Search (51 results, page 1 of 3)

  • × year_i:[2010 TO 2020}
  • × theme_ss:"Retrievalalgorithmen"
  1. Soulier, L.; Jabeur, L.B.; Tamine, L.; Bahsoun, W.: On ranking relevant entities in heterogeneous networks using a language-based model (2013) 0.02
    0.02305558 = product of:
      0.038425963 = sum of:
        0.008315044 = product of:
          0.041575223 = sum of:
            0.041575223 = weight(_text_:problem in 664) [ClassicSimilarity], result of:
              0.041575223 = score(doc=664,freq=2.0), product of:
                0.17731056 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.04177434 = queryNorm
                0.23447686 = fieldWeight in 664, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=664)
          0.2 = coord(1/5)
        0.015961302 = weight(_text_:of in 664) [ClassicSimilarity], result of:
          0.015961302 = score(doc=664,freq=16.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.24433708 = fieldWeight in 664, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=664)
        0.0141496165 = product of:
          0.028299233 = sum of:
            0.028299233 = weight(_text_:22 in 664) [ClassicSimilarity], result of:
              0.028299233 = score(doc=664,freq=2.0), product of:
                0.14628662 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04177434 = queryNorm
                0.19345059 = fieldWeight in 664, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=664)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    A new challenge, accessing multiple relevant entities, arises from the availability of linked heterogeneous data. In this article, we address more specifically the problem of accessing relevant entities, such as publications and authors within a bibliographic network, given an information need. We propose a novel algorithm, called BibRank, that estimates a joint relevance of documents and authors within a bibliographic network. This model ranks each type of entity using a score propagation algorithm with respect to the query topic and the structure of the underlying bi-type information entity network. Evidence sources, namely content-based and network-based scores, are both used to estimate the topical similarity between connected entities. For this purpose, authorship relationships are analyzed through a language model-based score on the one hand and on the other hand, non topically related entities of the same type are detected through marginal citations. The article reports the results of experiments using the Bibrank algorithm for an information retrieval task. The CiteSeerX bibliographic data set forms the basis for the topical query automatic generation and evaluation. We show that a statistically significant improvement over closely related ranking models is achieved.
    Date
    22. 3.2013 19:34:49
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.3, S.500-515
  2. Ravana, S.D.; Rajagopal, P.; Balakrishnan, V.: Ranking retrieval systems using pseudo relevance judgments (2015) 0.02
    0.015490747 = product of:
      0.038726866 = sum of:
        0.018716287 = weight(_text_:of in 2591) [ClassicSimilarity], result of:
          0.018716287 = score(doc=2591,freq=22.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.28651062 = fieldWeight in 2591, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2591)
        0.02001058 = product of:
          0.04002116 = sum of:
            0.04002116 = weight(_text_:22 in 2591) [ClassicSimilarity], result of:
              0.04002116 = score(doc=2591,freq=4.0), product of:
                0.14628662 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04177434 = queryNorm
                0.27358043 = fieldWeight in 2591, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2591)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Purpose In a system-based approach, replicating the web would require large test collections, and judging the relevancy of all documents per topic in creating relevance judgment through human assessors is infeasible. Due to the large amount of documents that requires judgment, there are possible errors introduced by human assessors because of disagreements. The paper aims to discuss these issues. Design/methodology/approach This study explores exponential variation and document ranking methods that generate a reliable set of relevance judgments (pseudo relevance judgments) to reduce human efforts. These methods overcome problems with large amounts of documents for judgment while avoiding human disagreement errors during the judgment process. This study utilizes two key factors: number of occurrences of each document per topic from all the system runs; and document rankings to generate the alternate methods. Findings The effectiveness of the proposed method is evaluated using the correlation coefficient of ranked systems using mean average precision scores between the original Text REtrieval Conference (TREC) relevance judgments and pseudo relevance judgments. The results suggest that the proposed document ranking method with a pool depth of 100 could be a reliable alternative to reduce human effort and disagreement errors involved in generating TREC-like relevance judgments. Originality/value Simple methods proposed in this study show improvement in the correlation coefficient in generating alternate relevance judgment without human assessors while contributing to information retrieval evaluation.
    Date
    20. 1.2015 18:30:22
    18. 9.2018 18:22:56
    Source
    Aslib journal of information management. 67(2015) no.6, S.700-714
  3. Bornmann, L.; Mutz, R.: From P100 to P100' : a new citation-rank approach (2014) 0.02
    0.015311283 = product of:
      0.038278207 = sum of:
        0.01563882 = weight(_text_:of in 1431) [ClassicSimilarity], result of:
          0.01563882 = score(doc=1431,freq=6.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.23940048 = fieldWeight in 1431, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=1431)
        0.022639386 = product of:
          0.045278773 = sum of:
            0.045278773 = weight(_text_:22 in 1431) [ClassicSimilarity], result of:
              0.045278773 = score(doc=1431,freq=2.0), product of:
                0.14628662 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04177434 = queryNorm
                0.30952093 = fieldWeight in 1431, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1431)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Properties of a percentile-based rating scale needed in bibliometrics are formulated. Based on these properties, P100 was recently introduced as a new citation-rank approach (Bornmann, Leydesdorff, & Wang, 2013). In this paper, we conceptualize P100 and propose an improvement which we call P100'. Advantages and disadvantages of citation-rank indicators are noted.
    Date
    22. 8.2014 17:05:18
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.9, S.1939-1943
  4. Ozdemiray, A.M.; Altingovde, I.S.: Explicit search result diversification using score and rank aggregation methods (2015) 0.01
    0.013149628 = product of:
      0.03287407 = sum of:
        0.0117592495 = product of:
          0.058796246 = sum of:
            0.058796246 = weight(_text_:problem in 1856) [ClassicSimilarity], result of:
              0.058796246 = score(doc=1856,freq=4.0), product of:
                0.17731056 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.04177434 = queryNorm
                0.33160037 = fieldWeight in 1856, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1856)
          0.2 = coord(1/5)
        0.02111482 = weight(_text_:of in 1856) [ClassicSimilarity], result of:
          0.02111482 = score(doc=1856,freq=28.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.32322758 = fieldWeight in 1856, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1856)
      0.4 = coord(2/5)
    
