Search (510 results, page 1 of 26)

  • × theme_ss:"Wissensrepräsentation"
  1. Xiong, C.: Knowledge based text representations for information retrieval (2016) 0.25
    0.24846096 = product of:
      0.49692193 = sum of:
        0.026019327 = product of:
          0.07805798 = sum of:
            0.07805798 = weight(_text_:3a in 5820) [ClassicSimilarity], result of:
              0.07805798 = score(doc=5820,freq=2.0), product of:
                0.20833312 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.024573348 = queryNorm
                0.3746787 = fieldWeight in 5820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5820)
          0.33333334 = coord(1/3)
        0.110390656 = weight(_text_:2f in 5820) [ClassicSimilarity], result of:
          0.110390656 = score(doc=5820,freq=4.0), product of:
            0.20833312 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.024573348 = queryNorm
            0.5298757 = fieldWeight in 5820, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
        0.110390656 = weight(_text_:2f in 5820) [ClassicSimilarity], result of:
          0.110390656 = score(doc=5820,freq=4.0), product of:
            0.20833312 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.024573348 = queryNorm
            0.5298757 = fieldWeight in 5820, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
        0.009465969 = weight(_text_:information in 5820) [ClassicSimilarity], result of:
          0.009465969 = score(doc=5820,freq=16.0), product of:
            0.04313797 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.024573348 = queryNorm
            0.21943474 = fieldWeight in 5820, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
        0.01987402 = weight(_text_:retrieval in 5820) [ClassicSimilarity], result of:
          0.01987402 = score(doc=5820,freq=8.0), product of:
            0.07433229 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.024573348 = queryNorm
            0.26736724 = fieldWeight in 5820, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
        0.110390656 = weight(_text_:2f in 5820) [ClassicSimilarity], result of:
          0.110390656 = score(doc=5820,freq=4.0), product of:
            0.20833312 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.024573348 = queryNorm
            0.5298757 = fieldWeight in 5820, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
        0.110390656 = weight(_text_:2f in 5820) [ClassicSimilarity], result of:
          0.110390656 = score(doc=5820,freq=4.0), product of:
            0.20833312 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.024573348 = queryNorm
            0.5298757 = fieldWeight in 5820, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
      0.5 = coord(7/14)
    
    Abstract
    The successes of information retrieval (IR) in recent decades were built upon bag-of-words representations. Effective as it is, bag-of-words is only a shallow text understanding; there is a limited amount of information for document ranking in the word space. This dissertation goes beyond words and builds knowledge based text representations, which embed the external and carefully curated information from knowledge bases, and provide richer and structured evidence for more advanced information retrieval systems. This thesis research first builds query representations with entities associated with the query. Entities' descriptions are used by query expansion techniques that enrich the query with explanation terms. Then we present a general framework that represents a query with entities that appear in the query, are retrieved by the query, or frequently show up in the top retrieved documents. A latent space model is developed to jointly learn the connections from query to entities and the ranking of documents, modeling the external evidence from knowledge bases and internal ranking features cooperatively. To further improve the quality of relevant entities, a defining factor of our query representations, we introduce learning to rank to entity search and retrieve better entities from knowledge bases. In the document representation part, this thesis research also moves one step forward with a bag-of-entities model, in which documents are represented by their automatic entity annotations, and the ranking is performed in the entity space.
    This proposal includes plans to improve the quality of relevant entities with a co-learning framework that learns from both entity labels and document labels. We also plan to develop a hybrid ranking system that combines word based and entity based representations together with their uncertainties considered. At last, we plan to enrich the text representations with connections between entities. We propose several ways to infer entity graph representations for texts, and to rank documents using their structure representations. This dissertation overcomes the limitation of word based representations with external and carefully curated information from knowledge bases. We believe this thesis research is a solid start towards the new generation of intelligent, semantic, and structured information retrieval.
    Content
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Language and Information Technologies. Vgl.: https%3A%2F%2Fwww.cs.cmu.edu%2F~cx%2Fpapers%2Fknowledge_based_text_representation.pdf&usg=AOvVaw0SaTSvhWLTh__Uz_HtOtl3.
  2. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.23
    0.229617 = product of:
      0.40182972 = sum of:
        0.026019327 = product of:
          0.07805798 = sum of:
            0.07805798 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.07805798 = score(doc=701,freq=2.0), product of:
                0.20833312 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.024573348 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
        0.016357405 = weight(_text_:web in 701) [ClassicSimilarity], result of:
          0.016357405 = score(doc=701,freq=4.0), product of:
            0.08019538 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.024573348 = queryNorm
            0.2039694 = fieldWeight in 701, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.07805798 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.07805798 = score(doc=701,freq=2.0), product of:
            0.20833312 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.024573348 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.07805798 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.07805798 = score(doc=701,freq=2.0), product of:
            0.20833312 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.024573348 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.010040176 = weight(_text_:information in 701) [ClassicSimilarity], result of:
          0.010040176 = score(doc=701,freq=18.0), product of:
            0.04313797 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.024573348 = queryNorm
            0.23274568 = fieldWeight in 701, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.037180886 = weight(_text_:retrieval in 701) [ClassicSimilarity], result of:
          0.037180886 = score(doc=701,freq=28.0), product of:
            0.07433229 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.024573348 = queryNorm
            0.5001983 = fieldWeight in 701, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.07805798 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.07805798 = score(doc=701,freq=2.0), product of:
            0.20833312 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.024573348 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.07805798 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.07805798 = score(doc=701,freq=2.0), product of:
            0.20833312 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.024573348 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
      0.5714286 = coord(8/14)
    
