Search (146 results, page 1 of 8)

  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  1. Ellis, D.; Vasconcelos, A.: Ranganathan and the Net : using facet analysis to search and organise the World Wide Web (1999) 0.03
    0.03123332 = product of:
      0.10931662 = sum of:
        0.039667886 = weight(_text_:wide in 726) [ClassicSimilarity], result of:
          0.039667886 = score(doc=726,freq=2.0), product of:
            0.13505316 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.030480823 = queryNorm
            0.29372054 = fieldWeight in 726, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=726)
        0.037274655 = weight(_text_:web in 726) [ClassicSimilarity], result of:
          0.037274655 = score(doc=726,freq=6.0), product of:
            0.09947448 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.030480823 = queryNorm
            0.37471575 = fieldWeight in 726, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=726)
        0.006226926 = weight(_text_:information in 726) [ClassicSimilarity], result of:
          0.006226926 = score(doc=726,freq=2.0), product of:
            0.053508412 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.030480823 = queryNorm
            0.116372846 = fieldWeight in 726, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=726)
        0.026147148 = weight(_text_:retrieval in 726) [ClassicSimilarity], result of:
          0.026147148 = score(doc=726,freq=4.0), product of:
            0.092201896 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.030480823 = queryNorm
            0.2835858 = fieldWeight in 726, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=726)
      0.2857143 = coord(4/14)
    
    Abstract
    This article gives a cheerfully brief and undetailed account of how to make a faceted classification system, then describes information retrieval and searching on the web. It concludes by saying that facets would be excellent in helping users search and browse the web, but offers no real clues as to how this can be done.
    Theme
    Klassifikationssysteme im Online-Retrieval
  2. Denton, W.: Putting facets on the Web : an annotated bibliography (2003) 0.02
    0.017455934 = product of:
      0.061095767 = sum of:
        0.016528286 = weight(_text_:wide in 2467) [ClassicSimilarity], result of:
          0.016528286 = score(doc=2467,freq=2.0), product of:
            0.13505316 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.030480823 = queryNorm
            0.122383565 = fieldWeight in 2467, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.01953125 = fieldNorm(doc=2467)
        0.03106221 = weight(_text_:web in 2467) [ClassicSimilarity], result of:
          0.03106221 = score(doc=2467,freq=24.0), product of:
            0.09947448 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.030480823 = queryNorm
            0.3122631 = fieldWeight in 2467, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.01953125 = fieldNorm(doc=2467)
        0.0058015957 = weight(_text_:information in 2467) [ClassicSimilarity], result of:
          0.0058015957 = score(doc=2467,freq=10.0), product of:
            0.053508412 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.030480823 = queryNorm
            0.10842399 = fieldWeight in 2467, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.01953125 = fieldNorm(doc=2467)
        0.0077036773 = weight(_text_:retrieval in 2467) [ClassicSimilarity], result of:
          0.0077036773 = score(doc=2467,freq=2.0), product of:
            0.092201896 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.030480823 = queryNorm
            0.08355226 = fieldWeight in 2467, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.01953125 = fieldNorm(doc=2467)
      0.2857143 = coord(4/14)
    
    Abstract
    This is a classified, annotated bibliography about how to design faceted classification systems and make them usable on the World Wide Web. It is the first of three works I will be doing. The second, based on the material here and elsewhere, will discuss how to actually make the faceted system and put it online. The third will be a report of how I did just that, what worked, what didn't, and what I learned. Almost every article or book listed here begins with an explanation of what a faceted classification system is, so I won't (but see Steckel in Background below if you don't already know). They all agree that faceted systems are very appropriate for the web. Even pre-web articles (such as Duncan's in Background, below) assert that hypertext and facets will go together well. Combined, it is possible to take a set of documents and classify them or apply subject headings to describe what they are about, then build a navigational structure so that any user, no matter how he or she approaches the material, no matter what his or her goals, can move and search in a way that makes sense to them, but still get to the same useful results as someone else following a different path to the same goal. There is no one way that everyone will always use when looking for information. The more flexible the organization of the information, the more accommodating it is. Facets are more flexible for hypertext browsing than any enumerative or hierarchical system.