    Abstract
    Search result diversification is one of the key techniques to cope with the ambiguous and underspecified information needs of web users. In the last few years, strategies that are based on the explicit knowledge of query aspects emerged as highly effective ways of diversifying search results. Our contributions in this article are two-fold. First, we extensively evaluate the performance of a state-of-the-art explicit diversification strategy and pin-point its potential weaknesses. We propose basic yet novel optimizations to remedy these weaknesses and boost the performance of this algorithm. As a second contribution, inspired by the success of the current diversification strategies that exploit the relevance of the candidate documents to individual query aspects, we cast the diversification problem into the problem of ranking aggregation. To this end, we propose to materialize the re-rankings of the candidate documents for each query aspect and then merge these rankings by adapting the score(-based) and rank(-based) aggregation methods. Our extensive experimental evaluations show that certain ranking aggregation methods are superior to existing explicit diversification strategies in terms of diversification effectiveness. Furthermore, these ranking aggregation methods have lower computational complexity than the state-of-the-art diversification strategies.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.6, S.1212-1228
  5. Baloh, P.; Desouza, K.C.; Hackney, R.: Contextualizing organizational interventions of knowledge management systems : a design science perspectiveA domain analysis (2012) 0.01
    0.013146362 = product of:
      0.032865904 = sum of:
        0.018716287 = weight(_text_:of in 241) [ClassicSimilarity], result of:
          0.018716287 = score(doc=241,freq=22.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.28651062 = fieldWeight in 241, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=241)
        0.0141496165 = product of:
          0.028299233 = sum of:
            0.028299233 = weight(_text_:22 in 241) [ClassicSimilarity], result of:
              0.028299233 = score(doc=241,freq=2.0), product of:
                0.14628662 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04177434 = queryNorm
                0.19345059 = fieldWeight in 241, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=241)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    We address how individuals' (workers) knowledge needs influence the design of knowledge management systems (KMS), enabling knowledge creation and utilization. It is evident that KMS technologies and activities are indiscriminately deployed in most organizations with little regard to the actual context of their adoption. Moreover, it is apparent that the extant literature pertaining to knowledge management projects is frequently deficient in identifying the variety of factors indicative for successful KMS. This presents an obvious business practice and research gap that requires a critical analysis of the necessary intervention that will actually improve how workers can leverage and form organization-wide knowledge. This research involved an extensive review of the literature, a grounded theory methodological approach and rigorous data collection and synthesis through an empirical case analysis (Parsons Brinckerhoff and Samsung). The contribution of this study is the formulation of a model for designing KMS based upon the design science paradigm, which aspires to create artifacts that are interdependent of people and organizations. The essential proposition is that KMS design and implementation must be contextualized in relation to knowledge needs and that these will differ for various organizational settings. The findings present valuable insights and further understanding of the way in which KMS design efforts should be focused.
    Date
    11. 6.2012 14:22:34
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.5, S.948-966
  6. Efron, M.; Winget, M.: Query polyrepresentation for ranking retrieval systems without relevance judgments (2010) 0.01
    0.010626211 = product of:
      0.026565526 = sum of:
        0.009978054 = product of:
          0.04989027 = sum of:
            0.04989027 = weight(_text_:problem in 3469) [ClassicSimilarity], result of:
              0.04989027 = score(doc=3469,freq=2.0), product of:
                0.17731056 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.04177434 = queryNorm
                0.28137225 = fieldWeight in 3469, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3469)
          0.2 = coord(1/5)
        0.016587472 = weight(_text_:of in 3469) [ClassicSimilarity], result of:
          0.016587472 = score(doc=3469,freq=12.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.25392252 = fieldWeight in 3469, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3469)
      0.4 = coord(2/5)
    
