Search (16 results, page 1 of 1)

  • × theme_ss:"Formale Begriffsanalyse"
  1. Priss, U.; Jacob, E.: Utilizing faceted structures for information systems design (1999) 0.03
    0.029848728 = product of:
      0.14924364 = sum of:
        0.006439812 = product of:
          0.012879624 = sum of:
            0.012879624 = weight(_text_:online in 2470) [ClassicSimilarity], result of:
              0.012879624 = score(doc=2470,freq=2.0), product of:
                0.096027054 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.031640913 = queryNorm
                0.13412495 = fieldWeight in 2470, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2470)
          0.5 = coord(1/2)
        0.039403345 = weight(_text_:web in 2470) [ClassicSimilarity], result of:
          0.039403345 = score(doc=2470,freq=14.0), product of:
            0.10326045 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.031640913 = queryNorm
            0.38159183 = fieldWeight in 2470, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=2470)
        0.103400484 = weight(_text_:site in 2470) [ClassicSimilarity], result of:
          0.103400484 = score(doc=2470,freq=12.0), product of:
            0.1738463 = queryWeight, product of:
              5.494352 = idf(docFreq=493, maxDocs=44218)
              0.031640913 = queryNorm
            0.59478104 = fieldWeight in 2470, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              5.494352 = idf(docFreq=493, maxDocs=44218)
              0.03125 = fieldNorm(doc=2470)
      0.2 = coord(3/15)
    
    Abstract
    The writers show that a faceted navigation structure makes web sites easier to use. They begin by analyzing the web sites of three library and information science faculties, and seeing if the sites easily provide the answers to five specific questions, e.g., how the school ranks in national evaluations. (It is worth noting that the web site of the Faculty of Information Studies and the University of Toronto, where this bibliography is being written, would fail on four of the five questions.) Using examples from LIS web site content, they show how facets can be related and constructed, and use concept diagrams for illustration. They briefly discuss constraints necessary when joining facets: for example, enrolled students can be full- or part-time, but prospective and alumni students cannot. It should not be possible to construct terms such as "part-time alumni" (see Yannis Tzitzikas et al, below in Background). They conclude that a faceted approach is best for web site navigation, because it can clearly show where the user is in the site, what the related pages are, and how to get to them. There is a short discussion of user interfaces, and the diagrams in the paper will be of interest to anyone making a facet-based web site. This paper is clearly written, informative, and thought-provoking. Uta Priss's web site lists her other publications, many of which are related and some of which are online: http://www.upriss.org.uk/top/research.html.
  2. Negm, E.; AbdelRahman, S.; Bahgat, R.: PREFCA: a portal retrieval engine based on formal concept analysis (2017) 0.02
    0.020659612 = product of:
      0.10329806 = sum of:
        0.024604581 = weight(_text_:evaluation in 3291) [ClassicSimilarity], result of:
          0.024604581 = score(doc=3291,freq=2.0), product of:
            0.13272417 = queryWeight, product of:
              4.1947007 = idf(docFreq=1811, maxDocs=44218)
              0.031640913 = queryNorm
            0.18538132 = fieldWeight in 3291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1947007 = idf(docFreq=1811, maxDocs=44218)
              0.03125 = fieldNorm(doc=3291)
        0.03648041 = weight(_text_:web in 3291) [ClassicSimilarity], result of:
          0.03648041 = score(doc=3291,freq=12.0), product of:
            0.10326045 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.031640913 = queryNorm
            0.35328537 = fieldWeight in 3291, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=3291)
        0.04221307 = weight(_text_:site in 3291) [ClassicSimilarity], result of:
          0.04221307 = score(doc=3291,freq=2.0), product of:
            0.1738463 = queryWeight, product of:
              5.494352 = idf(docFreq=493, maxDocs=44218)