    Consider movie listings in newspapers. Most Canadian newspapers list movie showtimes in two large blocks, for the two major theatre chains. The listings are ordered by region (in large cities), then theatre, then movie, and finally by showtime. Anyone wondering where and when a particular movie is playing must scan the complete listings. Determining what movies are playing in the next half hour is very difficult. When movie listings went onto the web, most sites used a simple faceted organization, always with movie name and theatre, and perhaps with region or neighbourhood (thankfully, theatre chains were left out). They make it easy to pick a theatre and see what movies are playing there, or to pick a movie and see what theatres are showing it. To complete the system, the sites should allow users to browse by neighbourhood and showtime, and to order the results in any way they desired. Thus could people easily find answers to such questions as, "Where is the new James Bond movie playing?" "What's showing at the Roxy tonight?" "I'm going to be out in in Little Finland this afternoon with three hours to kill starting at 2 ... is anything interesting playing?" A hypertext, faceted classification system makes more useful information more easily available to the user. Reading the books and articles below in chronological order will show a certain progression: suggestions that faceting and hypertext might work well, confidence that facets would work well if only someone would make such a system, and finally the beginning of serious work on actually designing, building, and testing faceted web sites. There is a solid basis of how to make faceted classifications (see Vickery in Recommended), but their application online is just starting. Work on XFML (see Van Dijck's work in Recommended) the Exchangeable Faceted Metadata Language, will make this easier. If it follows previous patterns, parts of the Internet community will embrace the idea and make open source software available for others to reuse. It will be particularly beneficial if professionals in both information studies and computer science can work together to build working systems, standards, and code. Each can benefit from the other's expertise in what can be a very complicated and technical area. One particularly nice thing about this area of research is that people interested in combining facets and the web often have web sites where they post their writings.
    This bibliography is not meant to be exhaustive, but unfortunately it is not as complete as I wanted. Some books and articles are not be included, but they may be used in my future work. (These include two books and one article by B.C. Vickery: Faceted Classification Schemes (New Brunswick, NJ: Rutgers, 1966), Classification and Indexing in Science, 3rd ed. (London: Butterworths, 1975), and "Knowledge Representation: A Brief Review" (Journal of Documentation 42 no. 3 (September 1986): 145-159; and A.C. Foskett's "The Future of Faceted Classification" in The Future of Classification, edited by Rita Marcella and Arthur Maltby (Aldershot, England: Gower, 2000): 69-80). Nevertheless, I hope this bibliography will be useful for those both new to or familiar with faceted hypertext systems. Some very basic resources are listed, as well as some very advanced ones. Some example web sites are mentioned, but there is no detailed technical discussion of any software. The user interface to any web site is extremely important, and this is briefly mentioned in two or three places (for example the discussion of lawforwa.org (see Example Web Sites)). The larger question of how to display information graphically and with hypertext is outside the scope of this bibliography. There are five sections: Recommended, Background, Not Relevant, Example Web Sites, and Mailing Lists. Background material is either introductory, advanced, or of peripheral interest, and can be read after the Recommended resources if the reader wants to know more. The Not Relevant category contains articles that may appear in bibliographies but are not relevant for my purposes.
    Theme
    Klassifikationssysteme im Online-Retrieval
  3. Broughton, V.: ¬The need for a faceted classification as the basis of all methods of information retrieval (2006) 0.02
    0.015541016 = product of:
      0.07252474 = sum of:
        0.02536219 = weight(_text_:web in 2874) [ClassicSimilarity], result of:
          0.02536219 = score(doc=2874,freq=4.0), product of:
            0.09947448 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.030480823 = queryNorm
            0.25496176 = fieldWeight in 2874, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2874)
        0.01271066 = weight(_text_:information in 2874) [ClassicSimilarity], result of:
          0.01271066 = score(doc=2874,freq=12.0), product of:
            0.053508412 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.030480823 = queryNorm
            0.23754507 = fieldWeight in 2874, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2874)
        0.03445189 = weight(_text_:retrieval in 2874) [ClassicSimilarity], result of:
          0.03445189 = score(doc=2874,freq=10.0), product of:
            0.092201896 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.030480823 = queryNorm
            0.37365708 = fieldWeight in 2874, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2874)
      0.21428572 = coord(3/14)
    
    Abstract
    Purpose - The aim of this article is to estimate the impact of faceted classification and the faceted analytical method on the development of various information retrieval tools over the latter part of the twentieth and early twenty-first centuries. Design/methodology/approach - The article presents an examination of various subject access tools intended for retrieval of both print and digital materials to determine whether they exhibit features of faceted systems. Some attention is paid to use of the faceted approach as a means of structuring information on commercial web sites. The secondary and research literature is also surveyed for commentary on and evaluation of facet analysis as a basis for the building of vocabulary and conceptual tools. Findings - The study finds that faceted systems are now very common, with a major increase in their use over the last 15 years. Most LIS subject indexing tools (classifications, subject heading lists and thesauri) now demonstrate features of facet analysis to a greater or lesser degree. A faceted approach is frequently taken to the presentation of product information on commercial web sites, and there is an independent strand of theory and documentation related to this application. There is some significant research on semi-automatic indexing and retrieval (query expansion and query formulation) using facet analytical techniques. Originality/value - This article provides an overview of an important conceptual approach to information retrieval, and compares different understandings and applications of this methodology.
