Search (19 results, page 1 of 1)

  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  • × year_i:[2010 TO 2020}
  1. Hjoerland, B.: Theories of knowledge organization - theories of knowledge (2017) 0.01
    0.005789892 = product of:
      0.026054513 = sum of:
        0.012110585 = product of:
          0.02422117 = sum of:
            0.02422117 = weight(_text_:web in 3494) [ClassicSimilarity], result of:
              0.02422117 = score(doc=3494,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.25239927 = fieldWeight in 3494, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3494)
          0.5 = coord(1/2)
        0.013943928 = product of:
          0.027887857 = sum of:
            0.027887857 = weight(_text_:22 in 3494) [ClassicSimilarity], result of:
              0.027887857 = score(doc=3494,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.2708308 = fieldWeight in 3494, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3494)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Pages
    S.22-36
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber
  2. Fripp, D.: Using linked data to classify web documents (2010) 0.00
    0.0026912412 = product of:
      0.02422117 = sum of:
        0.02422117 = product of:
          0.04844234 = sum of:
            0.04844234 = weight(_text_:web in 4172) [ClassicSimilarity], result of:
              0.04844234 = score(doc=4172,freq=8.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.50479853 = fieldWeight in 4172, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4172)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Purpose - The purpose of this paper is to find a relationship between traditional faceted classification schemes and semantic web document annotators, particularly in the linked data environment. Design/methodology/approach - A consideration of the conceptual ideas behind faceted classification and linked data architecture is made. Analysis of selected web documents is performed using Calais' Semantic Proxy to support the considerations. Findings - Technical language aside, the principles of both approaches are very similar. Modern classification techniques have the potential to automatically generate metadata to drive more precise information recall by including a semantic layer. Originality/value - Linked data have not been explicitly considered in this context before in the published literature.
    Theme
    Semantic Web
  3. Foskett, D.J.: Systems theory and its relevance to documentary classification (2017) 0.00
    0.0026559862 = product of:
      0.023903877 = sum of:
        0.023903877 = product of:
          0.047807753 = sum of:
            0.047807753 = weight(_text_:22 in 3176) [ClassicSimilarity], result of:
              0.047807753 = score(doc=3176,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.46428138 = fieldWeight in 3176, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3176)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Date
    6. 5.2017 18:46:22
  4. Lorenz, B.: Zur Theorie und Terminologie der bibliothekarischen Klassifikation (2018) 0.00
    0.0017706576 = product of:
      0.015935918 = sum of:
        0.015935918 = product of:
          0.031871837 = sum of:
            0.031871837 = weight(_text_:22 in 4339) [ClassicSimilarity], result of:
              0.031871837 = score(doc=4339,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.30952093 = fieldWeight in 4339, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4339)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Pages
    S.1-22
  5. Putkey, T.: Using SKOS to express faceted classification on the Semantic Web (2011) 0.00
    0.0017193711 = product of:
      0.015474339 = sum of:
        0.015474339 = product of:
          0.030948678 = sum of:
            0.030948678 = weight(_text_:web in 311) [ClassicSimilarity], result of:
              0.030948678 = score(doc=311,freq=10.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.32250395 = fieldWeight in 311, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=311)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    This paper looks at Simple Knowledge Organization System (SKOS) to investigate how a faceted classification can be expressed in RDF and shared on the Semantic Web. Statement of the Problem Faceted classification outlines facets as well as subfacets and facet values. Hierarchical relationships and associative relationships are established in a faceted classification. RDF is used to describe how a specific URI has a relationship to a facet value. Not only does RDF decompose "information into pieces," but by incorporating facet values RDF also given the URI the hierarchical and associative relationships expressed in the faceted classification. Combining faceted classification and RDF creates more knowledge than if the two stood alone. An application understands the subjectpredicate-object relationship in RDF and can display hierarchical and associative relationships based on the object (facet) value. This paper continues to investigate if the above idea is indeed useful, used, and applicable. If so, how can a faceted classification be expressed in RDF? What would this expression look like? Literature Review This paper used the same articles as the paper A Survey of Faceted Classification: History, Uses, Drawbacks and the Semantic Web (Putkey, 2010). In that paper, appropriate resources were discovered by searching in various databases for "faceted classification" and "faceted search," either in the descriptor or title fields. Citations were also followed to find more articles as well as searching the Internet for the same terms. To retrieve the documents about RDF, searches combined "faceted classification" and "RDF, " looking for these words in either the descriptor or title.