    Abstract
    Ranking information retrieval (IR) systems with respect to their effectiveness is a crucial operation during IR evaluation, as well as during data fusion. This article offers a novel method of approaching the system-ranking problem, based on the widely studied idea of polyrepresentation. The principle of polyrepresentation suggests that a single information need can be represented by many query articulations-what we call query aspects. By skimming the top k (where k is small) documents retrieved by a single system for multiple query aspects, we collect a set of documents that are likely to be relevant to a given test topic. Labeling these skimmed documents as putatively relevant lets us build pseudorelevance judgments without undue human intervention. We report experiments where using these pseudorelevance judgments delivers a rank ordering of IR systems that correlates highly with rankings based on human relevance judgments.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.6, S.1081-1091
  7. Moura, E.S. de; Fernandes, D.; Ribeiro-Neto, B.; Silva, A.S. da; Gonçalves, M.A.: Using structural information to improve search in Web collections (2010) 0.01
    0.010626211 = product of:
      0.026565526 = sum of:
        0.009978054 = product of:
          0.04989027 = sum of:
            0.04989027 = weight(_text_:problem in 4119) [ClassicSimilarity], result of:
              0.04989027 = score(doc=4119,freq=2.0), product of:
                0.17731056 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.04177434 = queryNorm
                0.28137225 = fieldWeight in 4119, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4119)
          0.2 = coord(1/5)
        0.016587472 = weight(_text_:of in 4119) [ClassicSimilarity], result of:
          0.016587472 = score(doc=4119,freq=12.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.25392252 = fieldWeight in 4119, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4119)
      0.4 = coord(2/5)
    
