product of:
          0.024538001 = sum of:
            0.024538001 = weight(_text_:22 in 1418) [ClassicSimilarity], result of:
              0.024538001 = score(doc=1418,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.19345059 = fieldWeight in 1418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1418)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    Categories, or concepts of high generality representing the most basic kinds of entities in the world, have long been understood to be a fundamental element in the construction of knowledge organization systems (KOSs), particularly faceted ones. Commentators on facet analysis have tended to foreground the role of categories in the structuring of controlled vocabularies and the construction of compound index terms, and the implications of this for subject representation and information retrieval. Less attention has been paid to the variety of ways in which categories can shape the overall architectonic framework of a KOS. This case study explores the range of functions that categories took in structuring various aspects of an early analytico-synthetic KOS, Julius Otto Kaiser's method of Systematic Indexing (SI). Within SI, categories not only functioned as mechanisms to partition an index vocabulary into smaller groupings of terms and as elements in the construction of compound index terms but also served as means of defining the units of indexing, or index items, incorporated into an index; determining the organization of card index files and the articulation of the guide card system serving as a navigational aids thereto; and setting structural constraints to the establishment of cross-references between terms. In all these ways, Kaiser's system of categories contributed to the general systematicity of SI.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  2. Winske, E.: ¬The development and structure of an urban, regional, and local documents classification scheme (1996) 0.01
    0.0076580113 = product of:
      0.026803039 = sum of:
        0.009626439 = product of:
          0.048132192 = sum of:
            0.048132192 = weight(_text_:system in 7241) [ClassicSimilarity], result of:
              0.048132192 = score(doc=7241,freq=6.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.42190298 = fieldWeight in 7241, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=7241)
          0.2 = coord(1/5)
        0.0171766 = product of:
          0.0343532 = sum of:
            0.0343532 = weight(_text_:22 in 7241) [ClassicSimilarity], result of:
              0.0343532 = score(doc=7241,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.2708308 = fieldWeight in 7241, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=7241)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    Discusses the reasons for the decision, taken at Florida International University Library to develop an in house classification system for their local documents collections. Reviews the structures of existing classification systems, noting their strengths and weaknesses in relation to the development of an in house system and describes the 5 components of the new system; geography, subject categories, extensions for population group and/or function, extensions for type of publication, and title/series designator
    Footnote
    Paper presented at conference on 'Local documents, a new classification scheme' at the Research Caucus of the Florida Library Association Annual Conference, Fort Lauderdale, Florida 22 Apr 95
  3. Howarth, L.C.; Jansen, E.H.: Towards a typology of warrant for 21st century knowledge organization systems (2014) 0.01
    0.0061314013 = product of:
      0.021459904 = sum of:
        0.0067371028 = product of:
          0.033685513 = sum of:
            0.033685513 = weight(_text_:system in 1425) [ClassicSimilarity], result of:
              0.033685513 = score(doc=1425,freq=4.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.29527056 = fieldWeight in 1425, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1425)
          0.2 = coord(1/5)
        0.0147228 = product of:
          0.0294456 = sum of:
            0.0294456 = weight(_text_:22 in 1425) [ClassicSimilarity], result of:
              0.0294456 = score(doc=1425,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.23214069 = fieldWeight in 1425, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1425)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    This paper returns to Beghtol's (1986) insightful typology of warrant to consider an empirical example of a traditional top-down hierarchical classification system as it continues to evolve in the early 21st century. Our examination considers there may be multiple warrants identified among the processes of design and the relationships to users of the National Occupational Classification (NOC), the standard occupational classification system published in Canada. We argue that this shift in semantic warrant signals a transition for traditional knowledge organization systems, and that warrant continues to be a relevant analytical concept and organizing principle, both within and beyond the domain of bibliographic control.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  4. Kwasnik, B.H.: ¬The role of classification in knowledge representation (1999) 0.01
    0.00546202 = product of:
      0.01911707 = sum of:
        0.00439427 = product of:
          0.02197135 = sum of:
            0.02197135 = weight(_text_:retrieval in 2464) [ClassicSimilarity], result of:
              0.02197135 = score(doc=2464,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.20052543 = fieldWeight in 2464, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2464)
          0.2 = coord(1/5)
        0.0147228 = product of:
          0.0294456 = sum of:
            0.0294456 = weight(_text_:22 in 2464) [ClassicSimilarity], result of:
              0.0294456 = score(doc=2464,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.23214069 = fieldWeight in 2464, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2464)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Source
    Library trends. 48(1999) no.1, S.22-47
    Theme
    Klassifikationssysteme im Online-Retrieval
  5. Slavic, A.: On the nature and typology of documentary classifications and their use in a networked environment (2007) 0.01
    0.00546202 = product of:
      0.01911707 = sum of:
        0.00439427 = product of:
          0.02197135 = sum of:
            0.02197135 = weight(_text_:retrieval in 780) [ClassicSimilarity], result of:
              0.02197135 = score(doc=780,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.20052543 = fieldWeight in 780, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=780)
          0.2 = coord(1/5)
        0.0147228 = product of:
          0.0294456 = sum of:
            0.0294456 = weight(_text_:22 in 780) [ClassicSimilarity], result of:
              0.0294456 = score(doc=780,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.23214069 = fieldWeight in 780, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=780)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Date
    22.12.2007 17:22:31
    Theme
    Klassifikationssysteme im Online-Retrieval
  6. Jacob, E.K.: Proposal for a classification of classifications built on Beghtol's distinction between "Naïve Classification" and "Professional Classification" (2010) 0.01
    0.00546202 = product of:
      0.01911707 = sum of:
        0.00439427 = product of:
          0.02197135 = sum of:
            0.02197135 = weight(_text_:retrieval in 2945) [ClassicSimilarity], result of:
              0.02197135 = score(doc=2945,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.20052543 = fieldWeight in 2945, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2945)
          0.2 = coord(1/5)
        0.0147228 = product of:
          0.0294456 = sum of:
            0.0294456 = weight(_text_:22 in 2945) [ClassicSimilarity], result of:
              0.0294456 = score(doc=2945,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.23214069 = fieldWeight in 2945, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2945)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    Argues that Beghtol's (2003) use of the terms "naive classification" and "professional classification" is valid because they are nominal definitions and that the distinction between these two types of classification points up the need for researchers in knowledge organization to broaden their scope beyond traditional classification systems intended for information retrieval. Argues that work by Beghtol (2003), Kwasnik (1999) and Bailey (1994) offer direction for the development of a classification of classifications based on the pragmatic dimensions of extant classification systems. Bezugnahme auf: Beghtol, C.: Naïve classification systems and the global information society. In: Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine. Würzburg: Ergon Verlag 2004. S.19-22. (Advances in knowledge organization; vol.9)
  7. Molholt, P.: Qualities of classification schemes for the Information Superhighway (1995) 0.01
    0.005109501 = product of:
      0.017883252 = sum of:
        0.0056142528 = product of:
          0.028071264 = sum of:
            0.028071264 = weight(_text_:system in 5562) [ClassicSimilarity], result of:
              0.028071264 = score(doc=5562,freq=4.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.24605882 = fieldWeight in 5562, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5562)
          0.2 = coord(1/5)
        0.0122690005 = product of:
          0.024538001 = sum of:
            0.024538001 = weight(_text_:22 in 5562) [ClassicSimilarity], result of:
              0.024538001 = score(doc=5562,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.19345059 = fieldWeight in 5562, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5562)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    For my segment of this program I'd like to focus on some basic qualities of classification schemes. These qualities are critical to our ability to truly organize knowledge for access. As I see it, there are at least five qualities of note. The first one of these properties that I want to talk about is "authoritative." By this I mean standardized, but I mean more than standardized with a built in consensus-building process. A classification scheme constructed by a collaborative, consensus-building process carries the approval, and the authority, of the discipline groups that contribute to it and that it affects... The next property of classification systems is "expandable," living, responsive, with a clear locus of responsibility for its continuous upkeep. The worst thing you can do with a thesaurus, or a classification scheme, is to finish it. You can't ever finish it because it reflects ongoing intellectual activity... The third property is "intuitive." That is, the system has to be approachable, it has to be transparent, or at least capable of being transparent. It has to have an underlying logic that supports the classification scheme but doesn't dominate it... The fourth property is "organized and logical." I advocate very strongly, and agree with Lois Chan, that classification must be based on a rule-based structure, on somebody's world-view of the syndetic structure... The fifth property is "universal" by which I mean the classification scheme needs be useable by any specific system or application, and be available as a language for multiple purposes.