    Methodology Based on information from research papers, more research was done on SKOS and examples of SKOS and shared faceted classifications in the Semantic Web and about SKOS and how to express SKOS in RDF/XML. Once confident with these ideas, the author used a faceted taxonomy created in a Vocabulary Design class and encoded it using SKOS. Instead of writing RDF in a program such as Notepad, a thesaurus tool was used to create the taxonomy according to SKOS standards and then export the thesaurus in RDF/XML format. These processes and tools are then analyzed. Results The initial statement of the problem was simply an extension of the survey paper done earlier in this class. To continue on with the research, more research was done into SKOS - a standard for expressing thesauri, taxonomies and faceted classifications so they can be shared on the semantic web.
  6. Jacob, E.K.: Proposal for a classification of classifications built on Beghtol's distinction between "Naïve Classification" and "Professional Classification" (2010) 0.00
    0.0013279931 = product of:
      0.011951938 = sum of:
        0.011951938 = product of:
          0.023903877 = sum of:
            0.023903877 = weight(_text_:22 in 2945) [ClassicSimilarity], result of:
              0.023903877 = score(doc=2945,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.23214069 = fieldWeight in 2945, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2945)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Argues that Beghtol's (2003) use of the terms "naive classification" and "professional classification" is valid because they are nominal definitions and that the distinction between these two types of classification points up the need for researchers in knowledge organization to broaden their scope beyond traditional classification systems intended for information retrieval. Argues that work by Beghtol (2003), Kwasnik (1999) and Bailey (1994) offer direction for the development of a classification of classifications based on the pragmatic dimensions of extant classification systems. Bezugnahme auf: Beghtol, C.: Naïve classification systems and the global information society. In: Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine. Würzburg: Ergon Verlag 2004. S.19-22. (Advances in knowledge organization; vol.9)
  7. Howarth, L.C.; Jansen, E.H.: Towards a typology of warrant for 21st century knowledge organization systems (2014) 0.00
    0.0013279931 = product of:
      0.011951938 = sum of:
        0.011951938 = product of:
          0.023903877 = sum of:
            0.023903877 = weight(_text_:22 in 1425) [ClassicSimilarity], result of:
              0.023903877 = score(doc=1425,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.23214069 = fieldWeight in 1425, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1425)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  8. Vukadin, A.; Slavic, A.: Challenges of facet analysis and concept placement in Universal Classifications : the example of architecture in UDC (2014) 0.00
    0.0013279931 = product of:
      0.011951938 = sum of:
        0.011951938 = product of:
          0.023903877 = sum of:
            0.023903877 = weight(_text_:22 in 1428) [ClassicSimilarity], result of:
              0.023903877 = score(doc=1428,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.23214069 = fieldWeight in 1428, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1428)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  9. Gnoli, C.: Classifying phenomena : part 4: themes and rhemes (2018) 0.00
    0.0013279931 = product of:
      0.011951938 = sum of:
        0.011951938 = product of:
          0.023903877 = sum of:
            0.023903877 = weight(_text_:22 in 4152) [ClassicSimilarity], result of:
              0.023903877 = score(doc=4152,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.23214069 = fieldWeight in 4152, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4152)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Date
    17. 2.2018 18:22:25
  10. Frické, M.: Logic and the organization of information (2012) 0.00
    0.0011653417 = product of:
      0.010488075 = sum of:
        0.010488075 = product of:
          0.02097615 = sum of:
            0.02097615 = weight(_text_:web in 1782) [ClassicSimilarity], result of:
              0.02097615 = score(doc=1782,freq=6.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.21858418 = fieldWeight in 1782, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1782)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Logic and the Organization of Information closely examines the historical and contemporary methodologies used to catalogue information objects-books, ebooks, journals, articles, web pages, images, emails, podcasts and more-in the digital era. This book provides an in-depth technical background for digital librarianship, and covers a broad range of theoretical and practical topics including: classification theory, topic annotation, automatic clustering, generalized synonymy and concept indexing, distributed libraries, semantic web ontologies and Simple Knowledge Organization System (SKOS). It also analyzes the challenges facing today's information architects, and outlines a series of techniques for overcoming them. Logic and the Organization of Information is intended for practitioners and professionals working at a design level as a reference book for digital librarianship. Advanced-level students, researchers and academics studying information science, library science, digital libraries and computer science will also find this book invaluable.