    Abstract
    By the explosion of possibilities for a ubiquitous content production, the information overload problem reaches the level of complexity which cannot be managed by traditional modelling approaches anymore. Due to their pure syntactical nature traditional information retrieval approaches did not succeed in treating content itself (i.e. its meaning, and not its representation). This leads to a very low usefulness of the results of a retrieval process for a user's task at hand. In the last ten years ontologies have been emerged from an interesting conceptualisation paradigm to a very promising (semantic) modelling technology, especially in the context of the Semantic Web. From the information retrieval point of view, ontologies enable a machine-understandable form of content description, such that the retrieval process can be driven by the meaning of the content. However, the very ambiguous nature of the retrieval process in which a user, due to the unfamiliarity with the underlying repository and/or query syntax, just approximates his information need in a query, implies a necessity to include the user in the retrieval process more actively in order to close the gap between the meaning of the content and the meaning of a user's query (i.e. his information need). This thesis lays foundation for such an ontology-based interactive retrieval process, in which the retrieval system interacts with a user in order to conceptually interpret the meaning of his query, whereas the underlying domain ontology drives the conceptualisation process. In that way the retrieval process evolves from a query evaluation process into a highly interactive cooperation between a user and the retrieval system, in which the system tries to anticipate the user's information need and to deliver the relevant content proactively. Moreover, the notion of content relevance for a user's query evolves from a content dependent artefact to the multidimensional context-dependent structure, strongly influenced by the user's preferences. This cooperation process is realized as the so-called Librarian Agent Query Refinement Process. In order to clarify the impact of an ontology on the retrieval process (regarding its complexity and quality), a set of methods and tools for different levels of content and query formalisation is developed, ranging from pure ontology-based inferencing to keyword-based querying in which semantics automatically emerges from the results. Our evaluation studies have shown that the possibilities to conceptualize a user's information need in the right manner and to interpret the retrieval results accordingly are key issues for realizing much more meaningful information retrieval systems.
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
    Theme
    Semantic Web
  3. Zeng, Q.; Yu, M.; Yu, W.; Xiong, J.; Shi, Y.; Jiang, M.: Faceted hierarchy : a new graph type to organize scientific concepts and a construction method (2019) 0.22
    0.21959868 = product of:
      0.51239693 = sum of:
        0.03902899 = product of:
          0.11708697 = sum of:
            0.11708697 = weight(_text_:3a in 400) [ClassicSimilarity], result of:
              0.11708697 = score(doc=400,freq=2.0), product of:
                0.20833312 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.024573348 = queryNorm
                0.56201804 = fieldWeight in 400, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=400)
          0.33333334 = coord(1/3)
        0.11708697 = weight(_text_:2f in 400) [ClassicSimilarity], result of:
          0.11708697 = score(doc=400,freq=2.0), product of:
            0.20833312 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.024573348 = queryNorm
            0.56201804 = fieldWeight in 400, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=400)
        0.11708697 = weight(_text_:2f in 400) [ClassicSimilarity], result of:
          0.11708697 = score(doc=400,freq=2.0), product of:
            0.20833312 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.024573348 = queryNorm
            0.56201804 = fieldWeight in 400, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=400)
        0.0050200885 = weight(_text_:information in 400) [ClassicSimilarity], result of:
          0.0050200885 = score(doc=400,freq=2.0), product of:
            0.04313797 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.024573348 = queryNorm
            0.116372846 = fieldWeight in 400, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=400)
        0.11708697 = weight(_text_:2f in 400) [ClassicSimilarity], result of:
          0.11708697 = score(doc=400,freq=2.0), product of:
            0.20833312 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.024573348 = queryNorm
            0.56201804 = fieldWeight in 400, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=400)
        0.11708697 = weight(_text_:2f in 400) [ClassicSimilarity], result of:
          0.11708697 = score(doc=400,freq=2.0), product of:
            0.20833312 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.024573348 = queryNorm
            0.56201804 = fieldWeight in 400, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=400)
      0.42857143 = coord(6/14)
    
    Abstract
    On a scientific concept hierarchy, a parent concept may have a few attributes, each of which has multiple values being a group of child concepts. We call these attributes facets: classification has a few facets such as application (e.g., face recognition), model (e.g., svm, knn), and metric (e.g., precision). In this work, we aim at building faceted concept hierarchies from scientific literature. Hierarchy construction methods heavily rely on hypernym detection, however, the faceted relations are parent-to-child links but the hypernym relation is a multi-hop, i.e., ancestor-to-descendent link with a specific facet "type-of". We use information extraction techniques to find synonyms, sibling concepts, and ancestor-descendent relations from a data science corpus. And we propose a hierarchy growth algorithm to infer the parent-child links from the three types of relationships. It resolves conflicts by maintaining the acyclic structure of a hierarchy.
    Content
    Vgl.: https%3A%2F%2Faclanthology.org%2FD19-5317.pdf&usg=AOvVaw0ZZFyq5wWTtNTvNkrvjlGA.
  4. Information and communication technologies : international conference; proceedings / ICT 2010, Kochi, Kerala, India, September 7 - 9, 2010 (2010) 0.09
    0.092208914 = product of:
      0.3227312 = sum of:
        0.015495556 = weight(_text_:information in 4784) [ClassicSimilarity], result of:
          0.015495556 = score(doc=4784,freq=14.0), product of:
            0.04313797 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.024573348 = queryNorm
            0.3592092 = fieldWeight in 4784, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4784)
        0.024592843 = weight(_text_:retrieval in 4784) [ClassicSimilarity], result of:
          0.024592843 = score(doc=4784,freq=4.0), product of:
            0.07433229 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.024573348 = queryNorm
            0.33085006 = fieldWeight in 4784, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4784)
        0.23140045 = weight(_text_:kongress in 4784) [ClassicSimilarity], result of:
          0.23140045 = score(doc=4784,freq=16.0), product of:
            0.16122791 = queryWeight, product of:
              6.5610886 = idf(docFreq=169, maxDocs=44218)
              0.024573348 = queryNorm
            1.4352381 = fieldWeight in 4784, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              6.5610886 = idf(docFreq=169, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4784)
        0.051242363 = product of:
          0.15372708 = sum of:
            0.15372708 = weight(_text_:2010 in 4784) [ClassicSimilarity], result of:
              0.15372708 = score(doc=4784,freq=25.0), product of:
                0.117538005 = queryWeight, product of:
                  4.7831497 = idf(docFreq=1005, maxDocs=44218)
                  0.024573348 = queryNorm
                1.3078926 = fieldWeight in 4784, product of:
                  5.0 = tf(freq=25.0), with freq of:
                    25.0 = termFreq=25.0
                  4.7831497 = idf(docFreq=1005, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4784)
          0.33333334 = coord(1/3)
      0.2857143 = coord(4/14)
    
    Abstract
    This book constitutes the proceedings of the International Conference on Information and Communication Technologies held in Kochi, Kerala, India in September 2010.
    LCSH
    Information storage and retrieval systems
    Information systems
    RSWK
    Telekommunikationsnetz / Netzwerktopologie / Kongress / Cochin <Kerala, 2010>
    Informationstechnik / Kongress / Cochin <Kerala, 2010>
    Informatik / Kongress / Cochin <Kerala, 2010>
    Data Mining / Kongress / Cochin <Kerala, 2010>
    Series
    Communications in computer and information science; vol.101
    Subject
    Telekommunikationsnetz / Netzwerktopologie / Kongress / Cochin <Kerala, 2010>
    Informationstechnik / Kongress / Cochin <Kerala, 2010>
    Informatik / Kongress / Cochin <Kerala, 2010>
    Data Mining / Kongress / Cochin <Kerala, 2010>
    Information storage and retrieval systems
    Information systems
    Year
    2010
  5. ¬The Semantic Web - ISWC 2010 : 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Selected Papers, Part 2. (2010) 0.08
    0.08493887 = product of:
      0.29728603 = sum of:
        0.06625506 = weight(_text_:web in 4706) [ClassicSimilarity], result of:
          0.06625506 = score(doc=4706,freq=42.0), product of:
            0.08019538 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.024573348 = queryNorm
            0.8261705 = fieldWeight in 4706, product of:
              6.4807405 = tf(freq=42.0), with freq of:
                42.0 = termFreq=42.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4706)
        0.004183407 = weight(_text_:information in 4706) [ClassicSimilarity], result of:
          0.004183407 = score(doc=4706,freq=2.0), product of:
            0.04313797 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.024573348 = queryNorm
            0.09697737 = fieldWeight in 4706, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4706)
        0.18479541 = weight(_text_:kongress in 4706) [ClassicSimilarity], result of:
          0.18479541 = score(doc=4706,freq=20.0), product of:
            0.16122791 = queryWeight, product of:
              6.5610886 = idf(docFreq=169, maxDocs=44218)
              0.024573348 = queryNorm
            1.146175 = fieldWeight in 4706, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              6.5610886 = idf(docFreq=169, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4706)
        0.042052135 = product of:
          0.1261564 = sum of:
            0.1261564 = weight(_text_:2010 in 4706) [ClassicSimilarity], result of:
              0.1261564 = score(doc=4706,freq=33.0), product of:
                0.117538005 = queryWeight, product of:
                  4.7831497 = idf(docFreq=1005, maxDocs=44218)
                  0.024573348 = queryNorm
                1.0733243 = fieldWeight in 4706, product of:
                  5.7445626 = tf(freq=33.0), with freq of:
                    33.0 = termFreq=33.0
                  4.7831497 = idf(docFreq=1005, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4706)
          0.33333334 = coord(1/3)
      0.2857143 = coord(4/14)
    