    Source
    Cataloging and classification quarterly. 21(1995) no.2, S.19-22
  8. Green, R.: Relational aspects of subject authority control : the contributions of classificatory structure (2015) 0.01
    0.005109501 = product of:
      0.017883252 = sum of:
        0.0056142528 = product of:
          0.028071264 = sum of:
            0.028071264 = weight(_text_:system in 2282) [ClassicSimilarity], result of:
              0.028071264 = score(doc=2282,freq=4.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.24605882 = fieldWeight in 2282, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2282)
          0.2 = coord(1/5)
        0.0122690005 = product of:
          0.024538001 = sum of:
            0.024538001 = weight(_text_:22 in 2282) [ClassicSimilarity], result of:
              0.024538001 = score(doc=2282,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.19345059 = fieldWeight in 2282, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2282)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    The structure of a classification system contributes in a variety of ways to representing semantic relationships between its topics in the context of subject authority control. We explore this claim using the Dewey Decimal Classification (DDC) system as a case study. The DDC links its classes into a notational hierarchy, supplemented by a network of relationships between topics, expressed in class descriptions and in the Relative Index (RI). Topics/subjects are expressed both by the natural language text of the caption and notes (including Manual notes) in a class description and by the controlled vocabulary of the RI's alphabetic index, which shows where topics are treated in the classificatory structure. The expression of relationships between topics depends on paradigmatic and syntagmatic relationships between natural language terms in captions, notes, and RI terms; on the meaning of specific note types; and on references recorded between RI terms. The specific means used in the DDC for capturing hierarchical (including disciplinary), equivalence and associative relationships are surveyed.
    Date
    8.11.2015 21:27:22
  9. Beghtol, C.: Naïve classification systems and the global information society (2004) 0.00
    0.0049850564 = product of:
      0.017447697 = sum of:
        0.005178697 = product of:
          0.025893483 = sum of:
            0.025893483 = weight(_text_:retrieval in 3483) [ClassicSimilarity], result of:
              0.025893483 = score(doc=3483,freq=4.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.23632148 = fieldWeight in 3483, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3483)
          0.2 = coord(1/5)
        0.0122690005 = product of:
          0.024538001 = sum of:
            0.024538001 = weight(_text_:22 in 3483) [ClassicSimilarity], result of:
              0.024538001 = score(doc=3483,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.19345059 = fieldWeight in 3483, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3483)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    Classification is an activity that transcends time and space and that bridges the divisions between different languages and cultures, including the divisions between academic disciplines. Classificatory activity, however, serves different purposes in different situations. Classifications for infonnation retrieval can be called "professional" classifications and classifications in other fields can be called "naïve" classifications because they are developed by people who have no particular interest in classificatory issues. The general purpose of naïve classification systems is to discover new knowledge. In contrast, the general purpose of information retrieval classifications is to classify pre-existing knowledge. Different classificatory purposes may thus inform systems that are intended to span the cultural specifics of the globalized information society. This paper builds an previous research into the purposes and characteristics of naïve classifications. It describes some of the relationships between the purpose and context of a naive classification, the units of analysis used in it, and the theory that the context and the units of analysis imply.
