Search (60 results, page 2 of 3)

  • × theme_ss:"Indexierungsstudien"
  1. Huffman, G.D.; Vital, D.A.; Bivins, R.G.: Generating indices with lexical association methods : term uniqueness (1990) 0.00
    0.0033128732 = product of:
      0.02319011 = sum of:
        0.019013375 = weight(_text_:system in 4152) [ClassicSimilarity], result of:
          0.019013375 = score(doc=4152,freq=4.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.24605882 = fieldWeight in 4152, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4152)
        0.004176737 = weight(_text_:information in 4152) [ClassicSimilarity], result of:
          0.004176737 = score(doc=4152,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.09697737 = fieldWeight in 4152, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4152)
      0.14285715 = coord(2/14)
    
    Abstract
    A software system has been developed which orders citations retrieved from an online database in terms of relevancy. The system resulted from an effort generated by NASA's Technology Utilization Program to create new advanced software tools to largely automate the process of determining relevancy of database citations retrieved to support large technology transfer studies. The ranking is based on the generation of an enriched vocabulary using lexical association methods, a user assessment of the vocabulary and a combination of the user assessment and the lexical metric. One of the key elements in relevancy ranking is the enriched vocabulary -the terms mst be both unique and descriptive. This paper examines term uniqueness. Six lexical association methods were employed to generate characteristic word indices. A limited subset of the terms - the highest 20,40,60 and 7,5% of the uniquess words - we compared and uniquess factors developed. Computational times were also measured. It was found that methods based on occurrences and signal produced virtually the same terms. The limited subset of terms producedby the exact and centroid discrimination value were also nearly identical. Unique terms sets were produced by teh occurrence, variance and discrimination value (centroid), An end-user evaluation showed that the generated terms were largely distinct and had values of word precision which were consistent with values of the search precision.
    Source
    Information processing and management. 26(1990) no.4, S.549-558
  2. Veenema, F.: To index or not to index (1996) 0.00
    0.0032495777 = product of:
      0.022747044 = sum of:
        0.009450877 = weight(_text_:information in 7247) [ClassicSimilarity], result of:
          0.009450877 = score(doc=7247,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.21943474 = fieldWeight in 7247, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=7247)
        0.0132961655 = product of:
          0.026592331 = sum of:
            0.026592331 = weight(_text_:22 in 7247) [ClassicSimilarity], result of:
              0.026592331 = score(doc=7247,freq=2.0), product of:
                0.085914485 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02453417 = queryNorm
                0.30952093 = fieldWeight in 7247, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=7247)
          0.5 = coord(1/2)
      0.14285715 = coord(2/14)
    
    Abstract
    Describes an experiment comparing the performance of automatic full-text indexing software for personal computers with the human intellectual assignment of indexing terms in each document in a collection. Considers the times required to index the document, to retrieve documents satisfying 5 typical foreseen information needs, and the recall and precision ratios of searching. The software used is QuickFinder facility in WordPerfect 6.1 for Windows
    Source
    Canadian journal of information and library science. 21(1996) no.2, S.1-22
  3. Subrahmanyam, B.: Library of Congress Classification numbers : issues of consistency and their implications for union catalogs (2006) 0.00
    0.0031077985 = product of:
      0.021754589 = sum of:
        0.013444485 = weight(_text_:system in 5784) [ClassicSimilarity], result of:
          0.013444485 = score(doc=5784,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.17398985 = fieldWeight in 5784, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5784)
        0.008310104 = product of:
          0.016620208 = sum of:
            0.016620208 = weight(_text_:22 in 5784) [ClassicSimilarity], result of:
              0.016620208 = score(doc=5784,freq=2.0), product of:
                0.085914485 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02453417 = queryNorm
                0.19345059 = fieldWeight in 5784, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5784)
          0.5 = coord(1/2)
      0.14285715 = coord(2/14)
    