    Abstract
    The two-volume set LNCS 6496 and 6497 constitutes the refereed proceedings of the 9th International Semantic Web Conference, ISWC 2010, held in Shanghai, China, during November 7-11, 2010. Part I contains 51 papers out of 578 submissions to the research track. Part II contains 18 papers out of 66 submissions to the semantic Web in-use track, 6 papers out of 26 submissions to the doctoral consortium track, and also 4 invited talks. Each submitted paper were carefully reviewed. The International Semantic Web Conferences (ISWC) constitute the major international venue where the latest research results and technical innovations on all aspects of the Semantic Web are presented. ISWC brings together researchers, practitioners, and users from the areas of artificial intelligence, databases, social networks, distributed computing, Web engineering, information systems, natural language processing, soft computing, and human computer interaction to discuss the major challenges and proposed solutions, the success stories and failures, as well the visions that can advance research and drive innovation in the Semantic Web.
    RSWK
    Semantic Web / Kongress / Schanghai <2010>
    Semantic Web / Ontologie <Wissensverarbeitung> / Kongress / Schanghai <2010>
    Semantic Web / Datenverwaltung / Wissensmanagement / Kongress / Schanghai <2010>
    Semantic Web / Anwendungssystem / Kongress / Schanghai <2010>
    Semantic Web / World Wide Web 2.0 / Kongress / Schanghai <2010>
    Subject
    Semantic Web / Kongress / Schanghai <2010>
    Semantic Web / Ontologie <Wissensverarbeitung> / Kongress / Schanghai <2010>
    Semantic Web / Datenverwaltung / Wissensmanagement / Kongress / Schanghai <2010>
    Semantic Web / Anwendungssystem / Kongress / Schanghai <2010>
    Semantic Web / World Wide Web 2.0 / Kongress / Schanghai <2010>
    Theme
    Semantic Web
    Year
    2010
  6. ¬The Semantic Web - ISWC 2010 : 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Selected Papers, Part I. (2010) 0.07
    0.06795109 = product of:
      0.2378288 = sum of:
        0.05300405 = weight(_text_:web in 4707) [ClassicSimilarity], result of:
          0.05300405 = score(doc=4707,freq=42.0), product of:
            0.08019538 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.024573348 = queryNorm
            0.6609364 = fieldWeight in 4707, product of:
              6.4807405 = tf(freq=42.0), with freq of:
                42.0 = termFreq=42.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=4707)
        0.0033467256 = weight(_text_:information in 4707) [ClassicSimilarity], result of:
          0.0033467256 = score(doc=4707,freq=2.0), product of:
            0.04313797 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.024573348 = queryNorm
            0.0775819 = fieldWeight in 4707, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=4707)
        0.14783633 = weight(_text_:kongress in 4707) [ClassicSimilarity], result of:
          0.14783633 = score(doc=4707,freq=20.0), product of:
            0.16122791 = queryWeight, product of:
              6.5610886 = idf(docFreq=169, maxDocs=44218)
              0.024573348 = queryNorm
            0.91694003 = fieldWeight in 4707, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              6.5610886 = idf(docFreq=169, maxDocs=44218)
              0.03125 = fieldNorm(doc=4707)
        0.033641707 = product of:
          0.10092512 = sum of:
            0.10092512 = weight(_text_:2010 in 4707) [ClassicSimilarity], result of:
              0.10092512 = score(doc=4707,freq=33.0), product of:
                0.117538005 = queryWeight, product of:
                  4.7831497 = idf(docFreq=1005, maxDocs=44218)
                  0.024573348 = queryNorm
                0.85865945 = fieldWeight in 4707, product of:
                  5.7445626 = tf(freq=33.0), with freq of:
                    33.0 = termFreq=33.0
                  4.7831497 = idf(docFreq=1005, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4707)
          0.33333334 = coord(1/3)
      0.2857143 = coord(4/14)
    
    Abstract
    The two-volume set LNCS 6496 and 6497 constitutes the refereed proceedings of the 9th International Semantic Web Conference, ISWC 2010, held in Shanghai, China, during November 7-11, 2010. Part I contains 51 papers out of 578 submissions to the research track. Part II contains 18 papers out of 66 submissions to the semantic Web in-use track, 6 papers out of 26 submissions to the doctoral consortium track, and also 4 invited talks. Each submitted paper were carefully reviewed. The International Semantic Web Conferences (ISWC) constitute the major international venue where the latest research results and technical innovations on all aspects of the Semantic Web are presented. ISWC brings together researchers, practitioners, and users from the areas of artificial intelligence, databases, social networks, distributed computing, Web engineering, information systems, natural language processing, soft computing, and human computer interaction to discuss the major challenges and proposed solutions, the success stories and failures, as well the visions that can advance research and drive innovation in the Semantic Web.
    RSWK
    Semantic Web / Kongress / Schanghai <2010>
    Semantic Web / Ontologie <Wissensverarbeitung> / Kongress / Schanghai <2010>
    Semantic Web / Datenverwaltung / Wissensmanagement / Kongress / Schanghai <2010>
    Semantic Web / Anwendungssystem / Kongress / Schanghai <2010>
    Semantic Web / World Wide Web 2.0 / Kongress / Schanghai <2010>
    Subject
    Semantic Web / Kongress / Schanghai <2010>
    Semantic Web / Ontologie <Wissensverarbeitung> / Kongress / Schanghai <2010>
    Semantic Web / Datenverwaltung / Wissensmanagement / Kongress / Schanghai <2010>
    Semantic Web / Anwendungssystem / Kongress / Schanghai <2010>
    Semantic Web / World Wide Web 2.0 / Kongress / Schanghai <2010>
    Theme
    Semantic Web
    Year
    2010
  7. ¬The Semantic Web : research and applications ; second European Semantic WebConference, ESWC 2005, Heraklion, Crete, Greece, May 29 - June 1, 2005 ; proceedings (2005) 0.07
    0.06633046 = product of:
      0.23215662 = sum of:
        0.054864403 = weight(_text_:web in 439) [ClassicSimilarity], result of:
          0.054864403 = score(doc=439,freq=20.0), product of:
            0.08019538 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.024573348 = queryNorm
            0.6841342 = fieldWeight in 439, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=439)
        0.01122526 = weight(_text_:information in 439) [ClassicSimilarity], result of:
          0.01122526 = score(doc=439,freq=10.0), product of:
            0.04313797 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.024573348 = queryNorm
            0.2602176 = fieldWeight in 439, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=439)
        0.02581711 = weight(_text_:retrieval in 439) [ClassicSimilarity], result of:
          0.02581711 = score(doc=439,freq=6.0), product of:
            0.07433229 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.024573348 = queryNorm
            0.34732026 = fieldWeight in 439, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=439)
        0.14024985 = weight(_text_:kongress in 439) [ClassicSimilarity], result of:
          0.14024985 = score(doc=439,freq=8.0), product of:
            0.16122791 = queryWeight, product of:
              6.5610886 = idf(docFreq=169, maxDocs=44218)
              0.024573348 = queryNorm
            0.8698856 = fieldWeight in 439, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              6.5610886 = idf(docFreq=169, maxDocs=44218)
              0.046875 = fieldNorm(doc=439)
      0.2857143 = coord(4/14)
    
