Search (101 results, page 1 of 6)

  • × theme_ss:"Inhaltsanalyse"
  1. Beghtol, C.: Toward a theory of fiction analysis for information storage and retrieval (1992) 0.02
    0.020069338 = product of:
      0.07024268 = sum of:
        0.030421399 = weight(_text_:system in 5830) [ClassicSimilarity], result of:
          0.030421399 = score(doc=5830,freq=4.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.3936941 = fieldWeight in 5830, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0625 = fieldNorm(doc=5830)
        0.006682779 = weight(_text_:information in 5830) [ClassicSimilarity], result of:
          0.006682779 = score(doc=5830,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.1551638 = fieldWeight in 5830, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=5830)
        0.019842334 = weight(_text_:retrieval in 5830) [ClassicSimilarity], result of:
          0.019842334 = score(doc=5830,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.26736724 = fieldWeight in 5830, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=5830)
        0.0132961655 = product of:
          0.026592331 = sum of:
            0.026592331 = weight(_text_:22 in 5830) [ClassicSimilarity], result of:
              0.026592331 = score(doc=5830,freq=2.0), product of:
                0.085914485 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02453417 = queryNorm
                0.30952093 = fieldWeight in 5830, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5830)
          0.5 = coord(1/2)
      0.2857143 = coord(4/14)
    
    Abstract
    This paper examnines various isues that arise in establishing a theoretical basis for an experimental fiction analysis system. It analyzes the warrants of fiction and of works about fiction. From this analysis, it derives classificatory requirements for a fiction system. Classificatory techniques that may contribute to the specification of data elements in fiction are suggested
    Date
    5. 8.2006 13:22:08
  2. Morehead, D.R.; Pejtersen, A.M.; Rouse, W.B.: ¬The value of information and computer-aided information seeking : problem formulation and application to fiction retrieval (1984) 0.01
    0.012364101 = product of:
      0.057699136 = sum of:
        0.018822279 = weight(_text_:system in 5828) [ClassicSimilarity], result of:
          0.018822279 = score(doc=5828,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.2435858 = fieldWeight in 5828, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5828)
        0.014323224 = weight(_text_:information in 5828) [ClassicSimilarity], result of:
          0.014323224 = score(doc=5828,freq=12.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.3325631 = fieldWeight in 5828, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5828)
        0.024553634 = weight(_text_:retrieval in 5828) [ClassicSimilarity], result of:
          0.024553634 = score(doc=5828,freq=4.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.33085006 = fieldWeight in 5828, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5828)
      0.21428572 = coord(3/14)
    
    Abstract
    Issues concerning the formulation and application of a model of how humans value information are examined. Formulation of a value function is based on research from modelling, value assessment, human information seeking behavior, and human decision making. The proposed function is incorporated into a computer-based fiction retrieval system and evaluated using data from nine searches. Evaluation is based on the ability of an individual's value function to discriminate among novels selected, rejected, and not considered. The results are discussed in terms of both formulation and utilization of a value function as well as the implications for extending the proposed formulation to other information seeking environments
    Source
    Information processing and management. 20(1984), S.583-601
  3. Raieli, R.: ¬The semantic hole : enthusiasm and caution around multimedia information retrieval (2012) 0.01
    0.012227091 = product of:
      0.057059757 = sum of:
        0.010230875 = weight(_text_:information in 4888) [ClassicSimilarity], result of:
          0.010230875 = score(doc=4888,freq=12.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.23754507 = fieldWeight in 4888, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4888)
        0.035076622 = weight(_text_:retrieval in 4888) [ClassicSimilarity], result of:
          0.035076622 = score(doc=4888,freq=16.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.47264296 = fieldWeight in 4888, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4888)
        0.011752261 = product of:
          0.023504522 = sum of:
            0.023504522 = weight(_text_:22 in 4888) [ClassicSimilarity], result of:
              0.023504522 = score(doc=4888,freq=4.0), product of:
                0.085914485 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02453417 = queryNorm
                0.27358043 = fieldWeight in 4888, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4888)
          0.5 = coord(1/2)
      0.21428572 = coord(3/14)
    