    Footnote
    Beitrag in einem Themenheft: UK library & information schools: UCL SLAIS.
  4. Gnoli, C.; Mei, H.: Freely faceted classification for Web-based information retrieval (2006) 0.01
    0.014718244 = product of:
      0.06868514 = sum of:
        0.030434625 = weight(_text_:web in 534) [ClassicSimilarity], result of:
          0.030434625 = score(doc=534,freq=4.0), product of:
            0.09947448 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.030480823 = queryNorm
            0.3059541 = fieldWeight in 534, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=534)
        0.006226926 = weight(_text_:information in 534) [ClassicSimilarity], result of:
          0.006226926 = score(doc=534,freq=2.0), product of:
            0.053508412 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.030480823 = queryNorm
            0.116372846 = fieldWeight in 534, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=534)
        0.032023586 = weight(_text_:retrieval in 534) [ClassicSimilarity], result of:
          0.032023586 = score(doc=534,freq=6.0), product of:
            0.092201896 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.030480823 = queryNorm
            0.34732026 = fieldWeight in 534, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=534)
      0.21428572 = coord(3/14)
    
    Abstract
    In free classification, each concept is expressed by a constant notation, and classmarks are formed by free combinations of them, allowing the retrieval of records from a database by searching any of the component concepts. A refinement of free classification is freely faceted classification, where notation can include facets, expressing the kind of relations held between the concepts. The Integrative Level Classification project aims at testing free and freely faceted classification by applying them to small bibliographical samples in various domains. A sample, called the Dandelion Bibliography of Facet Analysis, is described here. Experience was gained using this system to classify 300 specialized papers dealing with facet analysis itself recorded on a MySQL database and building a Web interface exploiting freely faceted notation. The interface is written in PHP and uses string functions to process the queries and to yield relevant results selected and ordered according to the principles of integrative levels.
    Theme
    Klassifikationssysteme im Online-Retrieval
  5. Frické, M.: Logic and the organization of information (2012) 0.01
    0.011320543 = product of:
      0.0528292 = sum of:
        0.021743549 = weight(_text_:web in 1782) [ClassicSimilarity], result of:
          0.021743549 = score(doc=1782,freq=6.0), product of:
            0.09947448 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.030480823 = queryNorm
            0.21858418 = fieldWeight in 1782, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1782)
        0.015833149 = weight(_text_:information in 1782) [ClassicSimilarity], result of:
          0.015833149 = score(doc=1782,freq=38.0), product of:
            0.053508412 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.030480823 = queryNorm
            0.29590017 = fieldWeight in 1782, product of:
              6.164414 = tf(freq=38.0), with freq of:
                38.0 = termFreq=38.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1782)
        0.015252502 = weight(_text_:retrieval in 1782) [ClassicSimilarity], result of:
          0.015252502 = score(doc=1782,freq=4.0), product of:
            0.092201896 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.030480823 = queryNorm
            0.16542503 = fieldWeight in 1782, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1782)
      0.21428572 = coord(3/14)
    
    Abstract
    Logic and the Organization of Information closely examines the historical and contemporary methodologies used to catalogue information objects-books, ebooks, journals, articles, web pages, images, emails, podcasts and more-in the digital era. This book provides an in-depth technical background for digital librarianship, and covers a broad range of theoretical and practical topics including: classification theory, topic annotation, automatic clustering, generalized synonymy and concept indexing, distributed libraries, semantic web ontologies and Simple Knowledge Organization System (SKOS). It also analyzes the challenges facing today's information architects, and outlines a series of techniques for overcoming them. Logic and the Organization of Information is intended for practitioners and professionals working at a design level as a reference book for digital librarianship. Advanced-level students, researchers and academics studying information science, library science, digital libraries and computer science will also find this book invaluable.