    Abstract
    This book constitutes the refereed proceedings of the Second European Semantic Web Conference, ESWC 2005, heldin Heraklion, Crete, Greece in May/June 2005. The 48 revised full papers presented were carefully reviewed and selected from 148 submissions. The papers are organized in topical sections on semantic Web services, languages, ontologies, reasoning and querying, search and information retrieval, user and communities, natural language for the semantic Web, annotation tools, and semantic Web applications.
    LCSH
    Information storage and retrieval systems
    Information systems
    RSWK
    Semantic Web / Kongress / Iraklion <2005>
    Semantic Web / Ontologie <Wissensverarbeitung> / Kongress / Iraklion <2005>
    Subject
    Semantic Web / Kongress / Iraklion <2005>
    Semantic Web / Ontologie <Wissensverarbeitung> / Kongress / Iraklion <2005>
    Information storage and retrieval systems
    Information systems
    Theme
    Semantic Web
  8. Gödert, W.; Hubrich, J.; Nagelschmidt, M.: Semantic knowledge representation for information retrieval (2014) 0.06
    0.062863246 = product of:
      0.17601708 = sum of:
        0.045902856 = weight(_text_:web in 987) [ClassicSimilarity], result of:
          0.045902856 = score(doc=987,freq=14.0), product of:
            0.08019538 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.024573348 = queryNorm
            0.57238775 = fieldWeight in 987, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=987)
        0.066629134 = weight(_text_:indexierung in 987) [ClassicSimilarity], result of:
          0.066629134 = score(doc=987,freq=4.0), product of:
            0.13215348 = queryWeight, product of:
              5.377919 = idf(docFreq=554, maxDocs=44218)
              0.024573348 = queryNorm
            0.50417995 = fieldWeight in 987, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.377919 = idf(docFreq=554, maxDocs=44218)
              0.046875 = fieldNorm(doc=987)
        0.017390097 = weight(_text_:information in 987) [ClassicSimilarity], result of:
          0.017390097 = score(doc=987,freq=24.0), product of:
            0.04313797 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.024573348 = queryNorm
            0.40312737 = fieldWeight in 987, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=987)
        0.039436284 = weight(_text_:retrieval in 987) [ClassicSimilarity], result of:
          0.039436284 = score(doc=987,freq=14.0), product of:
            0.07433229 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.024573348 = queryNorm
            0.5305404 = fieldWeight in 987, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=987)
        0.006658699 = product of:
          0.019976096 = sum of:
            0.019976096 = weight(_text_:22 in 987) [ClassicSimilarity], result of:
              0.019976096 = score(doc=987,freq=2.0), product of:
                0.08605168 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.024573348 = queryNorm
                0.23214069 = fieldWeight in 987, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=987)
          0.33333334 = coord(1/3)
      0.35714287 = coord(5/14)
    
    Abstract
    This book covers the basics of semantic web technologies and indexing languages, and describes their contribution to improve languages as a tool for subject queries and knowledge exploration. The book is relevant to information scientists, knowledge workers and indexers. It provides a suitable combination of theoretical foundations and practical applications.
    Content
    Introduction: envisioning semantic information spacesIndexing and knowledge organization -- Semantic technologies for knowledge representation -- Information retrieval and knowledge exploration -- Approaches to handle heterogeneity -- Problems with establishing semantic interoperability -- Formalization in indexing languages -- Typification of semantic relations -- Inferences in retrieval processes -- Semantic interoperability and inferences -- Remaining research questions.
    Date
    23. 7.2017 13:49:22
    LCSH
    Semantic Web
    Information retrieval
    Knowledge representation (Information theory)
    Information organization
    World Wide Web / Subject access
    RSWK
    Indexierung
    Semantic Web
    Information Retrieval
    Subject
    Semantic Web
    Information retrieval
    Knowledge representation (Information theory)
    Information organization
    World Wide Web / Subject access
    Indexierung
    Semantic Web
    Information Retrieval
  9. Weller, K.: Knowledge representation in the Social Semantic Web (2010) 0.04
    0.03828911 = product of:
      0.1072095 = sum of:
        0.05450125 = weight(_text_:web in 4515) [ClassicSimilarity], result of:
          0.05450125 = score(doc=4515,freq=58.0), product of:
            0.08019538 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.024573348 = queryNorm
            0.67960584 = fieldWeight in 4515, product of:
              7.615773 = tf(freq=58.0), with freq of:
                58.0 = termFreq=58.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4515)
        0.027483113 = weight(_text_:indexierung in 4515) [ClassicSimilarity], result of:
          0.027483113 = score(doc=4515,freq=2.0), product of:
            0.13215348 = queryWeight, product of:
              5.377919 = idf(docFreq=554, maxDocs=44218)
              0.024573348 = queryNorm
            0.2079636 = fieldWeight in 4515, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.377919 = idf(docFreq=554, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4515)
        0.0050721117 = weight(_text_:information in 4515) [ClassicSimilarity], result of:
          0.0050721117 = score(doc=4515,freq=6.0), product of:
            0.04313797 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.024573348 = queryNorm
            0.11757882 = fieldWeight in 4515, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4515)
        0.008694883 = weight(_text_:retrieval in 4515) [ClassicSimilarity], result of:
          0.008694883 = score(doc=4515,freq=2.0), product of:
            0.07433229 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.024573348 = queryNorm
            0.11697317 = fieldWeight in 4515, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4515)
        0.01145814 = product of:
          0.03437442 = sum of:
            0.03437442 = weight(_text_:2010 in 4515) [ClassicSimilarity], result of:
              0.03437442 = score(doc=4515,freq=5.0), product of:
                0.117538005 = queryWeight, product of:
                  4.7831497 = idf(docFreq=1005, maxDocs=44218)
                  0.024573348 = queryNorm
                0.29245365 = fieldWeight in 4515, product of:
                  2.236068 = tf(freq=5.0), with freq of:
                    5.0 = termFreq=5.0
                  4.7831497 = idf(docFreq=1005, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4515)
          0.33333334 = coord(1/3)
      0.35714287 = coord(5/14)
    