    Pages
    S.19-22
  10. Zhang, J.; Zeng, M.L.: ¬A new similarity measure for subject hierarchical structures (2014) 0.00
    0.004551684 = product of:
      0.015930893 = sum of:
        0.003661892 = product of:
          0.01830946 = sum of:
            0.01830946 = weight(_text_:retrieval in 1778) [ClassicSimilarity], result of:
              0.01830946 = score(doc=1778,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.16710453 = fieldWeight in 1778, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1778)
          0.2 = coord(1/5)
        0.0122690005 = product of:
          0.024538001 = sum of:
            0.024538001 = weight(_text_:22 in 1778) [ClassicSimilarity], result of:
              0.024538001 = score(doc=1778,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.19345059 = fieldWeight in 1778, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1778)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    Purpose - The purpose of this paper is to introduce a new similarity method to gauge the differences between two subject hierarchical structures. Design/methodology/approach - In the proposed similarity measure, nodes on two hierarchical structures are projected onto a two-dimensional space, respectively, and both structural similarity and subject similarity of nodes are considered in the similarity between the two hierarchical structures. The extent to which the structural similarity impacts on the similarity can be controlled by adjusting a parameter. An experiment was conducted to evaluate soundness of the measure. Eight experts whose research interests were information retrieval and information organization participated in the study. Results from the new measure were compared with results from the experts. Findings - The evaluation shows strong correlations between the results from the new method and the results from the experts. It suggests that the similarity method achieved satisfactory results. Practical implications - Hierarchical structures that are found in subject directories, taxonomies, classification systems, and other classificatory structures play an extremely important role in information organization and information representation. Measuring the similarity between two subject hierarchical structures allows an accurate overarching understanding of the degree to which the two hierarchical structures are similar. Originality/value - Both structural similarity and subject similarity of nodes were considered in the proposed similarity method, and the extent to which the structural similarity impacts on the similarity can be adjusted. In addition, a new evaluation method for a hierarchical structure similarity was presented.
    Date
    8. 4.2015 16:22:13
  11. Maniez, J.: ¬Des classifications aux thesaurus : du bon usage des facettes (1999) 0.00
    0.0042065145 = product of:
      0.0294456 = sum of:
        0.0294456 = product of:
          0.0588912 = sum of:
            0.0588912 = weight(_text_:22 in 6404) [ClassicSimilarity], result of:
              0.0588912 = score(doc=6404,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.46428138 = fieldWeight in 6404, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6404)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    1. 8.1996 22:01:00
  12. Maniez, J.: ¬Du bon usage des facettes : des classifications aux thésaurus (1999) 0.00
    0.0042065145 = product of:
      0.0294456 = sum of:
        0.0294456 = product of:
          0.0588912 = sum of:
            0.0588912 = weight(_text_:22 in 3773) [ClassicSimilarity], result of:
              0.0588912 = score(doc=3773,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.46428138 = fieldWeight in 3773, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3773)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    1. 8.1996 22:01:00
  13. Foskett, D.J.: Systems theory and its relevance to documentary classification (2017) 0.00
    0.0042065145 = product of:
      0.0294456 = sum of:
        0.0294456 = product of:
          0.0588912 = sum of:
            0.0588912 = weight(_text_:22 in 3176) [ClassicSimilarity], result of:
              0.0588912 = score(doc=3176,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.46428138 = fieldWeight in 3176, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3176)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    6. 5.2017 18:46:22
  14. Kleineberg, M.: Klassifikation (2023) 0.00
    0.003710458 = product of:
      0.025973205 = sum of:
        0.025973205 = product of:
          0.06493301 = sum of:
            0.025633242 = weight(_text_:retrieval in 783) [ClassicSimilarity], result of:
              0.025633242 = score(doc=783,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.23394634 = fieldWeight in 783, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=783)
            0.039299767 = weight(_text_:system in 783) [ClassicSimilarity], result of:
              0.039299767 = score(doc=783,freq=4.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.34448233 = fieldWeight in 783, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=783)
          0.4 = coord(2/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Dieser Beitrag nimmt eine informationswissenschaftliche Perspektive ein und betrachtet das Phänomen der Klassifikation als Methode und System der Wissensorganisation. Ein Klassifikationssystem wird dabei als Wissensorganisationssystem (engl. knowledge organization system) verstanden, das vor allem im Bereich der Information und Dokumentation zum Einsatz kommt, um dokumentarische Bezugseinheiten (DBE) mit einem kontrollierten Vokabular zu beschreiben (s. Kapitel B 1 Einführung Wissensorganisation). Als eine solche Dokumentationssprache zeichnet sich ein Klassifikationssystem typischerweise durch seine systematische Ordnung aus und dient der inhaltlichen Groberschließung, eignet sich aber auch als Aufstellungssystematik und Hilfsmittel bei der Recherche wie etwa als systematischer Sucheinstieg oder thematischer Filter für Treffermengen. Beim Information Retrieval liegt die Stärke der klassifikatorischen Erschließung durch das hohe Abstraktionsniveau in Überblicks- und Vollständigkeitsrecherchen.