    Abstract
    This study examined Library of Congress Classification (LCC)-based class numbers assigned to a representative sample of 200 titles in 52 American library systems to determine the level of consistency within and across those systems. The results showed that under the condition that a library system has a title, the probability of that title having the same LCC-based class number across library systems is greater than 85 percent. An examination of 121 titles displaying variations in class numbers among library systems showed certain titles (for example, multi-foci titles, titles in series, bibliographies, and fiction) lend themselves to alternate class numbers. Others were assigned variant numbers either due to latitude in the schedules or for reasons that cannot be pinpointed. With increasing dependence on copy cataloging, the size of such variations may continue to decrease. As the preferred class number with its alternates represents a title more fully than just the preferred class number, this paper argues for continued use of alternates by library systems and for finding a method to link alternate class numbers to preferred class numbers for enriched subject access through local and union catalogs.
    Date
    10. 9.2000 17:38:22
  4. Wolfram, D.; Zhang, J.: ¬An investigation of the influence of indexing exhaustivity and term distributions on a document space (2002) 0.00
    0.00310215 = product of:
      0.021715049 = sum of:
        0.004176737 = weight(_text_:information in 5238) [ClassicSimilarity], result of:
          0.004176737 = score(doc=5238,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.09697737 = fieldWeight in 5238, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5238)
        0.017538311 = weight(_text_:retrieval in 5238) [ClassicSimilarity], result of:
          0.017538311 = score(doc=5238,freq=4.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.23632148 = fieldWeight in 5238, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5238)
      0.14285715 = coord(2/14)
    
    Abstract
    Wolfram and Zhang are interested in the effect of different indexing exhaustivity, by which they mean the number of terms chosen, and of different index term distributions and different term weighting methods on the resulting document cluster organization. The Distance Angle Retrieval Environment, DARE, which provides a two dimensional display of retrieved documents was used to represent the document clusters based upon a document's distance from the searcher's main interest, and on the angle formed by the document, a point representing a minor interest, and the point representing the main interest. If the centroid and the origin of the document space are assigned as major and minor points the average distance between documents and the centroid can be measured providing an indication of cluster organization. in the form of a size normalized similarity measure. Using 500 records from NTIS and nine models created by intersecting low, observed, and high exhaustivity levels (based upon a negative binomial distribution) with shallow, observed, and steep term distributions (based upon a Zipf distribution) simulation runs were preformed using inverse document frequency, inter-document term frequency, and inverse document frequency based upon both inter and intra-document frequencies. Low exhaustivity and shallow distributions result in a more dense document space and less effective retrieval. High exhaustivity and steeper distributions result in a more diffuse space.
    Source
    Journal of the American Society for Information Science and Technology. 53(2002) no.11, S.944-952
  5. Bellamy, L.M.; Bickham, L.: Thesaurus development for subject cataloging (1989) 0.00
    0.003020781 = product of:
      0.021145467 = sum of:
        0.016133383 = weight(_text_:system in 2262) [ClassicSimilarity], result of:
          0.016133383 = score(doc=2262,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.20878783 = fieldWeight in 2262, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=2262)
        0.0050120843 = weight(_text_:information in 2262) [ClassicSimilarity], result of:
          0.0050120843 = score(doc=2262,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.116372846 = fieldWeight in 2262, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2262)
      0.14285715 = coord(2/14)
    
    Abstract
    The biomedical book collection in the Genetech Library and Information Services was first inventoried and cataloged in 1983 when it totaled about 2000 titles. Cataloging records were retrieved from the OCLC system and used as a basis for cataloging. A year of cataloging produced a list of 1900 subject terms. More than one term describing the same concept often appears on the list, and no hierarchical structure related the terms to one another. As the collection grew, the subject catalog became increasingly inconsistent. To bring consistency to subject cataloging, a thesaurus of biomedical terms was constructed using the list of subject headings as a basis. This thesaurus follows the broad categories of the National Library of Medicine's Medical Subject Headings and, with some exceptions, the Guidelines for the Establishment and Development of Monolingual Thesauri. It has enabled the cataloger in providing greater in-depth subject analysis of materials added to the collection and in consistently assigning subject headings to cataloging record.
  6. Larson, R.R.: Experiments in automatic Library of Congress Classification (1992) 0.00
    0.0028419765 = product of:
      0.019893834 = sum of:
        0.0050120843 = weight(_text_:information in 1054) [ClassicSimilarity], result of:
          0.0050120843 = score(doc=1054,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.116372846 = fieldWeight in 1054, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1054)
        0.014881751 = weight(_text_:retrieval in 1054) [ClassicSimilarity], result of:
          0.014881751 = score(doc=1054,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.20052543 = fieldWeight in 1054, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=1054)
      0.14285715 = coord(2/14)
    