    Abstract
    The main purpose of this book is to sum up the vital and highly topical research issue of knowledge representation on the Web and to discuss novel solutions by combining benefits of folksonomies and Web 2.0 approaches with ontologies and semantic technologies. This book contains an overview of knowledge representation approaches in past, present and future, introduction to ontologies, Web indexing and in first case the novel approaches of developing ontologies. This title combines aspects of knowledge representation for both the Semantic Web (ontologies) and the Web 2.0 (folksonomies). Currently there is no monographic book which provides a combined overview over these topics. focus on the topic of using knowledge representation methods for document indexing purposes. For this purpose, considerations from classical librarian interests in knowledge representation (thesauri, classification schemes etc.) are included, which are not part of most other books which have a stronger background in computer science.
    Content
    Zugl.: Düsseldorf, Univ., Diss., 2010
    Footnote
    Rez. in: iwp 62(2011) H.4, S.205-206 (C. Carstens): "Welche Arten der Wissensrepräsentation existieren im Web, wie ausgeprägt sind semantische Strukturen in diesem Kontext, und wie können soziale Aktivitäten im Sinne des Web 2.0 zur Strukturierung von Wissen im Web beitragen? Diesen Fragen widmet sich Wellers Buch mit dem Titel Knowledge Representation in the Social Semantic Web. Der Begriff Social Semantic Web spielt einerseits auf die semantische Strukturierung von Daten im Sinne des Semantic Web an und deutet andererseits auf die zunehmend kollaborative Inhaltserstellung im Social Web hin. Weller greift die Entwicklungen in diesen beiden Bereichen auf und beleuchtet die Möglichkeiten und Herausforderungen, die aus der Kombination der Aktivitäten im Semantic Web und im Social Web entstehen. Der Fokus des Buches liegt dabei primär auf den konzeptuellen Herausforderungen, die sich in diesem Kontext ergeben. So strebt die originäre Vision des Semantic Web die Annotation aller Webinhalte mit ausdrucksstarken, hochformalisierten Ontologien an. Im Social Web hingegen werden große Mengen an Daten von Nutzern erstellt, die häufig mithilfe von unkontrollierten Tags in Folksonomies annotiert werden. Weller sieht in derartigen kollaborativ erstellten Inhalten und Annotationen großes Potenzial für die semantische Indexierung, eine wichtige Voraussetzung für das Retrieval im Web. Das Hauptinteresse des Buches besteht daher darin, eine Brücke zwischen den Wissensrepräsentations-Methoden im Social Web und im Semantic Web zu schlagen. Um dieser Fragestellung nachzugehen, gliedert sich das Buch in drei Teile. . . .
    Insgesamt besticht das Buch insbesondere durch seine breite Sichtweise, die Aktualität und die Fülle an Referenzen. Es ist somit sowohl als Überblickswerk geeignet, das umfassend über aktuelle Entwicklungen und Trends der Wissensrepräsentation im Semantic und Social Web informiert, als auch als Lektüre für Experten, für die es vor allem als kontextualisierte und sehr aktuelle Sammlung von Referenzen eine wertvolle Ressource darstellt." Weitere Rez. in: Journal of Documentation. 67(2011), no.5, S.896-899 (P. Rafferty)
    LCSH
    Semantic Web
    Knowledge representation (Information theory)
    Object
    Web 2.0
    RSWK
    Semantic Web
    World Wide Web 2.0
    Series
    Knowledge and information; vol.3
    Subject
    Semantic Web
    World Wide Web 2.0
    Semantic Web
    Knowledge representation (Information theory)
    Theme
    Semantic Web
    Year
    2010
  10. Atanassova, I.; Bertin, M.: Semantic facets for scientific information retrieval (2014) 0.03
    0.03344028 = product of:
      0.11704098 = sum of:
        0.020241255 = weight(_text_:web in 4471) [ClassicSimilarity], result of:
          0.020241255 = score(doc=4471,freq=2.0), product of:
            0.08019538 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.024573348 = queryNorm
            0.25239927 = fieldWeight in 4471, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4471)
        0.054966226 = weight(_text_:indexierung in 4471) [ClassicSimilarity], result of:
          0.054966226 = score(doc=4471,freq=2.0), product of:
            0.13215348 = queryWeight, product of:
              5.377919 = idf(docFreq=554, maxDocs=44218)
              0.024573348 = queryNorm
            0.4159272 = fieldWeight in 4471, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.377919 = idf(docFreq=554, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4471)
        0.01171354 = weight(_text_:information in 4471) [ClassicSimilarity], result of:
          0.01171354 = score(doc=4471,freq=8.0), product of:
            0.04313797 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.024573348 = queryNorm
            0.27153665 = fieldWeight in 4471, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4471)
        0.03011996 = weight(_text_:retrieval in 4471) [ClassicSimilarity], result of:
          0.03011996 = score(doc=4471,freq=6.0), product of:
            0.07433229 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.024573348 = queryNorm
            0.40520695 = fieldWeight in 4471, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4471)
      0.2857143 = coord(4/14)
    
    Abstract
    We present an Information Retrieval System for scientific publications that provides the possibility to filter results according to semantic facets. We use sentence-level semantic annotations that identify specific semantic relations in texts, such as methods, definitions, hypotheses, that correspond to common information needs related to scientific literature. The semantic annotations are obtained using a rule-based method that identifies linguistic clues organized into a linguistic ontology. The system is implemented using Solr Search Server and offers efficient search and navigation in scientific papers.
    Series
    Communications in computer and information science; vol.475
    Source
    Semantic Web Evaluation Challenge. SemWebEval 2014 at ESWC 2014, Anissaras, Crete, Greece, May 25-29, 2014, Revised Selected Papers. Eds.: V. Presutti et al
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  11. Vallet, D.; Fernández, M.; Castells, P.: ¬An ontology-based information retrieval model (2005) 0.03
    0.030423183 = product of:
      0.106481135 = sum of:
        0.024536107 = weight(_text_:web in 4708) [ClassicSimilarity], result of:
          0.024536107 = score(doc=4708,freq=4.0), product of:
            0.08019538 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.024573348 = queryNorm
            0.3059541 = fieldWeight in 4708, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4708)
        0.04711391 = weight(_text_:indexierung in 4708) [ClassicSimilarity], result of:
          0.04711391 = score(doc=4708,freq=2.0), product of:
            0.13215348 = queryWeight, product of:
              5.377919 = idf(docFreq=554, maxDocs=44218)
              0.024573348 = queryNorm
            0.35650903 = fieldWeight in 4708, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.377919 = idf(docFreq=554, maxDocs=44218)
              0.046875 = fieldNorm(doc=4708)
        0.0050200885 = weight(_text_:information in 4708) [ClassicSimilarity], result of:
          0.0050200885 = score(doc=4708,freq=2.0), product of:
            0.04313797 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.024573348 = queryNorm
            0.116372846 = fieldWeight in 4708, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4708)
        0.029811028 = weight(_text_:retrieval in 4708) [ClassicSimilarity], result of:
          0.029811028 = score(doc=4708,freq=8.0), product of:
            0.07433229 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.024573348 = queryNorm
            0.40105087 = fieldWeight in 4708, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=4708)
      0.2857143 = coord(4/14)
    
    Abstract
    Semantic search has been one of the motivations of the Semantic Web since it was envisioned. We propose a model for the exploitation of ontologybased KBs to improve search over large document repositories. Our approach includes an ontology-based scheme for the semi-automatic annotation of documents, and a retrieval system. The retrieval model is based on an adaptation of the classic vector-space model, including an annotation weighting algorithm, and a ranking algorithm. Semantic search is combined with keyword-based search to achieve tolerance to KB incompleteness. Our proposal is illustrated with sample experiments showing improvements with respect to keyword-based search, and providing ground for further research and discussion.
    Source
    The Semantic Web: research and applications ; second European Semantic WebConference, ESWC 2005, Heraklion, Crete, Greece, May 29 - June 1, 2005 ; proceedings. Eds.: A. Gómez-Pérez u. J. Euzenat
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  12. Mayfield, J.; Finin, T.: Information retrieval on the Semantic Web : integrating inference and retrieval 0.03
    0.029861903 = product of:
      0.104516655 = sum of:
        0.04958075 = weight(_text_:web in 4330) [ClassicSimilarity], result of:
          0.04958075 = score(doc=4330,freq=12.0), product of:
            0.08019538 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.024573348 = queryNorm
            0.6182494 = fieldWeight in 4330, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4330)
        0.008282723 = weight(_text_:information in 4330) [ClassicSimilarity], result of:
          0.008282723 = score(doc=4330,freq=4.0), product of:
            0.04313797 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.024573348 = queryNorm
            0.1920054 = fieldWeight in 4330, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4330)
        0.038884703 = weight(_text_:retrieval in 4330) [ClassicSimilarity], result of:
          0.038884703 = score(doc=4330,freq=10.0), product of:
            0.07433229 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.024573348 = queryNorm
            0.5231199 = fieldWeight in 4330, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4330)
        0.007768482 = product of:
          0.023305446 = sum of:
            0.023305446 = weight(_text_:22 in 4330) [ClassicSimilarity], result of:
              0.023305446 = score(doc=4330,freq=2.0), product of:
                0.08605168 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.024573348 = queryNorm
                0.2708308 = fieldWeight in 4330, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4330)
          0.33333334 = coord(1/3)
      0.2857143 = coord(4/14)
    