    Abstract
    In this work, we investigate the problem of using the block structure of Web pages to improve ranking results. Starting with basic intuitions provided by the concepts of term frequency (TF) and inverse document frequency (IDF), we propose nine block-weight functions to distinguish the impact of term occurrences inside page blocks, instead of inside whole pages. These are then used to compute a modified BM25 ranking function. Using four distinct Web collections, we ran extensive experiments to compare our block-weight ranking formulas with two other baselines: (a) a BM25 ranking applied to full pages, and (b) a BM25 ranking that takes into account best blocks. Our methods suggest that our block-weighting ranking method is superior to all baselines across all collections we used and that average gain in precision figures from 5 to 20% are generated.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.12, S.2503-2513
  8. Jiang, X.; Sun, X.; Yang, Z.; Zhuge, H.; Lapshinova-Koltunski, E.; Yao, J.: Exploiting heterogeneous scientific literature networks to combat ranking bias : evidence from the computational linguistics area (2016) 0.01
    0.010097824 = product of:
      0.02524456 = sum of:
        0.008315044 = product of:
          0.041575223 = sum of:
            0.041575223 = weight(_text_:problem in 3017) [ClassicSimilarity], result of:
              0.041575223 = score(doc=3017,freq=2.0), product of:
                0.17731056 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.04177434 = queryNorm
                0.23447686 = fieldWeight in 3017, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3017)
          0.2 = coord(1/5)
        0.016929517 = weight(_text_:of in 3017) [ClassicSimilarity], result of:
          0.016929517 = score(doc=3017,freq=18.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.25915858 = fieldWeight in 3017, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3017)
      0.4 = coord(2/5)
    
    Abstract
    It is important to help researchers find valuable papers from a large literature collection. To this end, many graph-based ranking algorithms have been proposed. However, most of these algorithms suffer from the problem of ranking bias. Ranking bias hurts the usefulness of a ranking algorithm because it returns a ranking list with an undesirable time distribution. This paper is a focused study on how to alleviate ranking bias by leveraging the heterogeneous network structure of the literature collection. We propose a new graph-based ranking algorithm, MutualRank, that integrates mutual reinforcement relationships among networks of papers, researchers, and venues to achieve a more synthetic, accurate, and less-biased ranking than previous methods. MutualRank provides a unified model that involves both intra- and inter-network information for ranking papers, researchers, and venues simultaneously. We use the ACL Anthology Network as the benchmark data set and construct the gold standard from computer linguistics course websites of well-known universities and two well-known textbooks. The experimental results show that MutualRank greatly outperforms the state-of-the-art competitors, including PageRank, HITS, CoRank, Future Rank, and P-Rank, in ranking papers in both improving ranking effectiveness and alleviating ranking bias. Rankings of researchers and venues by MutualRank are also quite reasonable.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.7, S.1679-1702
  9. Liu, X.; Zheng, W.; Fang, H.: ¬An exploration of ranking models and feedback method for related entity finding (2013) 0.01
    0.009751107 = product of:
      0.024377767 = sum of:
        0.0117592495 = product of:
          0.058796246 = sum of:
            0.058796246 = weight(_text_:problem in 2714) [ClassicSimilarity], result of:
              0.058796246 = score(doc=2714,freq=4.0), product of:
                0.17731056 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.04177434 = queryNorm
                0.33160037 = fieldWeight in 2714, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2714)
          0.2 = coord(1/5)
        0.012618518 = weight(_text_:of in 2714) [ClassicSimilarity], result of:
          0.012618518 = score(doc=2714,freq=10.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.19316542 = fieldWeight in 2714, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2714)
      0.4 = coord(2/5)
    
    Abstract
    Most existing search engines focus on document retrieval. However, information needs are certainly not limited to finding relevant documents. Instead, a user may want to find relevant entities such as persons and organizations. In this paper, we study the problem of related entity finding. Our goal is to rank entities based on their relevance to a structured query, which specifies an input entity, the type of related entities and the relation between the input and related entities. We first discuss a general probabilistic framework, derive six possible retrieval models to rank the related entities, and then compare these models both analytically and empirically. To further improve performance, we study the problem of feedback in the context of related entity finding. Specifically, we propose a mixture model based feedback method that can utilize the pseudo feedback entities to estimate an enriched model for the relation between the input and related entities. Experimental results over two standard TREC collections show that the derived relation generation model combined with a relation feedback method performs better than other models.
  10. Li, H.; Wu, H.; Li, D.; Lin, S.; Su, Z.; Luo, X.: PSI: A probabilistic semantic interpretable framework for fine-grained image ranking (2018) 0.01
    0.009408668 = product of:
      0.02352167 = sum of:
        0.009978054 = product of:
          0.04989027 = sum of:
            0.04989027 = weight(_text_:problem in 4577) [ClassicSimilarity], result of:
              0.04989027 = score(doc=4577,freq=2.0), product of:
                0.17731056 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.04177434 = queryNorm
                0.28137225 = fieldWeight in 4577, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4577)
          0.2 = coord(1/5)
        0.013543615 = weight(_text_:of in 4577) [ClassicSimilarity], result of:
          0.013543615 = score(doc=4577,freq=8.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.20732689 = fieldWeight in 4577, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4577)
      0.4 = coord(2/5)
    