    Abstract
    This article presents the results of research into the automatic selection of Library of Congress Classification numbers based on the titles and subject headings in MARC records. The method used in this study was based on partial match retrieval techniques using various elements of new recors (i.e., those to be classified) as "queries", and a test database of classification clusters generated from previously classified MARC records. Sixty individual methods for automatic classification were tested on a set of 283 new records, using all combinations of four different partial match methods, five query types, and three representations of search terms. The results indicate that if the best method for a particular case can be determined, then up to 86% of the new records may be correctly classified. The single method with the best accuracy was able to select the correct classification for about 46% of the new records.
    Source
    Journal of the American Society for Information Science. 43(1992), S.130-148
  7. Chartron, G.; Dalbin, S.; Monteil, M.-G.; Verillon, M.: Indexation manuelle et indexation automatique : dépasser les oppositions (1989) 0.00
    0.002688897 = product of:
      0.037644558 = sum of:
        0.037644558 = weight(_text_:system in 3516) [ClassicSimilarity], result of:
          0.037644558 = score(doc=3516,freq=8.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.4871716 = fieldWeight in 3516, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3516)
      0.071428575 = coord(1/14)
    
    Abstract
    Report of a study comparing 2 methods of indexing: LEXINET, a computerised system for indexing titles and summaries only; and manual indexing of full texts, using the thesaurus developed by French Electricity (EDF). Both systems were applied to a collection of approximately 2.000 documents on artifical intelligence from the EDF data base. The results were then analysed to compare quantitative performance (number and range of terms) and qualitative performance (ambiguity of terms, specificity, variability, consistency). Overall, neither system proved ideal: LEXINET was deficient as regards lack of accessibility and excessive ambiguity; while the manual system gave rise to an over-wide variation of terms. The ideal system would appear to be a combination of automatic and manual systems, on the evidence produced here.
  8. Ballard, R.M.: Indexing and its relevance to technical processing (1993) 0.00
    0.0026154653 = product of:
      0.018308256 = sum of:
        0.005906798 = weight(_text_:information in 554) [ClassicSimilarity], result of:
          0.005906798 = score(doc=554,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.13714671 = fieldWeight in 554, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=554)
        0.012401459 = weight(_text_:retrieval in 554) [ClassicSimilarity], result of:
          0.012401459 = score(doc=554,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.16710453 = fieldWeight in 554, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=554)
      0.14285715 = coord(2/14)
    
    Abstract
    The development of regional on-line catalogs and in-house information systems for retrieval of references provide examples of the impact of indexing theory and applications on technical processing. More emphasis must be given to understanding the techniques for evaluating the effectiveness of a file, irrespective of whether that file was created as a library catalog or an index to information sources. The most significant advances in classification theory in recent decades has been as a result of efforts to improve effectiveness of indexing systems. Library classification systems are indexing languages or systems. Courses offered for the preparation of indexers in the United States and the United Kingdom are reviewed. A point of congruence for both the indexer and the library classifier would appear to be the need for a thorough preparation in the techniques of subject analysis. Any subject heading list will suffer from omissions as well as the inclusion of terms which the patron will never use. Indexing theory has provided the technical services department with methods for evaluation of effectiveness. The writer does not believe that these techniques are used, nor do current courses, workshops, and continuing education programs stress them. When theory is totally subjugated to practice, critical thinking and maximum effectiveness will suffer.
  9. Lu, K.; Mao, J.: ¬An automatic approach to weighted subject indexing : an empirical study in the biomedical domain (2015) 0.00
    0.0026154653 = product of:
      0.018308256 = sum of:
        0.005906798 = weight(_text_:information in 4005) [ClassicSimilarity], result of:
          0.005906798 = score(doc=4005,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.13714671 = fieldWeight in 4005, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4005)
        0.012401459 = weight(_text_:retrieval in 4005) [ClassicSimilarity], result of:
          0.012401459 = score(doc=4005,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.16710453 = fieldWeight in 4005, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4005)
      0.14285715 = coord(2/14)
    