    Footnote
    Rez. in: J. Doc. 70(2014) no.4: "Books on the organization of information and knowledge, aimed at a library/information audience, tend to fall into two clear categories. Most are practical and pragmatic, explaining the "how" as much or more than the "why". Some are theoretical, in part or in whole, showing how the practice of classification, indexing, resource description and the like relates to philosophy, logic, and other foundational bases; the books by Langridge (1992) and by Svenonious (2000) are well-known examples this latter kind. To this category certainly belongs a recent book by Martin Frické (2012). The author takes the reader for an extended tour through a variety of aspects of information organization, including classification and taxonomy, alphabetical vocabularies and indexing, cataloguing and FRBR, and aspects of the semantic web. The emphasis throughout is on showing how practice is, or should be, underpinned by formal structures; there is a particular emphasis on first order predicate calculus. The advantages of a greater, and more explicit, use of symbolic logic is a recurring theme of the book. There is a particularly commendable historical dimension, often omitted in texts on this subject. It cannot be said that this book is entirely an easy read, although it is well written with a helpful index, and its arguments are generally well supported by clear and relevant examples. It is thorough and detailed, but thereby seems better geared to the needs of advanced students and researchers than to the practitioners who are suggested as a main market. For graduate students in library/information science and related disciplines, in particular, this will be a valuable resource. I would place it alongside Svenonious' book as the best insight into the theoretical "why" of information organization. It has evoked a good deal of interest, including a set of essay commentaries in Journal of Information Science (Gilchrist et al., 2013). Introducing these, Alan Gilchrist rightly says that Frické deserves a salute for making explicit the fundamental relationship between the ancient discipline of logic and modern information organization. If information science is to continue to develop, and make a contribution to the organization of the information environments of the future, then this book sets the groundwork for the kind of studies which will be needed." (D. Bawden)
  11. Dousa, T.M.; Ibekwe-SanJuan, F.: Epistemological and methodological eclecticism in the construction of knowledge organization systems (KOSs) : the case of analytico-synthetic KOSs (2014) 0.00
    0.001106661 = product of:
      0.009959949 = sum of:
        0.009959949 = product of:
          0.019919898 = sum of:
            0.019919898 = weight(_text_:22 in 1417) [ClassicSimilarity], result of:
              0.019919898 = score(doc=1417,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.19345059 = fieldWeight in 1417, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1417)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  12. Dousa, T.M.: Categories and the architectonics of system in Julius Otto Kaiser's method of systematic indexing (2014) 0.00
    0.001106661 = product of:
      0.009959949 = sum of:
        0.009959949 = product of:
          0.019919898 = sum of:
            0.019919898 = weight(_text_:22 in 1418) [ClassicSimilarity], result of:
              0.019919898 = score(doc=1418,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.19345059 = fieldWeight in 1418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1418)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  13. Zhang, J.; Zeng, M.L.: ¬A new similarity measure for subject hierarchical structures (2014) 0.00
    0.001106661 = product of:
      0.009959949 = sum of:
        0.009959949 = product of:
          0.019919898 = sum of:
            0.019919898 = weight(_text_:22 in 1778) [ClassicSimilarity], result of:
              0.019919898 = score(doc=1778,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.19345059 = fieldWeight in 1778, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1778)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Date
    8. 4.2015 16:22:13
  14. Green, R.: Relational aspects of subject authority control : the contributions of classificatory structure (2015) 0.00
    0.001106661 = product of:
      0.009959949 = sum of:
        0.009959949 = product of:
          0.019919898 = sum of:
            0.019919898 = weight(_text_:22 in 2282) [ClassicSimilarity], result of:
              0.019919898 = score(doc=2282,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.19345059 = fieldWeight in 2282, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2282)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Date
    8.11.2015 21:27:22
  15. Keshet, Y.: Classification systems in the light of sociology of knowledge (2011) 0.00
    9.611576E-4 = product of:
      0.008650418 = sum of:
        0.008650418 = product of:
          0.017300837 = sum of:
            0.017300837 = weight(_text_:web in 4493) [ClassicSimilarity], result of:
              0.017300837 = score(doc=4493,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.18028519 = fieldWeight in 4493, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4493)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Purpose - Classification is an important process in making sense of the world, and has a pronounced social dimension. This paper aims to compare folksonomy, a new social classification system currently being developed on the web, with conventional taxonomy in the light of theoretical sociological and anthropological approaches. The co-existence of these two types of classification system raises the questions: Will and should taxonomies be hybridized with folksonomies? What can each of these systems contribute to information-searching processes, and how can the sociology of knowledge provide an answer to these questions? This paper aims also to address these issues. Design/methodology/approach - This paper is situated at the meeting point of the sociology of knowledge, epistemology and information science and aims at examining systems of classification in the light of both classical theory and current late-modern sociological and anthropological approaches. Findings - Using theoretical approaches current in the sociology of science and knowledge, the paper envisages two divergent possible outcomes. Originality/value - While concentrating on classifications systems, this paper addresses the more general social issue of what we know and how it is known. The concept of hybrid knowledge is suggested in order to illuminate the epistemological basis of late-modern knowledge being constructed by hybridizing contradictory modern knowledge categories, such as the subjective with the objective and the social with the natural. Integrating tree-like taxonomies with folksonomies or, in other words, generating a naturalized structural order of objective relations with social, subjective classification systems, can create a vast range of hybrid knowledge.
  16. Gnoli, C.: Metadata about what? : distinguishing between ontic, epistemic, and documental dimensions in knowledge organization (2012) 0.00
    9.611576E-4 = product of:
      0.008650418 = sum of:
        0.008650418 = product of:
          0.017300837 = sum of:
            0.017300837 = weight(_text_:web in 323) [ClassicSimilarity], result of:
              0.017300837 = score(doc=323,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.18028519 = fieldWeight in 323, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=323)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    The spread of many new media and formats is changing the scenario faced by knowledge organizers: as printed monographs are not the only standard form of knowledge carrier anymore, the traditional kind of knowledge organization (KO) systems based on academic disciplines is put into question. A sounder foundation can be provided by an analysis of the different dimensions concurring to form the content of any knowledge item-what Brian Vickery described as the steps "from the world to the classifier." The ultimate referents of documents are the phenomena of the real world, that can be ordered by ontology, the study of what exists. Phenomena coexist in subjects with the perspectives by which they are considered, pertaining to epistemology, and with the formal features of knowledge carriers, adding a further, pragmatic layer. All these dimensions can be accounted for in metadata, but are often done so in mixed ways, making indexes less rigorous and interoperable. For example, while facet analysis was originally developed for subject indexing, many "faceted" interfaces today mix subject facets with form facets, and schemes presented as "ontologies" for the "semantic Web" also code for non-semantic information. In bibliographic classifications, phenomena are often confused with the disciplines dealing with them, the latter being assumed to be the most useful starting point, for users will have either one or another perspective. A general citation order of dimensions- phenomena, perspective, carrier-is recommended, helping to concentrate most relevant information at the beginning of headings.