              0.031640913 = queryNorm
            0.24281834 = fieldWeight in 3291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.494352 = idf(docFreq=493, maxDocs=44218)
              0.03125 = fieldNorm(doc=3291)
      0.2 = coord(3/15)
    
    Abstract
    The web is a network of linked sites whereby each site either forms a physical portal or a standalone page. In the former case, the portal presents an access point to its embedded web pages that coherently present a specific topic. In the latter case, there are millions of standalone web pages, that are scattered throughout the web, having the same topic and could be conceptually linked together to form virtual portals. Search engines have been developed to help users in reaching the adequate pages in an efficient and effective manner. All the known current search engine techniques rely on the web page as the basic atomic search unit. They ignore the conceptual links, that reveal the implicit web related meanings, among the retrieved pages. However, building a semantic model for the whole portal may contain more semantic information than a model of scattered individual pages. In addition, user queries can be poor and contain imprecise terms that do not reflect the real user intention. Consequently, retrieving the standalone individual pages that are directly related to the query may not satisfy the user's need. In this paper, we propose PREFCA, a Portal Retrieval Engine based on Formal Concept Analysis that relies on the portal as the main search unit. PREFCA consists of three phases: First, the information extraction phase that is concerned with extracting portal's semantic data. Second, the formal concept analysis phase that utilizes formal concept analysis to discover the conceptual links among portal and attributes. Finally, the information retrieval phase where we propose a portal ranking method to retrieve ranked pairs of portals and embedded pages. Additionally, we apply the network analysis rules to output some portal characteristics. We evaluated PREFCA using two data sets, namely the Forum for Information Retrieval Evaluation 2010 and ClueWeb09 (category B) test data, for physical and virtual portals respectively. PREFCA proves higher F-measure accuracy, better Mean Average Precision ranking and comparable network analysis and efficiency results than other search engine approaches, namely Term Frequency Inverse Document Frequency (TF-IDF), Latent Semantic Analysis (LSA), and BM25 techniques. As well, it gains high Mean Average Precision in comparison with learning to rank techniques. Moreover, PREFCA also gains better reach time than Carrot as a well-known topic-based search engine.
  3. Vogt, F.; Wille, R.: TOSCANA - a graphical tool for analyzing and exploring data (1995) 0.02
    0.017352806 = product of:
      0.13014604 = sum of:
        0.01821454 = product of:
          0.03642908 = sum of:
            0.03642908 = weight(_text_:online in 1901) [ClassicSimilarity], result of:
              0.03642908 = score(doc=1901,freq=4.0), product of:
                0.096027054 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.031640913 = queryNorm
                0.37936267 = fieldWeight in 1901, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1901)
          0.5 = coord(1/2)
        0.111931495 = sum of:
          0.07763624 = weight(_text_:analyse in 1901) [ClassicSimilarity], result of:
            0.07763624 = score(doc=1901,freq=2.0), product of:
              0.16670908 = queryWeight, product of:
                5.268782 = idf(docFreq=618, maxDocs=44218)
                0.031640913 = queryNorm
              0.46569893 = fieldWeight in 1901, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.268782 = idf(docFreq=618, maxDocs=44218)
                0.0625 = fieldNorm(doc=1901)
          0.034295253 = weight(_text_:22 in 1901) [ClassicSimilarity], result of:
            0.034295253 = score(doc=1901,freq=2.0), product of:
              0.110801086 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.031640913 = queryNorm
              0.30952093 = fieldWeight in 1901, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=1901)
      0.13333334 = coord(2/15)
    
    Abstract