    Abstract
    Image Ranking is one of the key problems in information science research area. However, most current methods focus on increasing the performance, leaving the semantic gap problem, which refers to the learned ranking models are hard to be understood, remaining intact. Therefore, in this article, we aim at learning an interpretable ranking model to tackle the semantic gap in fine-grained image ranking. We propose to combine attribute-based representation and online passive-aggressive (PA) learning based ranking models to achieve this goal. Besides, considering the highly localized instances in fine-grained image ranking, we introduce a supervised constrained clustering method to gather class-balanced training instances for local PA-based models, and incorporate the learned local models into a unified probabilistic framework. Extensive experiments on the benchmark demonstrate that the proposed framework outperforms state-of-the-art methods in terms of accuracy and speed.
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.12, S.1488-1501
  11. Wei, F.; Li, W.; Liu, S.: iRANK: a rank-learn-combine framework for unsupervised ensemble ranking (2010) 0.01
    0.008613405 = product of:
      0.021533512 = sum of:
        0.0117592495 = product of:
          0.058796246 = sum of:
            0.058796246 = weight(_text_:problem in 3472) [ClassicSimilarity], result of:
              0.058796246 = score(doc=3472,freq=4.0), product of:
                0.17731056 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.04177434 = queryNorm
                0.33160037 = fieldWeight in 3472, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3472)
          0.2 = coord(1/5)
        0.009774263 = weight(_text_:of in 3472) [ClassicSimilarity], result of:
          0.009774263 = score(doc=3472,freq=6.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.1496253 = fieldWeight in 3472, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3472)
      0.4 = coord(2/5)
    
    Abstract
    The authors address the problem of unsupervised ensemble ranking. Traditional approaches either combine multiple ranking criteria into a unified representation to obtain an overall ranking score or to utilize certain rank fusion or aggregation techniques to combine the ranking results. Beyond the aforementioned combine-then-rank and rank-then-combine approaches, the authors propose a novel rank-learn-combine ranking framework, called Interactive Ranking (iRANK), which allows two base rankers to teach each other before combination during the ranking process by providing their own ranking results as feedback to the others to boost the ranking performance. This mutual ranking refinement process continues until the two base rankers cannot learn from each other any more. The overall performance is improved by the enhancement of the base rankers through the mutual learning mechanism. The authors further design two ranking refinement strategies to efficiently and effectively use the feedback based on reasonable assumptions and rational analysis. Although iRANK is applicable to many applications, as a case study, they apply this framework to the sentence ranking problem in query-focused summarization and evaluate its effectiveness on the DUC 2005 and 2006 data sets. The results are encouraging with consistent and promising improvements.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.6, S.1232-1243
  12. Ayadi, H.; Torjmen-Khemakhem, M.; Daoud, M.; Xiangji Huang, J.; Ben Jemaa, M.: MF-Re-Rank : a modality feature-based re-ranking model for medical image retrieval (2018) 0.01
    0.008371304 = product of:
      0.02092826 = sum of:
        0.0066520358 = product of:
          0.033260178 = sum of:
            0.033260178 = weight(_text_:problem in 4459) [ClassicSimilarity], result of:
              0.033260178 = score(doc=4459,freq=2.0), product of:
                0.17731056 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.04177434 = queryNorm
                0.1875815 = fieldWeight in 4459, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4459)
          0.2 = coord(1/5)
        0.014276223 = weight(_text_:of in 4459) [ClassicSimilarity], result of:
          0.014276223 = score(doc=4459,freq=20.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.21854173 = fieldWeight in 4459, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=4459)
      0.4 = coord(2/5)
    