    Abstract
    This paper centres on the tools for the management of new digital documents, which are not only textual, but also visual-video, audio or multimedia in the full sense. Among the aims is to demonstrate that operating within the terms of generic Information Retrieval through textual language only is limiting, and it is instead necessary to consider ampler criteria, such as those of MultiMedia Information Retrieval, according to which, every type of digital document can be analyzed and searched by the proper elements of language for its proper nature. MMIR is presented as the organic complex of the systems of Text Retrieval, Visual Retrieval, Video Retrieval, and Audio Retrieval, each of which has an approach to information management that handles the concrete textual, visual, audio, or video content of the documents directly, here defined as content-based. In conclusion, the limits of this content-based objective access to documents is underlined. The discrepancy known as the semantic gap is that which occurs between semantic-interpretive access and content-based access. Finally, the integration of these conceptions is explained, gathering and composing the merits and the advantages of each of the approaches and of the systems to access to information.
    Date
    22. 1.2012 13:02:10
    Footnote
    Bezugnahme auf: Enser, P.G.B.: Visual image retrieval. In: Annual review of information science and technology. 42(2008), S.3-42.
    Source
    Knowledge organization. 39(2012) no.1, S.13-22
  4. Caldera-Serrano, J.: Thematic description of audio-visual information on television (2010) 0.01
    0.010840825 = product of:
      0.050590515 = sum of:
        0.016133383 = weight(_text_:system in 3953) [ClassicSimilarity], result of:
          0.016133383 = score(doc=3953,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.20878783 = fieldWeight in 3953, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=3953)
        0.008681185 = weight(_text_:information in 3953) [ClassicSimilarity], result of:
          0.008681185 = score(doc=3953,freq=6.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.20156369 = fieldWeight in 3953, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3953)
        0.025775949 = weight(_text_:retrieval in 3953) [ClassicSimilarity], result of:
          0.025775949 = score(doc=3953,freq=6.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.34732026 = fieldWeight in 3953, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=3953)
      0.21428572 = coord(3/14)
    
    Abstract
    Purpose - This paper endeavours to show the possibilities for thematic description of audio-visual documents for television with the aim of promoting and facilitating information retrieval. Design/methodology/approach - To achieve these goals different database fields are shown, as well as the way in which they are organised for indexing and thematic element description, analysed and used as an example. Some of the database fields are extracted from an analytical study of the documentary system of television in Spain. Others are being tested in university television on which indexing experiments are carried out. Findings - Not all thematic descriptions are used on television information systems; nevertheless, some television channels do use thematic descriptions of both image and sound, applying thesauri. Moreover, it is possible to access sequences using full text retrieval as well. Originality/value - The development of the documentary task, applying the described techniques, promotes thematic indexing and hence thematic retrieval. Given the fact that this is without doubt one of the aspects most demanded by television journalists (along with people's names). This conceptualisation translates into the adaptation of databases to new indexing methods.
  5. Austin, J.; Pejtersen, A.M.: Fiction retrieval: experimental design and evaluation of a search system based on user's value criteria. Pt.1 (1983) 0.01
    0.008861467 = product of:
      0.062030267 = sum of:
        0.032266766 = weight(_text_:system in 142) [ClassicSimilarity], result of:
          0.032266766 = score(doc=142,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.41757566 = fieldWeight in 142, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.09375 = fieldNorm(doc=142)
        0.029763501 = weight(_text_:retrieval in 142) [ClassicSimilarity], result of:
          0.029763501 = score(doc=142,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.40105087 = fieldWeight in 142, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.09375 = fieldNorm(doc=142)
      0.14285715 = coord(2/14)
    
  6. Inskip, C.; MacFarlane, A.; Rafferty, P.: Meaning, communication, music : towards a revised communication model (2008) 0.01
    0.007904913 = product of:
      0.036889594 = sum of:
        0.013444485 = weight(_text_:system in 2347) [ClassicSimilarity], result of:
          0.013444485 = score(doc=2347,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.17398985 = fieldWeight in 2347, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2347)
        0.005906798 = weight(_text_:information in 2347) [ClassicSimilarity], result of:
          0.005906798 = score(doc=2347,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.13714671 = fieldWeight in 2347, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2347)
        0.017538311 = weight(_text_:retrieval in 2347) [ClassicSimilarity], result of:
          0.017538311 = score(doc=2347,freq=4.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.23632148 = fieldWeight in 2347, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2347)
      0.21428572 = coord(3/14)
    