    Footnote
    Rez. in: J. Doc. 70(2014) no.4: "Books on the organization of information and knowledge, aimed at a library/information audience, tend to fall into two clear categories. Most are practical and pragmatic, explaining the "how" as much or more than the "why". Some are theoretical, in part or in whole, showing how the practice of classification, indexing, resource description and the like relates to philosophy, logic, and other foundational bases; the books by Langridge (1992) and by Svenonious (2000) are well-known examples this latter kind. To this category certainly belongs a recent book by Martin Frické (2012). The author takes the reader for an extended tour through a variety of aspects of information organization, including classification and taxonomy, alphabetical vocabularies and indexing, cataloguing and FRBR, and aspects of the semantic web. The emphasis throughout is on showing how practice is, or should be, underpinned by formal structures; there is a particular emphasis on first order predicate calculus. The advantages of a greater, and more explicit, use of symbolic logic is a recurring theme of the book. There is a particularly commendable historical dimension, often omitted in texts on this subject. It cannot be said that this book is entirely an easy read, although it is well written with a helpful index, and its arguments are generally well supported by clear and relevant examples. It is thorough and detailed, but thereby seems better geared to the needs of advanced students and researchers than to the practitioners who are suggested as a main market. For graduate students in library/information science and related disciplines, in particular, this will be a valuable resource. I would place it alongside Svenonious' book as the best insight into the theoretical "why" of information organization. It has evoked a good deal of interest, including a set of essay commentaries in Journal of Information Science (Gilchrist et al., 2013). Introducing these, Alan Gilchrist rightly says that Frické deserves a salute for making explicit the fundamental relationship between the ancient discipline of logic and modern information organization. If information science is to continue to develop, and make a contribution to the organization of the information environments of the future, then this book sets the groundwork for the kind of studies which will be needed." (D. Bawden)
    LCSH
    Information Systems
    Information storage and retrieval systems
    Subject
    Information Systems
    Information storage and retrieval systems
  6. Broughton, V.: Essential classification (2004) 0.01
    0.010535231 = product of:
      0.036873307 = sum of:
        0.013222629 = weight(_text_:wide in 2824) [ClassicSimilarity], result of:
          0.013222629 = score(doc=2824,freq=2.0), product of:
            0.13505316 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.030480823 = queryNorm
            0.09790685 = fieldWeight in 2824, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.015625 = fieldNorm(doc=2824)
        0.0071735103 = weight(_text_:web in 2824) [ClassicSimilarity], result of:
          0.0071735103 = score(doc=2824,freq=2.0), product of:
            0.09947448 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.030480823 = queryNorm
            0.07211407 = fieldWeight in 2824, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.015625 = fieldNorm(doc=2824)
        0.004151284 = weight(_text_:information in 2824) [ClassicSimilarity], result of:
          0.004151284 = score(doc=2824,freq=8.0), product of:
            0.053508412 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.030480823 = queryNorm
            0.0775819 = fieldWeight in 2824, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.015625 = fieldNorm(doc=2824)
        0.012325884 = weight(_text_:retrieval in 2824) [ClassicSimilarity], result of:
          0.012325884 = score(doc=2824,freq=8.0), product of:
            0.092201896 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.030480823 = queryNorm
            0.13368362 = fieldWeight in 2824, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.015625 = fieldNorm(doc=2824)
      0.2857143 = coord(4/14)
    
    Abstract
    Classification is a crucial skill for all information workers involved in organizing collections, but it is a difficult concept to grasp - and is even more difficult to put into practice. Essential Classification offers full guidance an how to go about classifying a document from scratch. This much-needed text leads the novice classifier step by step through the basics of subject cataloguing, with an emphasis an practical document analysis and classification. It deals with fundamental questions of the purpose of classification in different situations, and the needs and expectations of end users. The novice is introduced to the ways in which document content can be assessed, and how this can best be expressed for translation into the language of specific indexing and classification systems. The characteristics of the major general schemes of classification are discussed, together with their suitability for different classification needs.