    Abstract
    One of the main challenges in medical image retrieval is the increasing volume of image data, which render it difficult for domain experts to find relevant information from large data sets. Effective and efficient medical image retrieval systems are required to better manage medical image information. Text-based image retrieval (TBIR) was very successful in retrieving images with textual descriptions. Several TBIR approaches rely on models based on bag-of-words approaches, in which the image retrieval problem turns into one of standard text-based information retrieval; where the meanings and values of specific medical entities in the text and metadata are ignored in the image representation and retrieval process. However, we believe that TBIR should extract specific medical entities and terms and then exploit these elements to achieve better image retrieval results. Therefore, we propose a novel reranking method based on medical-image-dependent features. These features are manually selected by a medical expert from imaging modalities and medical terminology. First, we represent queries and images using only medical-image-dependent features such as image modality and image scale. Second, we exploit the defined features in a new reranking method for medical image retrieval. Our motivation is the large influence of image modality in medical image retrieval and its impact on image-relevance scores. To evaluate our approach, we performed a series of experiments on the medical ImageCLEF data sets from 2009 to 2013. The BM25 model, a language model, and an image-relevance feedback model are used as baselines to evaluate our approach. The experimental results show that compared to the BM25 model, the proposed model significantly enhances image retrieval performance. We also compared our approach with other state-of-the-art approaches and show that our approach performs comparably to those of the top three runs in the official ImageCLEF competition.
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.9, S.1095-1108
  13. Dang, E.K.F.; Luk, R.W.P.; Allan, J.: Beyond bag-of-words : bigram-enhanced context-dependent term weights (2014) 0.01
    0.0054127416 = product of:
      0.027063707 = sum of:
        0.027063707 = weight(_text_:of in 1283) [ClassicSimilarity], result of:
          0.027063707 = score(doc=1283,freq=46.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.41429368 = fieldWeight in 1283, product of:
              6.78233 = tf(freq=46.0), with freq of:
                46.0 = termFreq=46.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1283)
      0.2 = coord(1/5)
    
    Abstract
    While term independence is a widely held assumption in most of the established information retrieval approaches, it is clearly not true and various works in the past have investigated a relaxation of the assumption. One approach is to use n-grams in document representation instead of unigrams. However, the majority of early works on n-grams obtained only modest performance improvement. On the other hand, the use of information based on supporting terms or "contexts" of queries has been found to be promising. In particular, recent studies showed that using new context-dependent term weights improved the performance of relevance feedback (RF) retrieval compared with using traditional bag-of-words BM25 term weights. Calculation of the new term weights requires an estimation of the local probability of relevance of each query term occurrence. In previous studies, the estimation of this probability was based on unigrams that occur in the neighborhood of a query term. We explore an integration of the n-gram and context approaches by computing context-dependent term weights based on a mixture of unigrams and bigrams. Extensive experiments are performed using the title queries of the Text Retrieval Conference (TREC)-6, TREC-7, TREC-8, and TREC-2005 collections, for RF with relevance judgment of either the top 10 or top 20 documents of an initial retrieval. We identify some crucial elements needed in the use of bigrams in our methods, such as proper inverse document frequency (IDF) weighting of the bigrams and noise reduction by pruning bigrams with large document frequency values. We show that enhancing context-dependent term weights with bigrams is effective in further improving retrieval performance.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.6, S.1134-1148
  14. Biskri, I.; Rompré, L.: Using association rules for query reformulation (2012) 0.01
    0.0050675566 = product of:
      0.025337784 = sum of:
        0.025337784 = weight(_text_:of in 92) [ClassicSimilarity], result of:
          0.025337784 = score(doc=92,freq=28.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.38787308 = fieldWeight in 92, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=92)
      0.2 = coord(1/5)
    