    Abstract
    One vision of the Semantic Web is that it will be much like the Web we know today, except that documents will be enriched by annotations in machine understandable markup. These annotations will provide metadata about the documents as well as machine interpretable statements capturing some of the meaning of document content. We discuss how the information retrieval paradigm might be recast in such an environment. We suggest that retrieval can be tightly bound to inference. Doing so makes today's Web search engines useful to Semantic Web inference engines, and causes improvements in either retrieval or inference to lead directly to improvements in the other.
    Date
    12. 2.2011 17:35:22
    Theme
    Semantic Web
  13. Öttl, S.; Streiff, D.; Stettler, N.; Studer, M.: Aufbau einer Testumgebung zur Ermittlung signifikanter Parameter bei der Ontologieabfrage (2010) 0.03
    0.029855017 = product of:
      0.08359405 = sum of:
        0.01445804 = weight(_text_:web in 4257) [ClassicSimilarity], result of:
          0.01445804 = score(doc=4257,freq=2.0), product of:
            0.08019538 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.024573348 = queryNorm
            0.18028519 = fieldWeight in 4257, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4257)
        0.004183407 = weight(_text_:information in 4257) [ClassicSimilarity], result of:
          0.004183407 = score(doc=4257,freq=2.0), product of:
            0.04313797 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.024573348 = queryNorm
            0.09697737 = fieldWeight in 4257, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4257)
        0.012421262 = weight(_text_:retrieval in 4257) [ClassicSimilarity], result of:
          0.012421262 = score(doc=4257,freq=2.0), product of:
            0.07433229 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.024573348 = queryNorm
            0.16710453 = fieldWeight in 4257, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4257)
        0.033163548 = weight(_text_:frankfurt in 4257) [ClassicSimilarity], result of:
          0.033163548 = score(doc=4257,freq=4.0), product of:
            0.10213336 = queryWeight, product of:
              4.1562657 = idf(docFreq=1882, maxDocs=44218)
              0.024573348 = queryNorm
            0.32470825 = fieldWeight in 4257, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.1562657 = idf(docFreq=1882, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4257)
        0.019367792 = product of:
          0.058103375 = sum of:
            0.058103375 = weight(_text_:2010 in 4257) [ClassicSimilarity], result of:
              0.058103375 = score(doc=4257,freq=7.0), product of:
                0.117538005 = queryWeight, product of:
                  4.7831497 = idf(docFreq=1005, maxDocs=44218)
                  0.024573348 = queryNorm
                0.4943369 = fieldWeight in 4257, product of:
                  2.6457512 = tf(freq=7.0), with freq of:
                    7.0 = termFreq=7.0
                  4.7831497 = idf(docFreq=1005, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4257)
          0.33333334 = coord(1/3)
      0.35714287 = coord(5/14)
    
    Abstract
    Der Einsatz von semantischen Technologien ist mittlerweile ein etabliertes Mittel zur Optimierung von Information-Retrieval-Systemen. Obwohl der Einsatz von Ontologien für verschiedene Anwendungsbereiche wie beispielsweise zur Query-Expansion (Bhogal et al. 2007), zur Strukturierung von Benutzeroberflächen bzw. zur Dialoggestaltung (z. B. Garcia & Sicilia 2003; Liu et al. 2005; Lopez et al. 2006; Paulheim 2009; Paulheim & Probst 2010), in Recommendersystemen (z. B. Taehee et al. 2006; Cantador et al. 2008; Middleton et al. 2001; Middleton et al. 2009) usw. rege erforscht wird, gibt es noch kaum Bestrebungen, die einzelnen Abfragemethodiken für Ontologien systematisch zu untersuchen. Bei der Abfrage von Ontologien geht es in erster Linie darum, Zusammenhänge zwischen Begriffen zu ermitteln, indem hierarchische (Classes und Individuals), semantische (Object Properties) und ergänzende (Datatype Properties) Beziehungen abgefragt oder logische Verknüpfungen abgeleitet werden. Hierbei werden sogenannte Reasoner für die Ableitungen und als Abfragesprache SPARQL (seltener auch XPath) eingesetzt. Ein weiterer, weniger oft eingesetzter, vielversprechender Ansatz findet sich bei Hoser et al. (2006) und Weng & Chang (2008), die Techniken der Sozialen Netzwerkanalyse zur Auswertung von Ontologien miteinsetzen (Semantic Network Analysis). Um die Abfrage von Ontologien sowie Kombinationen der unterschiedlichen Abfragemöglichkeiten systematisch untersuchen zu können, wurde am SII eine entsprechende Testumgebung entwickelt, die in diesem Beitrag genauer vorgestellt werden soll.
    Imprint
    Frankfurt. / M. : DGI
    Source
    Semantic web & linked data: Elemente zukünftiger Informationsinfrastrukturen ; 1. DGI-Konferenz ; 62. Jahrestagung der DGI ; Frankfurt am Main, 7. - 9. Oktober 2010 ; Proceedings / Deutsche Gesellschaft für Informationswissenschaft und Informationspraxis. Hrsg.: M. Ockenfeld
    Year
    2010
  14. Weller, K.: Anforderungen an die Wissensrepräsentation im Social Semantic Web (2010) 0.03
    0.027871933 = product of:
      0.13006902 = sum of:
        0.060723763 = weight(_text_:web in 4061) [ClassicSimilarity], result of:
          0.060723763 = score(doc=4061,freq=18.0), product of:
            0.08019538 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.024573348 = queryNorm
            0.75719774 = fieldWeight in 4061, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4061)
        0.046428967 = weight(_text_:frankfurt in 4061) [ClassicSimilarity], result of:
          0.046428967 = score(doc=4061,freq=4.0), product of:
            0.10213336 = queryWeight, product of:
              4.1562657 = idf(docFreq=1882, maxDocs=44218)
              0.024573348 = queryNorm
            0.45459157 = fieldWeight in 4061, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.1562657 = idf(docFreq=1882, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4061)
        0.02291628 = product of:
          0.06874884 = sum of:
            0.06874884 = weight(_text_:2010 in 4061) [ClassicSimilarity], result of:
              0.06874884 = score(doc=4061,freq=5.0), product of:
                0.117538005 = queryWeight, product of:
                  4.7831497 = idf(docFreq=1005, maxDocs=44218)
                  0.024573348 = queryNorm
                0.5849073 = fieldWeight in 4061, product of:
                  2.236068 = tf(freq=5.0), with freq of:
                    5.0 = termFreq=5.0
                  4.7831497 = idf(docFreq=1005, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4061)
          0.33333334 = coord(1/3)
      0.21428572 = coord(3/14)
    