    Abstract
    Subject indexing is an intellectually intensive process that has many inherent uncertainties. Existing manual subject indexing systems generally produce binary outcomes for whether or not to assign an indexing term. This does not sufficiently reflect the extent to which the indexing terms are associated with the documents. On the other hand, the idea of probabilistic or weighted indexing was proposed a long time ago and has seen success in capturing uncertainties in the automatic indexing process. One hurdle to overcome in implementing weighted indexing in manual subject indexing systems is the practical burden that could be added to the already intensive indexing process. This study proposes a method to infer automatically the associations between subject terms and documents through text mining. By uncovering the connections between MeSH descriptors and document text, we are able to derive the weights of MeSH descriptors manually assigned to documents. Our initial results suggest that the inference method is feasible and promising. The study has practical implications for improving subject indexing practice and providing better support for information retrieval.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.9, S.1776-1784
  10. Lin, Y,-l.; Trattner, C.; Brusilovsky, P.; He, D.: ¬The impact of image descriptions on user tagging behavior : a study of the nature and functionality of crowdsourced tags (2015) 0.00
    0.0022115754 = product of:
      0.015481027 = sum of:
        0.010755588 = weight(_text_:system in 2159) [ClassicSimilarity], result of:
          0.010755588 = score(doc=2159,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.13919188 = fieldWeight in 2159, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03125 = fieldNorm(doc=2159)
        0.0047254385 = weight(_text_:information in 2159) [ClassicSimilarity], result of:
          0.0047254385 = score(doc=2159,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.10971737 = fieldWeight in 2159, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2159)
      0.14285715 = coord(2/14)
    
    Abstract
    Crowdsourcing has emerged as a way to harvest social wisdom from thousands of volunteers to perform a series of tasks online. However, little research has been devoted to exploring the impact of various factors such as the content of a resource or crowdsourcing interface design on user tagging behavior. Although images' titles and descriptions are frequently available in image digital libraries, it is not clear whether they should be displayed to crowdworkers engaged in tagging. This paper focuses on offering insight to the curators of digital image libraries who face this dilemma by examining (i) how descriptions influence the user in his/her tagging behavior and (ii) how this relates to the (a) nature of the tags, (b) the emergent folksonomy, and (c) the findability of the images in the tagging system. We compared two different methods for collecting image tags from Amazon's Mechanical Turk's crowdworkers-with and without image descriptions. Several properties of generated tags were examined from different perspectives: diversity, specificity, reusability, quality, similarity, descriptiveness, and so on. In addition, the study was carried out to examine the impact of image description on supporting users' information seeking with a tag cloud interface. The results showed that the properties of tags are affected by the crowdsourcing approach. Tags from the "with description" condition are more diverse and more specific than tags from the "without description" condition, while the latter has a higher tag reuse rate. A user study also revealed that different tag sets provided different support for search. Tags produced "with description" shortened the path to the target results, whereas tags produced without description increased user success in the search task.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.9, S.1785-1798
  11. Taniguchi, S.: Recording evidence in bibliographic records and descriptive metadata (2005) 0.00
    0.0021406014 = product of:
      0.014984209 = sum of:
        0.0050120843 = weight(_text_:information in 3565) [ClassicSimilarity], result of:
          0.0050120843 = score(doc=3565,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.116372846 = fieldWeight in 3565, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3565)
        0.009972124 = product of:
          0.019944249 = sum of:
            0.019944249 = weight(_text_:22 in 3565) [ClassicSimilarity], result of:
              0.019944249 = score(doc=3565,freq=2.0), product of:
                0.085914485 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02453417 = queryNorm
                0.23214069 = fieldWeight in 3565, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3565)
          0.5 = coord(1/2)
      0.14285715 = coord(2/14)
    
    Date
    18. 6.2005 13:16:22
    Source
    Journal of the American Society for Information Science and Technology. 56(2005) no.8, S.872-882
  12. Leininger, K.: Interindexer consistency in PsychINFO (2000) 0.00
    0.0021406014 = product of:
      0.014984209 = sum of:
        0.0050120843 = weight(_text_:information in 2552) [ClassicSimilarity], result of:
          0.0050120843 = score(doc=2552,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.116372846 = fieldWeight in 2552, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2552)
        0.009972124 = product of:
          0.019944249 = sum of:
            0.019944249 = weight(_text_:22 in 2552) [ClassicSimilarity], result of:
              0.019944249 = score(doc=2552,freq=2.0), product of:
                0.085914485 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02453417 = queryNorm
                0.23214069 = fieldWeight in 2552, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2552)
          0.5 = coord(1/2)
      0.14285715 = coord(2/14)
    