  15. Qin, J.: Evolving paradigms of knowledge representation and organization : a comparative study of classification, XML/DTD and ontology (2003) 0.00
    0.003641347 = product of:
      0.012744714 = sum of:
        0.0029295133 = product of:
          0.014647567 = sum of:
            0.014647567 = weight(_text_:retrieval in 2763) [ClassicSimilarity], result of:
              0.014647567 = score(doc=2763,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.13368362 = fieldWeight in 2763, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2763)
          0.2 = coord(1/5)
        0.0098152 = product of:
          0.0196304 = sum of:
            0.0196304 = weight(_text_:22 in 2763) [ClassicSimilarity], result of:
              0.0196304 = score(doc=2763,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.15476047 = fieldWeight in 2763, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2763)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    The different points of views an knowledge representation and organization from various research communities reflect underlying philosophies and paradigms in these communities. This paper reviews differences and relations in knowledge representation and organization and generalizes four paradigms-integrative and disintegrative pragmatism and integrative and disintegrative epistemologism. Examples such as classification, XML schemas, and ontologies are compared based an how they specify concepts, build data models, and encode knowledge organization structures. 1. Introduction Knowledge representation (KR) is a term that several research communities use to refer to somewhat different aspects of the same research area. The artificial intelligence (AI) community considers KR as simply "something to do with writing down, in some language or communications medium, descriptions or pictures that correspond in some salient way to the world or a state of the world" (Duce & Ringland, 1988, p. 3). It emphasizes the ways in which knowledge can be encoded in a computer program (Bench-Capon, 1990). For the library and information science (LIS) community, KR is literally the synonym of knowledge organization, i.e., KR is referred to as the process of organizing knowledge into classifications, thesauri, or subject heading lists. KR has another meaning in LIS: it "encompasses every type and method of indexing, abstracting, cataloguing, classification, records management, bibliography and the creation of textual or bibliographic databases for information retrieval" (Anderson, 1996, p. 336). Adding the social dimension to knowledge organization, Hjoerland (1997) states that knowledge is a part of human activities and tied to the division of labor in society, which should be the primary organization of knowledge. Knowledge organization in LIS is secondary or derived, because knowledge is organized in learned institutions and publications. These different points of views an KR suggest that an essential difference in the understanding of KR between both AI and LIS lies in the source of representationwhether KR targets human activities or derivatives (knowledge produced) from human activities. This difference also decides their difference in purpose-in AI KR is mainly computer-application oriented or pragmatic and the result of representation is used to support decisions an human activities, while in LIS KR is conceptually oriented or abstract and the result of representation is used for access to derivatives from human activities.