  17. Dimensions of knowledge : facets for knowledge organization (2017) 0.00
    9.611576E-4 = product of:
      0.008650418 = sum of:
        0.008650418 = product of:
          0.017300837 = sum of:
            0.017300837 = weight(_text_:web in 4154) [ClassicSimilarity], result of:
              0.017300837 = score(doc=4154,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.18028519 = fieldWeight in 4154, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4154)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    The identification and contextual definition of concepts is the core of knowledge organization. The full expression of comprehension is accomplished through the use of an extension device called the facet. A facet is a category of dimensional characteristics that cross the hierarchical array of concepts to provide extension, or breadth, to the contexts in which they are discovered or expressed in knowledge organization systems. The use of the facet in knowledge organization has a rich history arising in the mid-nineteenth century. As it has matured through more than a century of application, the notion of the facet in knowledge organization has taken on a variety of meanings, from that of simple categories used in web search engines to the more sophisticated idea of intersecting dimensions of knowledge. This book describes the state of the art of the understanding of facets in knowledge organization today.
  18. Zarrad, R.; Doggaz, N.; Zagrouba, E.: Wikipedia HTML structure analysis for ontology construction (2018) 0.00
    9.611576E-4 = product of:
      0.008650418 = sum of:
        0.008650418 = product of:
          0.017300837 = sum of:
            0.017300837 = weight(_text_:web in 4302) [ClassicSimilarity], result of:
              0.017300837 = score(doc=4302,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.18028519 = fieldWeight in 4302, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4302)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Previously, the main problem of information extraction was to gather enough data. Today, the challenge is not to collect data but to interpret and represent them in order to deduce information. Ontologies are considered suitable solutions for organizing information. The classic methods for ontology construction from textual documents rely on natural language analysis and are generally based on statistical or linguistic approaches. However, these approaches do not consider the document structure which provides additional knowledge. In fact, the structural organization of documents also conveys meaning. In this context, new approaches focus on document structure analysis to extract knowledge. This paper describes a methodology for ontology construction from web data and especially from Wikipedia articles. It focuses mainly on document structure in order to extract the main concepts and their relations. The proposed methods extract not only taxonomic and non-taxonomic relations but also give the labels describing non-taxonomic relations. The extraction of non-taxonomic relations is established by analyzing the titles hierarchy in each document. A pattern matching is also applied in order to extract known semantic relations. We propose also to apply a refinement to the extracted relations in order to keep only those that are relevant. The refinement process is performed by applying the transitive property, checking the nature of the relations and analyzing taxonomic relations having inverted arguments. Experiments have been performed on French Wikipedia articles related to the medical field. Ontology evaluation is performed by comparing it to gold standards.
  19. Tennis, J.T.: Never facets alone : the evolving thought and persistent problems in Ranganathan's theories of classification (2017) 0.00
    9.611576E-4 = product of:
      0.008650418 = sum of:
        0.008650418 = product of:
          0.017300837 = sum of:
            0.017300837 = weight(_text_:web in 5800) [ClassicSimilarity], result of:
              0.017300837 = score(doc=5800,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.18028519 = fieldWeight in 5800, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5800)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Shiyali Ramamrita Ranganathan's theory of classification spans a number of works over a number of decades. And while he was devoted to solving many problems in the practice of librarianship, and is known as the father of library science in India (Garfield, 1984), his work in classification revolves around one central concern. His classification research addressed the problems that arose from introducing new ideas into a scheme for classification, while maintaining a meaningful hierarchical and systematically arranged order of classes. This is because hierarchical and systematically arranged classes are the defining characteristic of useful classification. To lose this order is to through the addition of new classes is to introduce confusion, if not chaos, and to move toward a useless classification - or at least one that requires complete revision. In the following chapter, I outline the stages, and the elements of those stages, in Ranganathan's thought on classification from 1926-1972, as well as posthumous work that continues his agenda. And while facets figure prominently in all of these stages; but for Ranganathan to achieve his goal, he must continually add to this central feature of his theory of classification. I will close this chapter with an outline of persistent problems that represent research fronts for the field. Chief among these are what to do about scheme change and the open question about the rigor of information modeling in light of semantic web developments.