    Abstract
    Dieser Artikel gibt einen Einblick in die aktuelle Verschmelzung von Web 2.0-und Semantic Web-Ansätzen, die als Social Semantic Web beschrieben werden kann. Die Grundidee des Social Semantic Web wird beschrieben und einzelne erste Anwendungsbeispiele vorgestellt. Ein wesentlicher Schwerpunkt dieser Entwicklung besteht in der Umsetzung neuer Methoden und Herangehensweisen im Bereich der Wissensrepräsentation. Dieser Artikel stellt vier Schwerpunkte vor, in denen sich die Wissensrepräsentationsmethoden im Social Semantic Web weiterentwickeln müssen und geht dabei jeweils auf den aktuellen Stand ein.
    Imprint
    Frankfurt. / M. : DGI
    Object
    Web 2.0
    Source
    Semantic web & linked data: Elemente zukünftiger Informationsinfrastrukturen ; 1. DGI-Konferenz ; 62. Jahrestagung der DGI ; Frankfurt am Main, 7. - 9. Oktober 2010 ; Proceedings / Deutsche Gesellschaft für Informationswissenschaft und Informationspraxis. Hrsg.: M. Ockenfeld
    Theme
    Semantic Web
    Year
    2010
  15. Mäkelä, E.; Hyvönen, E.; Saarela, S.; Vilfanen, K.: Application of ontology techniques to view-based semantic serach and browsing (2012) 0.03
    0.0278229 = product of:
      0.09738015 = sum of:
        0.017349645 = weight(_text_:web in 3264) [ClassicSimilarity], result of:
          0.017349645 = score(doc=3264,freq=2.0), product of:
            0.08019538 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.024573348 = queryNorm
            0.21634221 = fieldWeight in 3264, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3264)
        0.04711391 = weight(_text_:indexierung in 3264) [ClassicSimilarity], result of:
          0.04711391 = score(doc=3264,freq=2.0), product of:
            0.13215348 = queryWeight, product of:
              5.377919 = idf(docFreq=554, maxDocs=44218)
              0.024573348 = queryNorm
            0.35650903 = fieldWeight in 3264, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.377919 = idf(docFreq=554, maxDocs=44218)
              0.046875 = fieldNorm(doc=3264)
        0.007099477 = weight(_text_:information in 3264) [ClassicSimilarity], result of:
          0.007099477 = score(doc=3264,freq=4.0), product of:
            0.04313797 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.024573348 = queryNorm
            0.16457605 = fieldWeight in 3264, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3264)
        0.02581711 = weight(_text_:retrieval in 3264) [ClassicSimilarity], result of:
          0.02581711 = score(doc=3264,freq=6.0), product of:
            0.07433229 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.024573348 = queryNorm
            0.34732026 = fieldWeight in 3264, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=3264)
      0.2857143 = coord(4/14)
    
    Abstract
    We scho how the beenfits of the view-based search method, developed within the information retrieval community, can be extended with ontology-based search, developed within the Semantic Web community, and with semantic recommendations. As a proof of the concept, we have implemented an ontology-and view-based search engine and recommendations system Ontogaotr for RDF(S) repositories. Ontogator is innovative in two ways. Firstly, the RDFS.based ontologies used for annotating metadata are used in the user interface to facilitate view-based information retrieval. The views provide the user with an overview of the repositorys contents and a vocabulary for expressing search queries. Secondlyy, a semantic browsing function is provided by a recommender system. This system enriches instance level metadata by ontologies and provides the user with links to semantically related relevant resources. The semantic linkage is specified in terms of logical rules. To illustrate and discuss the ideas, a deployed application of Ontogator to a photo repository of the Helsinki University Museum is presented.
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  16. Knorz, G.; Rein, B.: Semantische Suche in einer Hochschulontologie : Ontologie-basiertes Information-Filtering und -Retrieval mit relationalen Datenbanken (2005) 0.03
    0.026624093 = product of:
      0.09318432 = sum of:
        0.054966226 = weight(_text_:indexierung in 4324) [ClassicSimilarity], result of:
          0.054966226 = score(doc=4324,freq=2.0), product of:
            0.13215348 = queryWeight, product of:
              5.377919 = idf(docFreq=554, maxDocs=44218)
              0.024573348 = queryNorm
            0.4159272 = fieldWeight in 4324, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.377919 = idf(docFreq=554, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4324)
        0.00585677 = weight(_text_:information in 4324) [ClassicSimilarity], result of:
          0.00585677 = score(doc=4324,freq=2.0), product of:
            0.04313797 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.024573348 = queryNorm
            0.13576832 = fieldWeight in 4324, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4324)
        0.024592843 = weight(_text_:retrieval in 4324) [ClassicSimilarity], result of:
          0.024592843 = score(doc=4324,freq=4.0), product of:
            0.07433229 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.024573348 = queryNorm
            0.33085006 = fieldWeight in 4324, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4324)
        0.007768482 = product of:
          0.023305446 = sum of:
            0.023305446 = weight(_text_:22 in 4324) [ClassicSimilarity], result of:
              0.023305446 = score(doc=4324,freq=2.0), product of:
                0.08605168 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.024573348 = queryNorm
                0.2708308 = fieldWeight in 4324, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4324)
          0.33333334 = coord(1/3)
      0.2857143 = coord(4/14)
    
    Date
    11. 2.2011 18:22:25
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  17. Smith, D.A.; Shadbolt, N.R.: FacetOntology : expressive descriptions of facets in the Semantic Web (2012) 0.03
    0.025081772 = product of:
      0.0877862 = sum of:
        0.025042059 = weight(_text_:web in 2208) [ClassicSimilarity], result of:
          0.025042059 = score(doc=2208,freq=6.0), product of:
            0.08019538 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.024573348 = queryNorm
            0.3122631 = fieldWeight in 2208, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2208)
        0.03926159 = weight(_text_:indexierung in 2208) [ClassicSimilarity], result of:
          0.03926159 = score(doc=2208,freq=2.0), product of:
            0.13215348 = queryWeight, product of:
              5.377919 = idf(docFreq=554, maxDocs=44218)
              0.024573348 = queryNorm
            0.29709086 = fieldWeight in 2208, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.377919 = idf(docFreq=554, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2208)
        0.005916231 = weight(_text_:information in 2208) [ClassicSimilarity], result of:
          0.005916231 = score(doc=2208,freq=4.0), product of:
            0.04313797 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.024573348 = queryNorm
            0.13714671 = fieldWeight in 2208, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2208)
        0.017566316 = weight(_text_:retrieval in 2208) [ClassicSimilarity], result of:
          0.017566316 = score(doc=2208,freq=4.0), product of:
            0.07433229 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.024573348 = queryNorm
            0.23632148 = fieldWeight in 2208, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2208)
      0.2857143 = coord(4/14)
    