    Date
    12. 9.2004 17:22:35
  16. Gnoli, C.; Mei, H.: Freely faceted classification for Web-based information retrieval (2006) 0.00
    0.0035357005 = product of:
      0.024749903 = sum of:
        0.024749903 = product of:
          0.061874755 = sum of:
            0.0380555 = weight(_text_:retrieval in 534) [ClassicSimilarity], result of:
              0.0380555 = score(doc=534,freq=6.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.34732026 = fieldWeight in 534, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=534)
            0.023819257 = weight(_text_:system in 534) [ClassicSimilarity], result of:
              0.023819257 = score(doc=534,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.20878783 = fieldWeight in 534, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.046875 = fieldNorm(doc=534)
          0.4 = coord(2/5)
      0.14285715 = coord(1/7)
    
    Abstract
    In free classification, each concept is expressed by a constant notation, and classmarks are formed by free combinations of them, allowing the retrieval of records from a database by searching any of the component concepts. A refinement of free classification is freely faceted classification, where notation can include facets, expressing the kind of relations held between the concepts. The Integrative Level Classification project aims at testing free and freely faceted classification by applying them to small bibliographical samples in various domains. A sample, called the Dandelion Bibliography of Facet Analysis, is described here. Experience was gained using this system to classify 300 specialized papers dealing with facet analysis itself recorded on a MySQL database and building a Web interface exploiting freely faceted notation. The interface is written in PHP and uses string functions to process the queries and to yield relevant results selected and ordered according to the principles of integrative levels.
    Theme
    Klassifikationssysteme im Online-Retrieval
  17. Slavic, A.; Cordeiro, M.I.: Core requirements for automation of analytico-synthetic classifications (2004) 0.00
    0.003136654 = product of:
      0.021956576 = sum of:
        0.021956576 = product of:
          0.054891437 = sum of:
            0.03107218 = weight(_text_:retrieval in 2651) [ClassicSimilarity], result of:
              0.03107218 = score(doc=2651,freq=4.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.2835858 = fieldWeight in 2651, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2651)
            0.023819257 = weight(_text_:system in 2651) [ClassicSimilarity], result of:
              0.023819257 = score(doc=2651,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.20878783 = fieldWeight in 2651, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2651)
          0.4 = coord(2/5)
      0.14285715 = coord(1/7)
    
    Abstract
    The paper analyses the importance of data presentation and modelling and its role in improving the management, use and exchange of analytico-synthetic classifications in automated systems. Inefficiencies, in this respect, hinder the automation of classification systems that offer the possibility of building compound index/search terms. The lack of machine readable data expressing the semantics and structure of a classification vocabulary has negative effects on information management and retrieval, thus restricting the potential of both automated systems and classifications themselves. The authors analysed the data representation structure of three general analytico-synthetic classification systems (BC2-Bliss Bibliographic Classification; BSO-Broad System of Ordering; UDC-Universal Decimal Classification) and put forward some core requirements for classification data representation
    Theme
    Klassifikationssysteme im Online-Retrieval
  18. Ellis, D.; Vasconcelos, A.: Ranganathan and the Net : using facet analysis to search and organise the World Wide Web (1999) 0.00
    0.003136654 = product of:
      0.021956576 = sum of:
        0.021956576 = product of:
          0.054891437 = sum of:
            0.03107218 = weight(_text_:retrieval in 726) [ClassicSimilarity], result of:
              0.03107218 = score(doc=726,freq=4.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.2835858 = fieldWeight in 726, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=726)
            0.023819257 = weight(_text_:system in 726) [ClassicSimilarity], result of:
              0.023819257 = score(doc=726,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.20878783 = fieldWeight in 726, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.046875 = fieldNorm(doc=726)
          0.4 = coord(2/5)
      0.14285715 = coord(1/7)
    
    Abstract
    This article gives a cheerfully brief and undetailed account of how to make a faceted classification system, then describes information retrieval and searching on the web. It concludes by saying that facets would be excellent in helping users search and browse the web, but offers no real clues as to how this can be done.