    TOSCANA is a computer program which allows an online interaction with larger data bases to analyse and explore data conceptually. It uses labelled line diagrams of concept lattices to communicate knowledge coded in given data. The basic problem to create online presentations of concept lattices is solved by composing prepared diagrams to nested line diagrams. A larger number of applications in different areas have already shown that TOSCANA is a useful tool for many purposes
    Source
    Knowledge organization. 22(1995) no.2, S.78-81
  4. Working with conceptual structures : contributions to ICCS 2000. 8th International Conference on Conceptual Structures: Logical, Linguistic, and Computational Issues. Darmstadt, August 14-18, 2000 (2000) 0.01
    0.0053685848 = product of:
      0.040264383 = sum of:
        0.027232954 = weight(_text_:software in 5089) [ClassicSimilarity], result of:
          0.027232954 = score(doc=5089,freq=4.0), product of:
            0.12552431 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.031640913 = queryNorm
            0.21695362 = fieldWeight in 5089, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.02734375 = fieldNorm(doc=5089)
        0.013031431 = weight(_text_:web in 5089) [ClassicSimilarity], result of:
          0.013031431 = score(doc=5089,freq=2.0), product of:
            0.10326045 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.031640913 = queryNorm
            0.12619963 = fieldWeight in 5089, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02734375 = fieldNorm(doc=5089)
      0.13333334 = coord(2/15)
    
    Content
    Concepts & Language: Knowledge organization by procedures of natural language processing. A case study using the method GABEK (J. Zelger, J. Gadner) - Computer aided narrative analysis using conceptual graphs (H. Schärfe, P. 0hrstrom) - Pragmatic representation of argumentative text: a challenge for the conceptual graph approach (H. Irandoust, B. Moulin) - Conceptual graphs as a knowledge representation core in a complex language learning environment (G. Angelova, A. Nenkova, S. Boycheva, T. Nikolov) - Conceptual Modeling and Ontologies: Relationships and actions in conceptual categories (Ch. Landauer, K.L. Bellman) - Concept approximations for formal concept analysis (J. Saquer, J.S. Deogun) - Faceted information representation (U. Priß) - Simple concept graphs with universal quantifiers (J. Tappe) - A framework for comparing methods for using or reusing multiple ontologies in an application (J. van ZyI, D. Corbett) - Designing task/method knowledge-based systems with conceptual graphs (M. Leclère, F.Trichet, Ch. Choquet) - A logical ontology (J. Farkas, J. Sarbo) - Algorithms and Tools: Fast concept analysis (Ch. Lindig) - A framework for conceptual graph unification (D. Corbett) - Visual CP representation of knowledge (H.D. Pfeiffer, R.T. Hartley) - Maximal isojoin for representing software textual specifications and detecting semantic anomalies (Th. Charnois) - Troika: using grids, lattices and graphs in knowledge acquisition (H.S. Delugach, B.E. Lampkin) - Open world theorem prover for conceptual graphs (J.E. Heaton, P. Kocura) - NetCare: a practical conceptual graphs software tool (S. Polovina, D. Strang) - CGWorld - a web based workbench for conceptual graphs management and applications (P. Dobrev, K. Toutanova) - Position papers: The edition project: Peirce's existential graphs (R. Mülller) - Mining association rules using formal concept analysis (N. Pasquier) - Contextual logic summary (R Wille) - Information channels and conceptual scaling (K.E. Wolff) - Spatial concepts - a rule exploration (S. Rudolph) - The TEXT-TO-ONTO learning environment (A. Mädche, St. Staab) - Controlling the semantics of metadata on audio-visual documents using ontologies (Th. Dechilly, B. Bachimont) - Building the ontological foundations of a terminology from natural language to conceptual graphs with Ribosome, a knowledge extraction system (Ch. Jacquelinet, A. Burgun) - CharGer: some lessons learned and new directions (H.S. Delugach) - Knowledge management using conceptual graphs (W.K. Pun)
  5. Lindig, C.; Snelting, G.: Formale Begriffsnalyse im Software Engineering (2000) 0.01
    0.0051350947 = product of:
      0.07702642 = sum of:
        0.07702642 = weight(_text_:software in 4199) [ClassicSimilarity], result of:
          0.07702642 = score(doc=4199,freq=2.0), product of:
            0.12552431 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.031640913 = queryNorm
            0.61363745 = fieldWeight in 4199, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.109375 = fieldNorm(doc=4199)
      0.06666667 = coord(1/15)
    
  6. Vogt, C.; Wille, R.: Formale Begriffsanalyse : Darstellung und Analyse von bibliographischen Daten (1994) 0.00
    0.004528781 = product of:
      0.06793171 = sum of:
        0.06793171 = product of:
          0.13586342 = sum of:
            0.13586342 = weight(_text_:analyse in 7603) [ClassicSimilarity], result of:
              0.13586342 = score(doc=7603,freq=2.0), product of:
                0.16670908 = queryWeight, product of:
                  5.268782 = idf(docFreq=618, maxDocs=44218)
                  0.031640913 = queryNorm
                0.8149731 = fieldWeight in 7603, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.268782 = idf(docFreq=618, maxDocs=44218)
                  0.109375 = fieldNorm(doc=7603)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
  7. Kollewe, W.; Skorsky, M.; Vogt, F.; Wille, R.: TOSCANA - ein Werkzeug zur begrifflichen Analyse und Erkundung von Daten (1994) 0.00
    0.003881812 = product of:
      0.058227178 = sum of:
        0.058227178 = product of:
          0.116454355 = sum of:
            0.116454355 = weight(_text_:analyse in 8942) [ClassicSimilarity], result of:
              0.116454355 = score(doc=8942,freq=2.0), product of:
                0.16670908 = queryWeight, product of:
                  5.268782 = idf(docFreq=618, maxDocs=44218)
                  0.031640913 = queryNorm
                0.6985484 = fieldWeight in 8942, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.268782 = idf(docFreq=618, maxDocs=44218)
                  0.09375 = fieldNorm(doc=8942)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
  8. Vogt, F.: Formale Begriffsanalyse mit C++ : Datenstrukturen und Algorithmen (1996) 0.00
    0.0029343402 = product of:
      0.0440151 = sum of:
        0.0440151 = weight(_text_:software in 2037) [ClassicSimilarity], result of:
          0.0440151 = score(doc=2037,freq=2.0), product of:
            0.12552431 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.031640913 = queryNorm
            0.35064998 = fieldWeight in 2037, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0625 = fieldNorm(doc=2037)
      0.06666667 = coord(1/15)
    
    Content
    The book comprises 16 chapters and an appendix in which the software CONSCRIPT is explained
  9. Kollewe, W.: Instrumente der Literaturverwaltung : Inhaltliche analyse von Datenbeständen durch 'Begriffliche Wissensverarbeitung' (1996) 0.00
    0.002587875 = product of:
      0.03881812 = sum of:
        0.03881812 = product of:
          0.07763624 = sum of:
            0.07763624 = weight(_text_:analyse in 4376) [ClassicSimilarity], result of:
              0.07763624 = score(doc=4376,freq=2.0), product of:
                0.16670908 = queryWeight, product of:
                  5.268782 = idf(docFreq=618, maxDocs=44218)
                  0.031640913 = queryNorm
                0.46569893 = fieldWeight in 4376, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.268782 = idf(docFreq=618, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4376)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
  10. Pollandt, S.: Fuzzy-Begriffe : Formale Begriffsanalyse unscharfer Daten (1997) 0.00
    0.002587875 = product of:
      0.03881812 = sum of:
        0.03881812 = product of:
          0.07763624 = sum of:
            0.07763624 = weight(_text_:analyse in 2086) [ClassicSimilarity], result of:
              0.07763624 = score(doc=2086,freq=2.0), product of:
                0.16670908 = queryWeight, product of:
                  5.268782 = idf(docFreq=618, maxDocs=44218)
                  0.031640913 = queryNorm