    Footnote
    Rez. in: KO 32(2005) no.1, S.47-49 (M. Hudon): "Vanda Broughton's Essential Classification is the most recent addition to a very small set of classification textbooks published over the past few years. The book's 21 chapters are based very closely an the cataloguing and classification module at the School of Library, Archive, and Information studies at University College, London. The author's main objective is clear: this is "first and foremost a book about how to classify. The emphasis throughout is an the activity of classification rather than the theory, the practical problems of the organization of collections, and the needs of the users" (p. 1). This is not a theoretical work, but a basic course in classification and classification scheme application. For this reviewer, who also teaches "Classification 101," this is also a fascinating peek into how a colleague organizes content and structures her course. "Classification is everywhere" (p. 1): the first sentence of this book is also one of the first statements in my own course, and Professor Broughton's metaphors - the supermarket, canned peas, flowers, etc. - are those that are used by our colleagues around the world. The combination of tone, writing style and content display are reader-friendly; they are in fact what make this book remarkable and what distinguishes it from more "formal" textbooks, such as The Organization of Information, the superb text written and recently updated (2004) by Professor Arlene Taylor (2nd ed. Westport, Conn.: Libraries Unlimited, 2004). Reading Essential Classification, at times, feels like being in a classroom, facing a teacher who assures you that "you don't need to worry about this at this stage" (p. 104), and reassures you that, although you now speed a long time looking for things, "you will soon speed up when you get to know the scheme better" (p. 137). This teacher uses redundancy in a productive fashion, and she is not afraid to express her own opinions ("I think that if these concepts are helpful they may be used" (p. 245); "It's annoying that LCC doesn't provide clearer instructions, but if you keep your head and take them one step at a time [i.e. the tables] they're fairly straightforward" (p. 174)). Chapters 1 to 7 present the essential theoretical concepts relating to knowledge organization and to bibliographic classification. The author is adept at making and explaining distinctions: known-item retrieval versus subject retrieval, personal versus public/shared/official classification systems, scientific versus folk classification systems, object versus aspect classification systems, semantic versus syntactic relationships, and so on. Chapters 8 and 9 discuss the practice of classification, through content analysis and subject description. A short discussion of difficult subjects, namely the treatment of unique concepts (persons, places, etc.) as subjects seems a little advanced for a beginners' class.
    In Chapter 10, "Controlled indexing languages," Professor Broughton states that a classification scheme is truly a language "since it permits communication and the exchange of information" (p. 89), a Statement with which this reviewer wholly agrees. Chapter 11, however, "Word-based approaches to retrieval," moves us to a different field altogether, offering only a narrow view of the whole world of controlled indexing languages such as thesauri, and presenting disconnected discussions of alphabetical filing, form and structure of subject headings, modern developments in alphabetical subject indexing, etc. Chapters 12 and 13 focus an the Library of Congress Subject Headings (LCSH), without even a passing reference to existing subject headings lists in other languages (French RAMEAU, German SWK, etc.). If it is not surprising to see a section on subject headings in a book on classification, the two subjects being taught together in most library schools, the location of this section in the middle of this particular book is more difficult to understand. Chapter 14 brings the reader back to classification, for a discussion of essentials of classification scheme application. The following five chapters present in turn each one of the three major and currently used bibliographic classification schemes, in order of increasing complexity and difficulty of application. The Library of Congress Classification (LCC), the easiest to use, is covered in chapters 15 and 16. The Dewey Decimal Classification (DDC) deserves only a one-chapter treatment (Chapter 17), while the functionalities of the Universal Decimal Classification (UDC), which Professor Broughton knows extremely well, are described in chapters 18 and 19. Chapter 20 is a general discussion of faceted classification, on par with the first seven chapters for its theoretical content. Chapter 21, an interesting last chapter on managing classification, addresses down-to-earth matters such as the cost of classification, the need for re-classification, advantages and disadvantages of using print versions or e-versions of classification schemes, choice of classification scheme, general versus special scheme. But although the questions are interesting, the chapter provides only a very general overview of what appropriate answers might be. To facilitate reading and learning, summaries are strategically located at various places in the text, and always before switching to a related subject. Professor Broughton's choice of examples is always interesting, and sometimes even entertaining (see for example "Inside out: A brief history of underwear" (p. 71)). With many examples, however, and particularly those that appear in the five chapters an classification scheme applications, the novice reader would have benefited from more detailed explanations. On page 221, for example, "The history and social influence of the potato" results in this analysis of concepts: Potato - Sociology, and in the UDC class number: 635.21:316. What happened to the "history" aspect? Some examples are not very convincing: in Animals RT Reproduction and Art RT Reproduction (p. 102), the associative relationship is not appropriate as it is used to distinguish homographs and would do nothing to help either the indexer or the user at the retrieval stage.