    Date
    9. 2.1997 18:44:22
    Source
    Journal of librarianship and information science. 32(2000) no.1, S.4-8
  13. Cleverdon, C.W.: ASLIB Cranfield Research Project : Report on the first stage of an investigation into the comparative efficiency of indexing systems (1960) 0.00
    0.0014245893 = product of:
      0.019944249 = sum of:
        0.019944249 = product of:
          0.039888497 = sum of:
            0.039888497 = weight(_text_:22 in 6158) [ClassicSimilarity], result of:
              0.039888497 = score(doc=6158,freq=2.0), product of:
                0.085914485 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02453417 = queryNorm
                0.46428138 = fieldWeight in 6158, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6158)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Footnote
    Rez. in: College and research libraries 22(1961) no.3, S.228 (G. Jahoda)
  14. Zunde, P.; Dexter, M.E.: Factors affecting indexing performance (1969) 0.00
    0.001012594 = product of:
      0.014176315 = sum of:
        0.014176315 = weight(_text_:information in 7496) [ClassicSimilarity], result of:
          0.014176315 = score(doc=7496,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.3291521 = fieldWeight in 7496, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=7496)
      0.071428575 = coord(1/14)
    
    Source
    Cooperating information societies: Proceedings of the 32nd Annual Meeting of the American Society for Information Science, San Francisco, CA, 1.-4.10.1969. Ed.: J.B. North
  15. Moreiro-González, J.-A.; Bolaños-Mejías, C.: Folksonomy indexing from the assignment of free tags to setup subject : a search analysis into the domain of legal history (2018) 0.00
    8.858185E-4 = product of:
      0.012401459 = sum of:
        0.012401459 = weight(_text_:retrieval in 4640) [ClassicSimilarity], result of:
          0.012401459 = score(doc=4640,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.16710453 = fieldWeight in 4640, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4640)
      0.071428575 = coord(1/14)
    
    Abstract
    The behaviour and lexical quality of the folksonomies is examined by comparing two online social networks: Library-Thing (for books) and Flickr (for photos). We presented a case study that combines quantitative and qualitative elements, singularized by the lexical and functional framework. Our query was made by "Legal History" and by the synonyms "Law History" and "History of Law." We then examined the relevance, consistency and precision of the tags attached to the retrieved documents, in addition to their lexical composition. We identified the difficulties caused by free tagging and some of the folksonomy solutions that have been found to solve them. The results are presented in comparative tables, giving special attention to related tags within each retrieved document. Although the number of ambiguous or inconsistent tags is not very large, these do nevertheless represent the most obvious problem to search and retrieval in folksonomies. Relevance is high when the terms are assigned by especially competent taggers. Even with less expert taggers, ambiguity is often successfully corrected by contextualizing the concepts within related tags. A propinquity to associative and taxonomic lexical semantic knowledge is reached via contextual relationships.
  16. Booth, A.: How consistent is MEDLINE indexing? (1990) 0.00
    8.310104E-4 = product of:
      0.011634145 = sum of:
        0.011634145 = product of:
          0.02326829 = sum of:
            0.02326829 = weight(_text_:22 in 3510) [ClassicSimilarity], result of:
              0.02326829 = score(doc=3510,freq=2.0), product of:
                0.085914485 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02453417 = queryNorm
                0.2708308 = fieldWeight in 3510, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3510)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Source
    Health libraries review. 7(1990) no.1, S.22-26
  17. Neshat, N.; Horri, A.: ¬A study of subject indexing consistency between the National Library of Iran and Humanities Libraries in the area of Iranian studies (2006) 0.00
    8.310104E-4 = product of:
      0.011634145 = sum of:
        0.011634145 = product of:
          0.02326829 = sum of:
            0.02326829 = weight(_text_:22 in 230) [ClassicSimilarity], result of:
              0.02326829 = score(doc=230,freq=2.0), product of:
                0.085914485 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02453417 = queryNorm
                0.2708308 = fieldWeight in 230, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=230)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Date
    4. 1.2007 10:22:26
  18. David, C.; Giroux, L.; Bertrand-Gastaldy, S.; Lanteigne, D.: Indexing as problem solving : a cognitive approach to consistency (1995) 0.00
    8.267796E-4 = product of:
      0.011574914 = sum of:
        0.011574914 = weight(_text_:information in 3833) [ClassicSimilarity], result of:
          0.011574914 = score(doc=3833,freq=6.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.2687516 = fieldWeight in 3833, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=3833)
      0.071428575 = coord(1/14)
    