    Abstract
    Purpose - If an information retrieval system is going to be of value to the user then it must give meaning to the information which matches the meaning given to it by the user. The meaning given to music varies according to who is interpreting it - the author/composer, the performer, cataloguer or the listener - and this affects how music is organized and retrieved. This paper aims to examine the meaning of music, how meaning is communicated and suggests this may affect music retrieval. Design/methodology/approach - Musicology is used to define music and examine its functions leading to a discussion of how music has been organised and described. Various ways of establishing the meaning of music are reviewed, focussing on established musical analysis techniques. It is suggested that traditional methods are of limited use with digitised popular music. A discussion of semiotics and a review of semiotic analysis in western art music leads to a discussion of semiotics of popular music and examines ideas of Middleton, Stefani and Tagg. Findings - Agreeing that music exists when communication takes place, a discussion of selected communication models leads to the proposal of a revised version of Tagg's model, adjusting it to include listener feedback. Originality/value - The outcome of the analysis is a revised version of Tagg's communication model, adapted to reflect user feedback. It is suggested that this revised communication model reflects the way in which meaning is given to music.
  7. Greisdorf, H.; O'Connor, B.: Modelling what users see when they look at images : a cognitive viewpoint (2002) 0.01
    0.007674256 = product of:
      0.05371979 = sum of:
        0.027943838 = weight(_text_:system in 4471) [ClassicSimilarity], result of:
          0.027943838 = score(doc=4471,freq=6.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.36163113 = fieldWeight in 4471, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=4471)
        0.025775949 = weight(_text_:retrieval in 4471) [ClassicSimilarity], result of:
          0.025775949 = score(doc=4471,freq=6.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.34732026 = fieldWeight in 4471, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=4471)
      0.14285715 = coord(2/14)
    
    Abstract
    Analysis of user viewing and query-matching behavior furnishes additional evidence that the relevance of retrieved images for system users may arise from descriptions of objects and content-based elements that are not evident or not even present in the image. This investigation looks at how users assign pre-determined query terms to retrieved images, as well as looking at a post-retrieval process of image engagement to user cognitive assessments of meaningful terms. Additionally, affective/emotion-based query terms appear to be an important descriptive category for image retrieval. A system for capturing (eliciting) human interpretations derived from cognitive engagements with viewed images could further enhance the efficiency of image retrieval systems stemming from traditional indexing methods and technology-based content extraction algorithms. An approach to such a system is posited.
  8. From information to knowledge : conceptual and content analysis by computer (1995) 0.01
    0.0068041594 = product of:
      0.031752743 = sum of:
        0.013444485 = weight(_text_:system in 5392) [ClassicSimilarity], result of:
          0.013444485 = score(doc=5392,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.17398985 = fieldWeight in 5392, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5392)
        0.005906798 = weight(_text_:information in 5392) [ClassicSimilarity], result of:
          0.005906798 = score(doc=5392,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.13714671 = fieldWeight in 5392, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5392)
        0.012401459 = weight(_text_:retrieval in 5392) [ClassicSimilarity], result of:
          0.012401459 = score(doc=5392,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.16710453 = fieldWeight in 5392, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5392)
      0.21428572 = coord(3/14)
    
    Content
    SCHMIDT, K.M.: Concepts - content - meaning: an introduction; DUCHASTEL, J. et al.: The SACAO project: using computation toward textual data analysis; PAQUIN, L.-C. u. L. DUPUY: An approach to expertise transfer: computer-assisted text analysis; HOGENRAAD, R., Y. BESTGEN u. J.-L. NYSTEN: Terrorist rhetoric: texture and architecture; MOHLER, P.P.: On the interaction between reading and computing: an interpretative approach to content analysis; LANCASHIRE, I.: Computer tools for cognitive stylistics; MERGENTHALER, E.: An outline of knowledge based text analysis; NAMENWIRTH, J.Z.: Ideography in computer-aided content analysis; WEBER, R.P. u. J.Z. Namenwirth: Content-analytic indicators: a self-critique; McKINNON, A.: Optimizing the aberrant frequency word technique; ROSATI, R.: Factor analysis in classical archaeology: export patterns of Attic pottery trade; PETRILLO, P.S.: Old and new worlds: ancient coinage and modern technology; DARANYI, S., S. MARJAI u.a.: Caryatids and the measurement of semiosis in architecture; ZARRI, G.P.: Intelligent information retrieval: an application in the field of historical biographical data; BOUCHARD, G., R. ROY u.a.: Computers and genealogy: from family reconstitution to population reconstruction; DEMÉLAS-BOHY, M.-D. u. M. RENAUD: Instability, networks and political parties: a political history expert system prototype; DARANYI, S., A. ABRANYI u. G. KOVACS: Knowledge extraction from ethnopoetic texts by multivariate statistical methods; FRAUTSCHI, R.L.: Measures of narrative voice in French prose fiction applied to textual samples from the enlightenment to the twentieth century; DANNENBERG, R. u.a.: A project in computer music: the musician's workbench
  9. Belkin, N.J.: ¬The problem of 'matching' in information retrieval (1980) 0.01
    0.0067322673 = product of:
      0.04712587 = sum of:
        0.01736237 = weight(_text_:information in 1329) [ClassicSimilarity], result of:
          0.01736237 = score(doc=1329,freq=6.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.40312737 = fieldWeight in 1329, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=1329)
        0.029763501 = weight(_text_:retrieval in 1329) [ClassicSimilarity], result of:
          0.029763501 = score(doc=1329,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.40105087 = fieldWeight in 1329, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.09375 = fieldNorm(doc=1329)
      0.14285715 = coord(2/14)
    