    Essential Classification is also an exercise book. Indeed, it contains a number of practical exercises and activities in every chapter, along with suggested answers. Unfortunately, the answers are too often provided without the justifications and explanations that students would no doubt demand. The author has taken great care to explain all technical terms in her text, but formal definitions are also gathered in an extensive 172-term Glossary; appropriately, these terms appear in bold type the first time they are used in the text. A short, very short, annotated bibliography of standard classification textbooks and of manuals for the use of major classification schemes is provided. A detailed 11-page index completes the set of learning aids which will be useful to an audience of students in their effort to grasp the basic concepts of the theory and the practice of document classification in a traditional environment. Essential Classification is a fine textbook. However, this reviewer deplores the fact that it presents only a very "traditional" view of classification, without much reference to newer environments such as the Internet where classification also manifests itself in various forms. In Essential Classification, books are always used as examples, and we have to take the author's word that traditional classification practices and tools can also be applied to other types of documents and elsewhere than in the traditional library. Vanda Broughton writes, for example, that "Subject headings can't be used for physical arrangement" (p. 101), but this is not entirely true. Subject headings can be used for physical arrangement of vertical files, for example, with each folder bearing a simple or complex heading which is then used for internal organization. And if it is true that subject headings cannot be reproduced an the spine of [physical] books (p. 93), the situation is certainly different an the World Wide Web where subject headings as metadata can be most useful in ordering a collection of hot links. The emphasis is also an the traditional paperbased, rather than an the electronic version of classification schemes, with excellent justifications of course. The reality is, however, that supporting organizations (LC, OCLC, etc.) are now providing great quality services online, and that updates are now available only in an electronic format and not anymore on paper. E-based versions of classification schemes could be safely ignored in a theoretical text, but they have to be described and explained in a textbook published in 2005. One last comment: Professor Broughton tends to use the same term, "classification" to represent the process (as in classification is grouping) and the tool (as in constructing a classification, using a classification, etc.). Even in the Glossary where classification is first well-defined as a process, and classification scheme as "a set of classes ...", the definition of classification scheme continues: "the classification consists of a vocabulary (...) and syntax..." (p. 296-297). Such an ambiguous use of the term classification seems unfortunate and unnecessarily confusing in an otherwise very good basic textbook an categorization of concepts and subjects, document organization and subject representation."