                0.46569893 = fieldWeight in 2086, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.268782 = idf(docFreq=618, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2086)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Ausgehend von der Theorie der Fuzzy-Mengen und Fuzzy-Logik werden neue Methoden zur Analyse unscharfer Daten entwickelt. Dazu wird die Theorie der Formalen Begriffsanalyse in einer Reihe von Methoden und Verfahren erweitert und somit der Forderung von Anwendern nach Möglichkeiten zur begriffsanalytischen Erfassung unscharfer Daten Rechnung getragen. Die benötigten theoretischen Grundlagen werden einführend bereitgestellt, die mathematische Darstellung wird an leicht nachvollziehbaren praktischen Beispielen veranschaulicht
  11. De Maio, C.; Fenza, G.; Loia, V.; Senatore, S.: Hierarchical web resources retrieval by exploiting Fuzzy Formal Concept Analysis (2012) 0.00
    0.0025795544 = product of:
      0.038693316 = sum of:
        0.038693316 = weight(_text_:web in 2737) [ClassicSimilarity], result of:
          0.038693316 = score(doc=2737,freq=6.0), product of:
            0.10326045 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.031640913 = queryNorm
            0.37471575 = fieldWeight in 2737, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2737)
      0.06666667 = coord(1/15)
    
    Abstract
    In recent years, knowledge structuring is assuming important roles in several real world applications such as decision support, cooperative problem solving, e-commerce, Semantic Web and, even in planning systems. Ontologies play an important role in supporting automated processes to access information and are at the core of new strategies for the development of knowledge-based systems. Yet, developing an ontology is a time-consuming task which often needs an accurate domain expertise to tackle structural and logical difficulties in the definition of concepts as well as conceivable relationships. This work presents an ontology-based retrieval approach, that supports data organization and visualization and provides a friendly navigation model. It exploits the fuzzy extension of the Formal Concept Analysis theory to elicit conceptualizations from datasets and generate a hierarchy-based representation of extracted knowledge. An intuitive graphical interface provides a multi-facets view of the built ontology. Through a transparent query-based retrieval, final users navigate across concepts, relations and population.
    Content
    Beitrag in einem Themenheft "Soft Approaches to IA on the Web". Vgl.: doi:10.1016/j.ipm.2011.04.003.
  12. Carpineto, C.; Romano, G.: Order-theoretical ranking (2000) 0.00
    0.0020503819 = product of:
      0.030755727 = sum of:
        0.030755727 = weight(_text_:evaluation in 4766) [ClassicSimilarity], result of:
          0.030755727 = score(doc=4766,freq=2.0), product of:
            0.13272417 = queryWeight, product of:
              4.1947007 = idf(docFreq=1811, maxDocs=44218)
              0.031640913 = queryNorm
            0.23172665 = fieldWeight in 4766, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1947007 = idf(docFreq=1811, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4766)
      0.06666667 = coord(1/15)
    
    Abstract
    Current best-match ranking (BMR) systems perform well but cannot handle word mismatch between a query and a document. The best known alternative ranking method, hierarchical clustering-based ranking (HCR), seems to be more robust than BMR with respect to this problem, but it is hampered by theoretical and practical limitations. We present an approach to document ranking that explicitly addresses the word mismatch problem by exploiting interdocument similarity information in a novel way. Document ranking is seen as a query-document transformation driven by a conceptual representation of the whole document collection, into which the query is merged. Our approach is nased on the theory of concept (or Galois) lattices, which, er argue, provides a powerful, well-founded, and conputationally-tractable framework to model the space in which documents and query are represented and to compute such a transformation. We compared information retrieval using concept lattice-based ranking (CLR) to BMR and HCR. The results showed that HCR was outperformed by CLR as well as BMR, and suggested that, of the two best methods, BMR achieved better performance than CLR on the whole document set, whereas CLR compared more favorably when only the first retrieved documents were used for evaluation. We also evaluated the three methods' specific ability to rank documents that did not match the query, in which case the speriority of CLR over BMR and HCR was apparent