    Abstract
    The formal structure of the information on the Semantic Web lends itself to faceted browsing, an information retrieval method where users can filter results based on the values of properties ("facets"). Numerous faceted browsers have been created to browse RDF and Linked Data, but these systems use their own ontologies for defining how data is queried to populate their facets. Since the source data is the same format across these systems (specifically, RDF), we can unify the different methods of describing how to quer the underlying data, to enable compatibility across systems, and provide an extensible base ontology for future systems. To this end, we present FacetOntology, an ontology that defines how to query data to form a faceted browser, and a number of transformations and filters that can be applied to data before it is shown to users. FacetOntology overcomes limitations in the expressivity of existing work, by enabling the full expressivity of SPARQL when selecting data for facets. By applying a FacetOntology definition to data, a set of facets are specified, each with queries and filters to source RDF data, which enables faceted browsing systems to be created using that RDF data.
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
    Semantic Web
  18. Knorz, G.; Rein, B.: Semantische Suche in einer Hochschulontologie (2005) 0.02
    0.024566073 = product of:
      0.08598125 = sum of:
        0.054966226 = weight(_text_:indexierung in 1852) [ClassicSimilarity], result of:
          0.054966226 = score(doc=1852,freq=2.0), product of:
            0.13215348 = queryWeight, product of:
              5.377919 = idf(docFreq=554, maxDocs=44218)
              0.024573348 = queryNorm
            0.4159272 = fieldWeight in 1852, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.377919 = idf(docFreq=554, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1852)
        0.00585677 = weight(_text_:information in 1852) [ClassicSimilarity], result of:
          0.00585677 = score(doc=1852,freq=2.0), product of:
            0.04313797 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.024573348 = queryNorm
            0.13576832 = fieldWeight in 1852, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1852)
        0.017389767 = weight(_text_:retrieval in 1852) [ClassicSimilarity], result of:
          0.017389767 = score(doc=1852,freq=2.0), product of:
            0.07433229 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.024573348 = queryNorm
            0.23394634 = fieldWeight in 1852, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1852)
        0.007768482 = product of:
          0.023305446 = sum of:
            0.023305446 = weight(_text_:22 in 1852) [ClassicSimilarity], result of:
              0.023305446 = score(doc=1852,freq=2.0), product of:
                0.08605168 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.024573348 = queryNorm
                0.2708308 = fieldWeight in 1852, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1852)
          0.33333334 = coord(1/3)
      0.2857143 = coord(4/14)
    
    Date
    11. 2.2011 18:22:58
    Source
    Information - Wissenschaft und Praxis. 56(2005) H.5/6, S.281-290
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  19. Wang, Y.-H.; Jhuo, P.-S.: ¬A semantic faceted search with rule-based inference (2009) 0.02
    0.024111189 = product of:
      0.08438916 = sum of:
        0.017349645 = weight(_text_:web in 540) [ClassicSimilarity], result of:
          0.017349645 = score(doc=540,freq=2.0), product of:
            0.08019538 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.024573348 = queryNorm
            0.21634221 = fieldWeight in 540, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=540)
        0.04711391 = weight(_text_:indexierung in 540) [ClassicSimilarity], result of:
          0.04711391 = score(doc=540,freq=2.0), product of:
            0.13215348 = queryWeight, product of:
              5.377919 = idf(docFreq=554, maxDocs=44218)
              0.024573348 = queryNorm
            0.35650903 = fieldWeight in 540, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.377919 = idf(docFreq=554, maxDocs=44218)
              0.046875 = fieldNorm(doc=540)
        0.0050200885 = weight(_text_:information in 540) [ClassicSimilarity], result of:
          0.0050200885 = score(doc=540,freq=2.0), product of:
            0.04313797 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.024573348 = queryNorm
            0.116372846 = fieldWeight in 540, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=540)
        0.014905514 = weight(_text_:retrieval in 540) [ClassicSimilarity], result of:
          0.014905514 = score(doc=540,freq=2.0), product of:
            0.07433229 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.024573348 = queryNorm
            0.20052543 = fieldWeight in 540, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=540)
      0.2857143 = coord(4/14)
    
    Abstract
    Semantic Search has become an active research of Semantic Web in recent years. The classification methodology plays a pretty critical role in the beginning of search process to disambiguate irrelevant information. However, the applications related to Folksonomy suffer from many obstacles. This study attempts to eliminate the problems resulted from Folksonomy using existing semantic technology. We also focus on how to effectively integrate heterogeneous ontologies over the Internet to acquire the integrity of domain knowledge. A faceted logic layer is abstracted in order to strengthen category framework and organize existing available ontologies according to a series of steps based on the methodology of faceted classification and ontology construction. The result showed that our approach can facilitate the integration of inconsistent or even heterogeneous ontologies. This paper also generalizes the principles of picking appropriate facets with which our facet browser completely complies so that better semantic search result can be obtained.
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  20. Koopman, B.; Zuccon, G.; Bruza, P.; Sitbon, L.; Lawley, M.: Information retrieval as semantic inference : a graph Inference model applied to medical search (2016) 0.02
    0.023169357 = product of:
      0.081092745 = sum of:
        0.011566431 = weight(_text_:web in 3260) [ClassicSimilarity], result of:
          0.011566431 = score(doc=3260,freq=2.0), product of:
            0.08019538 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.024573348 = queryNorm
            0.14422815 = fieldWeight in 3260, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=3260)
        0.031409275 = weight(_text_:indexierung in 3260) [ClassicSimilarity], result of:
          0.031409275 = score(doc=3260,freq=2.0), product of:
            0.13215348 = queryWeight, product of:
              5.377919 = idf(docFreq=554, maxDocs=44218)
              0.024573348 = queryNorm
            0.23767269 = fieldWeight in 3260, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.377919 = idf(docFreq=554, maxDocs=44218)
              0.03125 = fieldNorm(doc=3260)
        0.006693451 = weight(_text_:information in 3260) [ClassicSimilarity], result of:
          0.006693451 = score(doc=3260,freq=8.0), product of:
            0.04313797 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.024573348 = queryNorm
            0.1551638 = fieldWeight in 3260, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=3260)
        0.031423584 = weight(_text_:retrieval in 3260) [ClassicSimilarity], result of:
          0.031423584 = score(doc=3260,freq=20.0), product of:
            0.07433229 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.024573348 = queryNorm
            0.42274472 = fieldWeight in 3260, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=3260)
      0.2857143 = coord(4/14)
    
    Abstract
    This paper presents a Graph Inference retrieval model that integrates structured knowledge resources, statistical information retrieval methods and inference in a unified framework. Key components of the model are a graph-based representation of the corpus and retrieval driven by an inference mechanism achieved as a traversal over the graph. The model is proposed to tackle the semantic gap problem-the mismatch between the raw data and the way a human being interprets it. We break down the semantic gap problem into five core issues, each requiring a specific type of inference in order to be overcome. Our model and evaluation is applied to the medical domain because search within this domain is particularly challenging and, as we show, often requires inference. In addition, this domain features both structured knowledge resources as well as unstructured text. Our evaluation shows that inference can be effective, retrieving many new relevant documents that are not retrieved by state-of-the-art information retrieval models. We show that many retrieved documents were not pooled by keyword-based search methods, prompting us to perform additional relevance assessment on these new documents. A third of the newly retrieved documents judged were found to be relevant. Our analysis provides a thorough understanding of when and how to apply inference for retrieval, including a categorisation of queries according to the effect of inference. The inference mechanism promoted recall by retrieving new relevant documents not found by previous keyword-based approaches. In addition, it promoted precision by an effective reranking of documents. When inference is used, performance gains can generally be expected on hard queries. However, inference should not be applied universally: for easy, unambiguous queries and queries with few relevant documents, inference did adversely affect effectiveness. These conclusions reflect the fact that for retrieval as inference to be effective, a careful balancing act is involved. Finally, although the Graph Inference model is developed and applied to medical search, it is a general retrieval model applicable to other areas such as web search, where an emerging research trend is to utilise structured knowledge resources for more effective semantic search.
    Source
    Information Retrieval Journal. 19(2016) no.1, S.6-37
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval

Years

Languages

  • e 400
  • d 101
  • pt 3
  • f 1
  • More… Less…

Types

  • a 357
  • el 136
  • m 35
  • x 29
  • n 15
  • s 15
  • r 7
  • p 4
  • A 1
  • EL 1
  • More… Less…

Subjects

Classifications