  7. Kwasnik, B.H.: ¬The role of classification in knowledge representation (1999) 0.01
    0.010343317 = product of:
      0.048268814 = sum of:
        0.021520529 = weight(_text_:web in 2464) [ClassicSimilarity], result of:
          0.021520529 = score(doc=2464,freq=2.0), product of:
            0.09947448 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.030480823 = queryNorm
            0.21634221 = fieldWeight in 2464, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2464)
        0.018488824 = weight(_text_:retrieval in 2464) [ClassicSimilarity], result of:
          0.018488824 = score(doc=2464,freq=2.0), product of:
            0.092201896 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.030480823 = queryNorm
            0.20052543 = fieldWeight in 2464, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=2464)
        0.008259461 = product of:
          0.024778383 = sum of:
            0.024778383 = weight(_text_:22 in 2464) [ClassicSimilarity], result of:
              0.024778383 = score(doc=2464,freq=2.0), product of:
                0.10673865 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.030480823 = queryNorm
                0.23214069 = fieldWeight in 2464, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2464)
          0.33333334 = coord(1/3)
      0.21428572 = coord(3/14)
    
    Abstract
    A fascinating, broad-ranging article about classification, knowledge, and how they relate. Hierarchies, trees, paradigms (a two-dimensional classification that can look something like a spreadsheet), and facets are covered, with descriptions of how they work and how they can be used for knowledge discovery and creation. Kwasnick outlines how to make a faceted classification: choose facets, develop facets, analyze entities using the facets, and make a citation order. Facets are useful for many reasons: they do not require complete knowledge of the entire body of material; they are hospitable, flexible, and expressive; they do not require a rigid background theory; they can mix theoretical structures and models; and they allow users to view things from many perspectives. Facets do have faults: it can be hard to pick the right ones; it is hard to show relations between them; and it is difficult to visualize them. The coverage of the other methods is equally thorough and there is much to consider for anyone putting a classification on the web.
    Source
    Library trends. 48(1999) no.1, S.22-47
    Theme
    Klassifikationssysteme im Online-Retrieval
  8. Hjoerland, B.: Theories of knowledge organization - theories of knowledge (2017) 0.01
    0.010141336 = product of:
      0.047326237 = sum of:
        0.025107287 = weight(_text_:web in 3494) [ClassicSimilarity], result of:
          0.025107287 = score(doc=3494,freq=2.0), product of:
            0.09947448 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.030480823 = queryNorm
            0.25239927 = fieldWeight in 3494, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3494)
        0.012582912 = weight(_text_:information in 3494) [ClassicSimilarity], result of:
          0.012582912 = score(doc=3494,freq=6.0), product of:
            0.053508412 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.030480823 = queryNorm
            0.23515764 = fieldWeight in 3494, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3494)
        0.009636039 = product of:
          0.028908115 = sum of:
            0.028908115 = weight(_text_:22 in 3494) [ClassicSimilarity], result of:
              0.028908115 = score(doc=3494,freq=2.0), product of:
                0.10673865 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.030480823 = queryNorm
                0.2708308 = fieldWeight in 3494, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3494)
          0.33333334 = coord(1/3)
      0.21428572 = coord(3/14)
    
    Pages
    S.22-36
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber
  9. Shera, J.H.: Pattern, structure, and conceptualization in classification for information retrieval (1957) 0.01
    0.009986673 = product of:
      0.069906704 = sum of:
        0.017612407 = weight(_text_:information in 1287) [ClassicSimilarity], result of:
          0.017612407 = score(doc=1287,freq=4.0), product of:
            0.053508412 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.030480823 = queryNorm
            0.3291521 = fieldWeight in 1287, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=1287)
        0.052294295 = weight(_text_:retrieval in 1287) [ClassicSimilarity], result of:
          0.052294295 = score(doc=1287,freq=4.0), product of:
            0.092201896 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.030480823 = queryNorm
            0.5671716 = fieldWeight in 1287, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.09375 = fieldNorm(doc=1287)
      0.14285715 = coord(2/14)
    
    Source
    Proceedings of the International Study Conference on Classification for Information Retrieval, held at Beatrice Webb House, Dorking, England, 13.-17.5.1957
  10. Beghtol, C.: General classification systems : structural principles for multidisciplinary specification (1998) 0.01
    0.008741203 = product of:
      0.061188415 = sum of:
        0.039667886 = weight(_text_:wide in 44) [ClassicSimilarity], result of:
          0.039667886 = score(doc=44,freq=2.0), product of:
            0.13505316 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.030480823 = queryNorm
            0.29372054 = fieldWeight in 44, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=44)
        0.021520529 = weight(_text_:web in 44) [ClassicSimilarity], result of:
          0.021520529 = score(doc=44,freq=2.0), product of:
            0.09947448 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.030480823 = queryNorm