    Source
    Theory and application of information research. Proc. of the 2nd Int. Research Forum on Information Science, 3.-6.8.1977, Copenhagen. Ed.: O. Harbo u. L. Kajberg
  10. Krause, J.: Principles of content analysis for information retrieval systems : an overview (1996) 0.01
    0.0066312784 = product of:
      0.046418946 = sum of:
        0.011694863 = weight(_text_:information in 5270) [ClassicSimilarity], result of:
          0.011694863 = score(doc=5270,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.27153665 = fieldWeight in 5270, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.109375 = fieldNorm(doc=5270)
        0.034724083 = weight(_text_:retrieval in 5270) [ClassicSimilarity], result of:
          0.034724083 = score(doc=5270,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.46789268 = fieldWeight in 5270, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.109375 = fieldNorm(doc=5270)
      0.14285715 = coord(2/14)
    
  11. Pejtersen, A.M.: Design of a computer-aided user-system dialogue based on an analysis of users' search behaviour (1984) 0.01
    0.006041562 = product of:
      0.042290933 = sum of:
        0.032266766 = weight(_text_:system in 1044) [ClassicSimilarity], result of:
          0.032266766 = score(doc=1044,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.41757566 = fieldWeight in 1044, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.09375 = fieldNorm(doc=1044)
        0.0100241685 = weight(_text_:information in 1044) [ClassicSimilarity], result of:
          0.0100241685 = score(doc=1044,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.23274569 = fieldWeight in 1044, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=1044)
      0.14285715 = coord(2/14)
    
    Source
    Social science information studies. 4(1984), S.167-183
  12. Rorissa, A.; Iyer, H.: Theories of cognition and image categorization : what category labels reveal about basic level theory (2008) 0.01
    0.006005793 = product of:
      0.04204055 = sum of:
        0.012277049 = weight(_text_:information in 1958) [ClassicSimilarity], result of:
          0.012277049 = score(doc=1958,freq=12.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.2850541 = fieldWeight in 1958, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1958)
        0.029763501 = weight(_text_:retrieval in 1958) [ClassicSimilarity], result of:
          0.029763501 = score(doc=1958,freq=8.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.40105087 = fieldWeight in 1958, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=1958)
      0.14285715 = coord(2/14)
    
    Abstract
    Information search and retrieval interactions usually involve information content in the form of document collections, information retrieval systems and interfaces, and the user. To fully understand information search and retrieval interactions between users' cognitive space and the information space, researchers need to turn to cognitive models and theories. In this article, the authors use one of these theories, the basic level theory. Use of the basic level theory to understand human categorization is both appropriate and essential to user-centered design of taxonomies, ontologies, browsing interfaces, and other indexing tools and systems. Analyses of data from two studies involving free sorting by 105 participants of 100 images were conducted. The types of categories formed and category labels were examined. Results of the analyses indicate that image category labels generally belong to superordinate to the basic level, and are generic and interpretive. Implications for research on theories of cognition and categorization, and design of image indexing, retrieval and browsing systems are discussed.
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.9, S.1383-1392
  13. Pejtersen, A.M.: Implications of users' value perception for the design of knowledge based bibliographic retrieval systems (1985) 0.01
    0.005683953 = product of:
      0.03978767 = sum of:
        0.0100241685 = weight(_text_:information in 2088) [ClassicSimilarity], result of:
          0.0100241685 = score(doc=2088,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.23274569 = fieldWeight in 2088, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=2088)
        0.029763501 = weight(_text_:retrieval in 2088) [ClassicSimilarity], result of:
          0.029763501 = score(doc=2088,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.40105087 = fieldWeight in 2088, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.09375 = fieldNorm(doc=2088)
      0.14285715 = coord(2/14)
    