    Theme
    Klassifikationssysteme im Online-Retrieval
  19. Classification Research Group: ¬The need for a faceted classification as the basis of all methods of information retrieval (1985) 0.00
    0.0029225065 = product of:
      0.020457545 = sum of:
        0.020457545 = product of:
          0.051143862 = sum of:
            0.02197135 = weight(_text_:retrieval in 3640) [ClassicSimilarity], result of:
              0.02197135 = score(doc=3640,freq=8.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.20052543 = fieldWeight in 3640, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3640)
            0.029172514 = weight(_text_:system in 3640) [ClassicSimilarity], result of:
              0.029172514 = score(doc=3640,freq=12.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.25571182 = fieldWeight in 3640, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3640)
          0.4 = coord(2/5)
      0.14285715 = coord(1/7)
    
    Abstract
    This classic paper presents the reasoning behind the research undertaken by the Classification Research Group in London, beginning in 1952 and producing, by 1955, the direction in which the Group's efforts were to go in the next thirty years. The Group's original purpose was to review the basic principles of indexing and classification without committing itself to any existing system. It began by uncovering - among existing systems such as indexes, classifications, automatic selectors, and other information retrieval systems - the steps in the process by means of which a search was performed. The Group went over this very carefully, identifying parts of the process each step of the way. At the time this work was performed systems such as UNITERMS, which did not survive, and other alphabetical coordinated indexes, mainly experimental, were a dime a dozen. Classification to most librarians meant Dewey and the Library of Congress systems, both of which have very serious shortcomings from an intellectual point of view. The Group finally came to the conclusion that a classification of knowledge was necessary for constructing any successful retrieval system. The question then became one of deciding which kind of classification system. The members identified ten unsatisfactory features of existing systems. In fact, they could not find any general class schedule that either was satisfactory or could be made satisfactory. Obviously then, a new system had to be made. The question became one of how to do this. Existing theories did not conform to the theory of logical division; dividing and subdividing an the basis of a single characteristic was not followed. Thus logical division, which is a "top down" method of analysis, was rejected. Generic relationships would have to be made by some other methodology. A "bottom-up" or inductive, as opposed to deductive, method was a possibility. The Group actually decided to use a system in which a given genus could be subdivided in more than one way, thus "yielding a homogeneous group of collateral species."
    The technique chosen was S. R. Ranganathan's facet analysis (q.v.). This method works from the bottom up: a term is categorized according to its parent class, as a kind, state, property, action, operation upon something, result of an Operation, agent, and so on. These modes of definition represent characteristics of division. Following the publication of this paper, the group worked for over ten years developing systems following this general pattern with various changes and experimental arrangements. Ranganathan's Colon Classification was the original of this type of method, but the Group rejected his contention that there are only five fundamental categories to be found in the knowledge base. They did, in fact, end up with varying numbers of categories in the experimental systems which they ultimately were to make. Notation was also recognized as a problem, being complex, illogical, lengthy, obscure and hard to understand. The Group tried to develop a rationale for notation, both as an ordering and as a finding device. To describe and represent a class, a notation could be long, but as a finding device, brevity would be preferable. The Group was to experiment with this aspect of classification and produce a number of interesting results. The Classification Research Group began meeting informally to discuss classification matters in 1952 and continues to meet, usually in London, to the present day. Most of the British authors whose work is presented in these pages have been members for most of the Group's life and continue in it. The Group maintains the basic position outlined in this paper to the present day. Its experimental approach has resulted in much more information about the nature and functions of classification systems. The ideal system has yet to be found. Classification research is still a promising area. The future calls for more experimentation based an reasoned approaches, following the example set by the Classification Research Group.
    Footnote
    Original in: Proceedings of the International Study Conference on Classification for Information Retrieval held at Beatrice Webb House, Dorking, England, 13th-17th May 1957. London: Aslib 1957, Appendix 2, S.137-147.
  20. Connaway, L.S.; Sievert, M.C.: Comparison of three classification systems for information on health insurance (1996) 0.00
    0.0028043431 = product of:
      0.0196304 = sum of:
        0.0196304 = product of:
          0.0392608 = sum of:
            0.0392608 = weight(_text_:22 in 7242) [ClassicSimilarity], result of:
              0.0392608 = score(doc=7242,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.30952093 = fieldWeight in 7242, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=7242)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    22. 4.1997 21:10:19

Languages

Types

  • a 91
  • m 9
  • el 3
  • s 3
  • More… Less…