    Imprint
    Medford, NJ : Learned Information
    Source
    Forging new partnerships in information: converging technologies. Proceedings of the 58th Annual Meeting of the American Society for Information Science, ASIS'95, Chicago, IL, 9-12 October 1995. Ed.: T. Kinney
  19. Bade, D.: ¬The creation and persistence of misinformation in shared library catalogs : language and subject knowledge in a technological era (2002) 0.00
    8.123944E-4 = product of:
      0.005686761 = sum of:
        0.0023627193 = weight(_text_:information in 1858) [ClassicSimilarity], result of:
          0.0023627193 = score(doc=1858,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.054858685 = fieldWeight in 1858, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.015625 = fieldNorm(doc=1858)
        0.0033240414 = product of:
          0.0066480828 = sum of:
            0.0066480828 = weight(_text_:22 in 1858) [ClassicSimilarity], result of:
              0.0066480828 = score(doc=1858,freq=2.0), product of:
                0.085914485 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02453417 = queryNorm
                0.07738023 = fieldWeight in 1858, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.015625 = fieldNorm(doc=1858)
          0.5 = coord(1/2)
      0.14285715 = coord(2/14)
    
    Date
    22. 9.1997 19:16:05
    Footnote
    Bade begins his discussion of errors in subject analysis by summarizing the contents of seven records containing what he considers to be egregious errors. The examples were drawn only from items that he has encountered in the course of his work. Five of the seven records were full-level ("I" level) records for Eastern European materials created between 1996 and 2000 in the OCLC WorldCat database. The final two examples were taken from records created by Bade himself over an unspecified period of time. Although he is to be commended for examining the actual items cataloged and for examining mostly items that he claims to have adequate linguistic and subject expertise to evaluate reliably, Bade's methodology has major flaws. First and foremost, the number of examples provided is completely inadequate to draw any conclusions about the extent of the problem. Although an in-depth qualitative analysis of a small number of records might have yielded some valuable insight into factors that contribute to errors in subject analysis, Bade provides no Information about the circumstances under which the live OCLC records he critiques were created. Instead, he offers simplistic explanations for the errors based solely an his own assumptions. He supplements his analysis of examples with an extremely brief survey of other studies regarding errors in subject analysis, which consists primarily of criticism of work done by Sheila Intner. In the end, it is impossible to draw any reliable conclusions about the nature or extent of errors in subject analysis found in records in shared bibliographic databases based an Bade's analysis. In the final third of the essay, Bade finally reveals his true concern: the deintellectualization of cataloging. It would strengthen the essay tremendously to present this as the primary premise from the very beginning, as this section offers glimpses of a compelling argument. Bade laments, "Many librarians simply do not sec cataloging as an intellectual activity requiring an educated mind" (p. 20). Commenting an recent trends in copy cataloging practice, he declares, "The disaster of our time is that this work is being done more and more by people who can neither evaluate nor correct imported errors and offen are forbidden from even thinking about it" (p. 26). Bade argues that the most valuable content found in catalog records is the intellectual content contributed by knowledgeable catalogers, and he asserts that to perform intellectually demanding tasks such as subject analysis reliably and effectively, catalogers must have the linguistic and subject knowledge required to gain at least a rudimentary understanding of the materials that they describe. He contends that requiring catalogers to quickly dispense with materials in unfamiliar languages and subjects clearly undermines their ability to perform the intellectual work of cataloging and leads to an increasing number of errors in the bibliographic records contributed to shared databases.
    Imprint
    Urbana-Champaign, IL : Illinois University at Urbana-Champaign, Graduate School of Library and Information Science
  20. Saracevic, T.: Measuring the degree of agreement between searchers (1984) 0.00
    7.160121E-4 = product of:
      0.0100241685 = sum of:
        0.0100241685 = weight(_text_:information in 2410) [ClassicSimilarity], result of:
          0.0100241685 = score(doc=2410,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.23274569 = fieldWeight in 2410, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=2410)
      0.071428575 = coord(1/14)
    
    Source
    Challenges to an information society : proceedings of the 47th ASIS annual Meeting, Philadelphia, Pennsylvania, October 21-25, 1984. Ed.: Barbara Flood

Authors

Languages

  • e 57
  • chi 1
  • d 1
  • f 1
  • More… Less…

Types

  • a 58
  • m 1
  • r 1
  • More… Less…