    Source
    2nd Symposium on Empirical Foundations of Information and Software Science, 3.-5.10.84, Atlanta
  14. Bednarek, M.: Intellectual access to pictorial information (1993) 0.01
    0.005492098 = product of:
      0.038444687 = sum of:
        0.008681185 = weight(_text_:information in 5631) [ClassicSimilarity], result of:
          0.008681185 = score(doc=5631,freq=6.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.20156369 = fieldWeight in 5631, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=5631)
        0.029763501 = weight(_text_:retrieval in 5631) [ClassicSimilarity], result of:
          0.029763501 = score(doc=5631,freq=8.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.40105087 = fieldWeight in 5631, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=5631)
      0.14285715 = coord(2/14)
    
    Abstract
    Visual materials represent a significantly different type of communication to textual materials and therefore present distinct challenges for the process of retrieval, especially if by retireval we mean intellectual access to the content of images. This paper outlines the special characteristics of visual materials, focusing on their pontential complexity and subjectivity, and the methods used and explored for gaining access to visual materials as reported in the literature. It concludes that methods of access to visual materials are dominated by the relative mature systems developed for textual materials and that access methods based on visual communication are still largely in the developmental or prototype stage. Although reported research on user requirements in the retrieval of visual information is noticeably lacking, the results of at least one study indicate that the visually-based retrieval methods of structured and unstructered browsing seem to be preferred for visula materials and that effective retrieval methods are ultimately related to characteristics of the enquirer and the visual information sought
  15. Hidderley, R.; Rafferty, P.: Democratic indexing : an approach to the retrieval of fiction (1997) 0.01
    0.005477351 = product of:
      0.038341455 = sum of:
        0.008269517 = weight(_text_:information in 1783) [ClassicSimilarity], result of:
          0.008269517 = score(doc=1783,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.1920054 = fieldWeight in 1783, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1783)
        0.03007194 = weight(_text_:retrieval in 1783) [ClassicSimilarity], result of:
          0.03007194 = score(doc=1783,freq=6.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.40520695 = fieldWeight in 1783, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1783)
      0.14285715 = coord(2/14)
    
    Abstract
    Examines how an analytical framework to describe the contents of images may be extended to deal with time based materials like film and music. A levels of meanings table was developed and used as an indexing template for image retrieval purposes. Develops a concept of democratic indexing which focused on user interpretation. Describes the approach to image or pictorial information retrieval. Extends the approach in relation to fiction
    Source
    Information services and use. 17(1997) nos.2/3, S.101-109
  16. Beghtol, C.: Stories : applications of narrative discourse analysis to issues in information storage and retrieval (1997) 0.01
    0.005477351 = product of:
      0.038341455 = sum of:
        0.008269517 = weight(_text_:information in 5844) [ClassicSimilarity], result of:
          0.008269517 = score(doc=5844,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.1920054 = fieldWeight in 5844, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5844)
        0.03007194 = weight(_text_:retrieval in 5844) [ClassicSimilarity], result of:
          0.03007194 = score(doc=5844,freq=6.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.40520695 = fieldWeight in 5844, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5844)
      0.14285715 = coord(2/14)
    
    Abstract
    The arts, humanities, and social sciences commonly borrow concepts and methods from the sciences, but interdisciplinary borrowing seldom occurs in the opposite direction. Research on narrative discourse is relevant to problems of documentary storage and retrieval, for the arts and humanities in particular, but also for other broad areas of knowledge. This paper views the potential application of narrative discourse analysis to information storage and retrieval problems from 2 perspectives: 1) analysis and comparison of narrative documents in all disciplines may be simplified if fundamental categories that occur in narrative documents can be isolated; and 2) the possibility of subdividing the world of knowledge initially into narrative and non-narrative documents is explored with particular attention to Werlich's work on text types
  17. Taylor, S.L.: Integrating natural language understanding with document structure analysis (1994) 0.01
    0.0051691886 = product of:
      0.03618432 = sum of:
        0.018822279 = weight(_text_:system in 1794) [ClassicSimilarity], result of:
          0.018822279 = score(doc=1794,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.2435858 = fieldWeight in 1794, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1794)
        0.017362041 = weight(_text_:retrieval in 1794) [ClassicSimilarity], result of:
          0.017362041 = score(doc=1794,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.23394634 = fieldWeight in 1794, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1794)
      0.14285715 = coord(2/14)
    