    Abstract
    In this paper the authors will present research on the combination of two methods of data mining: text classification and maximal association rules. Text classification has been the focus of interest of many researchers for a long time. However, the results take the form of lists of words (classes) that people often do not know what to do with. The use of maximal association rules induced a number of advantages: (1) the detection of dependencies and correlations between the relevant units of information (words) of different classes, (2) the extraction of hidden knowledge, often relevant, from a large volume of data. The authors will show how this combination can improve the process of information retrieval.
  15. Tober, M.; Hennig, L.; Furch, D.: SEO Ranking-Faktoren und Rang-Korrelationen 2014 : Google Deutschland (2014) 0.00
    0.0045278776 = product of:
      0.022639386 = sum of:
        0.022639386 = product of:
          0.045278773 = sum of:
            0.045278773 = weight(_text_:22 in 1484) [ClassicSimilarity], result of:
              0.045278773 = score(doc=1484,freq=2.0), product of:
                0.14628662 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04177434 = queryNorm
                0.30952093 = fieldWeight in 1484, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1484)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Date
    13. 9.2014 14:45:22
  16. Van der Veer Martens, B.; Fleet, C. van: Opening the black box of "relevance work" : a domain analysis (2012) 0.00
    0.0044919094 = product of:
      0.022459546 = sum of:
        0.022459546 = weight(_text_:of in 247) [ClassicSimilarity], result of:
          0.022459546 = score(doc=247,freq=22.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.34381276 = fieldWeight in 247, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=247)
      0.2 = coord(1/5)
    
    Abstract
    In response to Hjørland's recent call for a reconceptualization of the foundations of relevance, we suggest that the sociocognitive aspects of intermediation by information agencies, such as archives and libraries, are a necessary and unexplored part of the infrastructure of the subject knowledge domains central to his recommended "view of relevance informed by a social paradigm" (2010, p. 217). From a comparative analysis of documents from 39 graduate-level introductory courses in archives, reference, and strategic/competitive intelligence taught in 13 American Library Association-accredited library and information science (LIS) programs, we identify four defining sociocognitive dimensions of "relevance work" in information agencies within Hjørland's proposed framework for relevance: tasks, time, systems, and assessors. This study is intended to supply sociocognitive content from within the relevance work domain to support further domain analytic research, and to emphasize the importance of intermediary relevance work for all subject knowledge domains.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.5, S.936-947
  17. Efron, M.: Linear time series models for term weighting in information retrieval (2010) 0.00
    0.004282867 = product of:
      0.021414334 = sum of:
        0.021414334 = weight(_text_:of in 3688) [ClassicSimilarity], result of:
          0.021414334 = score(doc=3688,freq=20.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.32781258 = fieldWeight in 3688, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3688)
      0.2 = coord(1/5)
    
    Abstract
    Common measures of term importance in information retrieval (IR) rely on counts of term frequency; rare terms receive higher weight in document ranking than common terms receive. However, realistic scenarios yield additional information about terms in a collection. Of interest in this article is the temporal behavior of terms as a collection changes over time. We propose capturing each term's collection frequency at discrete time intervals over the lifespan of a corpus and analyzing the resulting time series. We hypothesize the collection frequency of a weakly discriminative term x at time t is predictable by a linear model of the term's prior observations. On the other hand, a linear time series model for a strong discriminators' collection frequency will yield a poor fit to the data. Operationalizing this hypothesis, we induce three time-based measures of term importance and test these against state-of-the-art term weighting models.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.7, S.1299-1312
  18. Costa Carvalho, A. da; Rossi, C.; Moura, E.S. de; Silva, A.S. da; Fernandes, D.: LePrEF: Learn to precompute evidence fusion for efficient query evaluation (2012) 0.00
    0.0042229644 = product of:
      0.02111482 = sum of:
        0.02111482 = weight(_text_:of in 278) [ClassicSimilarity], result of:
          0.02111482 = score(doc=278,freq=28.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.32322758 = fieldWeight in 278, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=278)
      0.2 = coord(1/5)
    