  13. Begriffliche Wissensverarbeitung : Methoden und Anwendungen. Mit Beiträgen zahlreicher Fachwissenschaftler (2000) 0.00
    0.0018339625 = product of:
      0.027509436 = sum of:
        0.027509436 = weight(_text_:software in 4193) [ClassicSimilarity], result of:
          0.027509436 = score(doc=4193,freq=2.0), product of:
            0.12552431 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.031640913 = queryNorm
            0.21915624 = fieldWeight in 4193, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4193)
      0.06666667 = coord(1/15)
    
    Content
    Enthält die Beiträge: GANTER, B.: Begriffe und Implikationen; BURMEISTER, P.: ConImp: Ein Programm zur Fromalen Begriffsanalyse; Lengnink, K.: Ähnlichkeit als Distanz in Begriffsverbänden; POLLANDT, S.: Datenanalyse mit Fuzzy-Begriffen; PREDIGER, S.: Terminologische Merkmalslogik in der Formalen Begriffsanalyse; WILLE, R. u. M. ZICKWOLFF: Grundlagen einer Triadischen Begriffsanalyse; LINDIG, C. u. G. SNELTING: Formale Begriffsanalyse im Software Engineering; STRACK, H. u. M. SKORSKY: Zugriffskontrolle bei Programmsystemen und im Datenschutz mittels Formaler Begriffsanalyse; ANDELFINGER, U.: Inhaltliche Erschließung des Bereichs 'Sozialorientierte Gestaltung von Informationstechnik': Ein begriffsanalytischer Ansatz; GÖDERT, W.: Wissensdarstellung in Informationssystemen, Fragetypen und Anforderungen an Retrievalkomponenten; ROCK, T. u. R. WILLE: Ein TOSCANA-Erkundungssystem zur Literatursuche; ESCHENFELDER, D. u.a.: Ein Erkundungssystem zum Baurecht: Methoden der Entwicklung eines TOSCANA-Systems; GROßKOPF, A. u. G. HARRAS: Begriffliche Erkundung semantischer Strukturen von Sprechaktverben; ZELGER, J.: Grundwerte, Ziele und Maßnahmen in einem regionalen Krankenhaus: Eine Anwendung des Verfahrens GABEK; KOHLER-KOCH, B. u. F. VOGT: Normen- und regelgeleitete internationale Kooperationen: Formale Begriffsanalyse in der Politikwissenschaft; HENNING, H.J. u. W. KEMMNITZ: Entwicklung eines kontextuellen Methodenkonzeptes mit Hilfer der Formalen Begriffsanalyse an Beispielen zum Risikoverständnis; BARTEL, H.-G.: Über Möglichkeiten der Formalen Begriffsanalyse in der Mathematischen Archäochemie
  14. Prediger, S.: Kontextuelle Urteilslogik mit Begriffsgraphen : Ein Beitrag zur Restrukturierung der mathematischen Logik (1998) 0.00
    0.0014289691 = product of:
      0.021434534 = sum of:
        0.021434534 = product of:
          0.04286907 = sum of:
            0.04286907 = weight(_text_:22 in 3142) [ClassicSimilarity], result of:
              0.04286907 = score(doc=3142,freq=2.0), product of:
                0.110801086 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.031640913 = queryNorm
                0.38690117 = fieldWeight in 3142, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3142)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Date
    26. 2.2008 15:58:22
  15. Priss, U.: Faceted information representation (2000) 0.00
    0.0010002783 = product of:
      0.015004174 = sum of:
        0.015004174 = product of:
          0.030008348 = sum of:
            0.030008348 = weight(_text_:22 in 5095) [ClassicSimilarity], result of:
              0.030008348 = score(doc=5095,freq=2.0), product of:
                0.110801086 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.031640913 = queryNorm
                0.2708308 = fieldWeight in 5095, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5095)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Date
    22. 1.2016 17:47:06
  16. Priss, U.: Faceted knowledge representation (1999) 0.00
    0.0010002783 = product of:
      0.015004174 = sum of:
        0.015004174 = product of:
          0.030008348 = sum of:
            0.030008348 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
              0.030008348 = score(doc=2654,freq=2.0), product of:
                0.110801086 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.031640913 = queryNorm
                0.2708308 = fieldWeight in 2654, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2654)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Date
    22. 1.2016 17:30:31