    Abstract
    Document understanding, the interpretation of a document from its image form, is a technology area which benefits greatly from the integration of natural language processing with image processing. Develops a prototype of an Intelligent Document Understanding System (IDUS) which employs several technologies: image processing, optical character recognition, document structure analysis and text understanding in a cooperative fashion. Discusses those areas of research during development of IDUS where it is found that the most benefit from the integration of natural language processing and image processing occured: document structure analysis, OCR correction, and text analysis. Discusses 2 applications which are supported by IDUS: text retrieval and automatic generation of hypertext links
  18. Beghtol, C.: ¬The classification of fiction : the development of a system based on theoretical principles (1994) 0.00
    0.0046380223 = product of:
      0.032466155 = sum of:
        0.026618723 = weight(_text_:system in 3413) [ClassicSimilarity], result of:
          0.026618723 = score(doc=3413,freq=4.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.34448233 = fieldWeight in 3413, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3413)
        0.0058474317 = weight(_text_:information in 3413) [ClassicSimilarity], result of:
          0.0058474317 = score(doc=3413,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.13576832 = fieldWeight in 3413, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3413)
      0.14285715 = coord(2/14)
    
    Abstract
    The work is an adaptation of the author's dissertation and has the following chapters: (1) background and introduction; (2) a problem in classification theory; (3) previous fiction analysis theories and systems and 'The left hand of darkness'; (4) fiction warrant and critical warrant; (5) experimental fiction analysis system (EFAS); (6) application and evaluation of EFAS. Appendix 1 gives references to fiction analysis systems and appendix 2 lists EFAS coding sheets
    Footnote
    Rez. in: Knowledge organization 21(1994) no.3, S.165-167 (W. Bies); JASIS 46(1995) no.5, S.389-390 (E.G. Bierbaum); Canadian journal of information and library science 20(1995) nos.3/4, S.52-53 (L. Rees-Potter)
  19. Tibbo, H.R.: Abstracting across the disciplines : a content analysis of abstracts for the natural sciences, the social sciences, and the humanities with implications for abstracting standards and online information retrieval (1992) 0.00
    0.004184745 = product of:
      0.029293211 = sum of:
        0.009450877 = weight(_text_:information in 2536) [ClassicSimilarity], result of:
          0.009450877 = score(doc=2536,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.21943474 = fieldWeight in 2536, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=2536)
        0.019842334 = weight(_text_:retrieval in 2536) [ClassicSimilarity], result of:
          0.019842334 = score(doc=2536,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.26736724 = fieldWeight in 2536, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=2536)
      0.14285715 = coord(2/14)
    
    Source
    Library and information science research. 14(1992) no.1, S.31-56
  20. Hjoerland, B.: Towards a theory of aboutness, subject, topicality, theme, domain, field, content ... and relevance (2001) 0.00
    0.0041509867 = product of:
      0.029056905 = sum of:
        0.011694863 = weight(_text_:information in 6032) [ClassicSimilarity], result of:
          0.011694863 = score(doc=6032,freq=8.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.27153665 = fieldWeight in 6032, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6032)
        0.017362041 = weight(_text_:retrieval in 6032) [ClassicSimilarity], result of:
          0.017362041 = score(doc=6032,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.23394634 = fieldWeight in 6032, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6032)
      0.14285715 = coord(2/14)
    
    Abstract
    Theories of aboutness and theories of subject analysis and of related concepts such as topicality are often isolated from each other in the literature of information science (IS) and related disciplines. In IS it is important to consider the nature and meaning of these concepts, which is closely related to theoretical and metatheoretical issues in information retrieval (IR). A theory of IR must specify which concepts should be regarded as synonymous concepts and explain how the meaning of the nonsynonymous concepts should be defined
    Source
    Journal of the American Society for Information Science and technology. 52(2001) no.9, S.774-778
    Theme
    Information

Languages

  • e 91
  • d 10

Types

  • a 91
  • m 4
  • x 3
  • d 2
  • el 2
  • s 1
  • More… Less…