    Abstract
    State-of-the-art search engine ranking methods combine several distinct sources of relevance evidence to produce a high-quality ranking of results for each query. The fusion of information is currently done at query-processing time, which has a direct effect on the response time of search systems. Previous research also shows that an alternative to improve search efficiency in textual databases is to precompute term impacts at indexing time. In this article, we propose a novel alternative to precompute term impacts, providing a generic framework for combining any distinct set of sources of evidence by using a machine-learning technique. This method retains the advantages of producing high-quality results, but avoids the costs of combining evidence at query-processing time. Our method, called Learn to Precompute Evidence Fusion (LePrEF), uses genetic programming to compute a unified precomputed impact value for each term found in each document prior to query processing, at indexing time. Compared with previous research on precomputing term impacts, our method offers the advantage of providing a generic framework to precompute impact using any set of relevance evidence at any text collection, whereas previous research articles do not. The precomputed impact values are indexed and used later for computing document ranking at query-processing time. By doing so, our method effectively reduces the query processing to simple additions of such impacts. We show that this approach, while leading to results comparable to state-of-the-art ranking methods, also can lead to a significant decrease in computational costs during query processing.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.7, S.1383-1397
  19. Lee, J.-T.; Seo, J.; Jeon, J.; Rim, H.-C.: Sentence-based relevance flow analysis for high accuracy retrieval (2011) 0.00
    0.00406935 = product of:
      0.02034675 = sum of:
        0.02034675 = weight(_text_:of in 4746) [ClassicSimilarity], result of:
          0.02034675 = score(doc=4746,freq=26.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.31146988 = fieldWeight in 4746, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4746)
      0.2 = coord(1/5)
    
    Abstract
    Traditional ranking models for information retrieval lack the ability to make a clear distinction between relevant and nonrelevant documents at top ranks if both have similar bag-of-words representations with regard to a user query. We aim to go beyond the bag-of-words approach to document ranking in a new perspective, by representing each document as a sequence of sentences. We begin with an assumption that relevant documents are distinguishable from nonrelevant ones by sequential patterns of relevance degrees of sentences to a query. We introduce the notion of relevance flow, which refers to a stream of sentence-query relevance within a document. We then present a framework to learn a function for ranking documents effectively based on various features extracted from their relevance flows and leverage the output to enhance existing retrieval models. We validate the effectiveness of our approach by performing a number of retrieval experiments on three standard test collections, each comprising a different type of document: news articles, medical references, and blog posts. Experimental results demonstrate that the proposed approach can improve the retrieval performance at the top ranks significantly as compared with the state-of-the-art retrieval models regardless of document type.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.9, S.1666-1675
  20. Liu, R.-L.; Huang, Y.-C.: Ranker enhancement for proximity-based ranking of biomedical texts (2011) 0.00
    0.003909705 = product of:
      0.019548526 = sum of:
        0.019548526 = weight(_text_:of in 4947) [ClassicSimilarity], result of:
          0.019548526 = score(doc=4947,freq=24.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.2992506 = fieldWeight in 4947, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4947)
      0.2 = coord(1/5)
    
    Abstract
    Biomedical decision making often requires relevant evidence from the biomedical literature. Retrieval of the evidence calls for a system that receives a natural language query for a biomedical information need and, among the huge amount of texts retrieved for the query, ranks relevant texts higher for further processing. However, state-of-the-art text rankers have weaknesses in dealing with biomedical queries, which often consist of several correlating concepts and prefer those texts that completely talk about the concepts. In this article, we present a technique, Proximity-Based Ranker Enhancer (PRE), to enhance text rankers by term-proximity information. PRE assesses the term frequency (TF) of each term in the text by integrating three types of term proximity to measure the contextual completeness of query terms appearing in nearby areas in the text being ranked. Therefore, PRE may serve as a preprocessor for (or supplement to) those rankers that consider TF in ranking, without the need to change the algorithms and development processes of the rankers. Empirical evaluation shows that PRE significantly improves various kinds of text rankers, and when compared with several state-of-the-art techniques that enhance rankers by term-proximity information, PRE may more stably and significantly enhance the rankers.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.12, S.2479-2495

Languages

  • e 48
  • d 3
  • More… Less…

Types

  • a 49
  • el 2
  • r 1
  • More… Less…