            0.21634221 = fieldWeight in 44, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=44)
      0.14285715 = coord(2/14)
    
    Abstract
    In this century, knowledge creation, production, dissemination and use have changed profoundly. Intellectual and physical barriers have been substantially reduced by the rise of multidisciplinarity and by the influence of computerization, particularly by the spread of the World Wide Web (WWW). Bibliographic classification systems need to respond to this situation. Three possible strategic responses are described: 1) adopting an existing system; 2) adapting an existing system; and 3) finding new structural principles for classification systems. Examples of these three responses are given. An extended example of the third option uses the knowledge outline in the Spectrum of Britannica Online to suggest a theory of "viewpoint warrant" that could be used to incorporate differing perspectives into general classification systems
  11. Beghtol, C.: Naïve classification systems and the global information society (2004) 0.01
    0.008367939 = product of:
      0.03905038 = sum of:
        0.01037821 = weight(_text_:information in 3483) [ClassicSimilarity], result of:
          0.01037821 = score(doc=3483,freq=8.0), product of:
            0.053508412 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.030480823 = queryNorm
            0.19395474 = fieldWeight in 3483, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3483)
        0.021789288 = weight(_text_:retrieval in 3483) [ClassicSimilarity], result of:
          0.021789288 = score(doc=3483,freq=4.0), product of:
            0.092201896 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.030480823 = queryNorm
            0.23632148 = fieldWeight in 3483, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3483)
        0.006882885 = product of:
          0.020648655 = sum of:
            0.020648655 = weight(_text_:22 in 3483) [ClassicSimilarity], result of:
              0.020648655 = score(doc=3483,freq=2.0), product of:
                0.10673865 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.030480823 = queryNorm
                0.19345059 = fieldWeight in 3483, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3483)
          0.33333334 = coord(1/3)
      0.21428572 = coord(3/14)
    
    Abstract
    Classification is an activity that transcends time and space and that bridges the divisions between different languages and cultures, including the divisions between academic disciplines. Classificatory activity, however, serves different purposes in different situations. Classifications for infonnation retrieval can be called "professional" classifications and classifications in other fields can be called "naïve" classifications because they are developed by people who have no particular interest in classificatory issues. The general purpose of naïve classification systems is to discover new knowledge. In contrast, the general purpose of information retrieval classifications is to classify pre-existing knowledge. Different classificatory purposes may thus inform systems that are intended to span the cultural specifics of the globalized information society. This paper builds an previous research into the purposes and characteristics of naïve classifications. It describes some of the relationships between the purpose and context of a naive classification, the units of analysis used in it, and the theory that the context and the units of analysis imply.
    Pages
    S.19-22
    Source
    Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine
  12. Ranganathan, S.R.: Library classification as a discipline (1957) 0.01
    0.008238584 = product of:
      0.057670087 = sum of:
        0.014529495 = weight(_text_:information in 564) [ClassicSimilarity], result of:
          0.014529495 = score(doc=564,freq=2.0), product of:
            0.053508412 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.030480823 = queryNorm
            0.27153665 = fieldWeight in 564, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.109375 = fieldNorm(doc=564)
        0.04314059 = weight(_text_:retrieval in 564) [ClassicSimilarity], result of:
          0.04314059 = score(doc=564,freq=2.0), product of:
            0.092201896 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.030480823 = queryNorm
            0.46789268 = fieldWeight in 564, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.109375 = fieldNorm(doc=564)
      0.14285715 = coord(2/14)
    
    Source
    Proceedings of the International Study Conference on Classification for Information Retrieval, held at Beatrice Webb House,Dorking, England, 13.-17.5.1957
  13. Fripp, D.: Using linked data to classify web documents (2010) 0.01
    0.008211332 = product of:
      0.057479322 = sum of:
        0.050214574 = weight(_text_:web in 4172) [ClassicSimilarity], result of:
          0.050214574 = score(doc=4172,freq=8.0), product of:
            0.09947448 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.030480823 = queryNorm
            0.50479853 = fieldWeight in 4172, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4172)
        0.0072647473 = weight(_text_:information in 4172) [ClassicSimilarity], result of:
          0.0072647473 = score(doc=4172,freq=2.0), product of:
            0.053508412 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.030480823 = queryNorm
            0.13576832 = fieldWeight in 4172, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4172)
      0.14285715 = coord(2/14)
    
    Abstract
    Purpose - The purpose of this paper is to find a relationship between traditional faceted classification schemes and semantic web document annotators, particularly in the linked data environment. Design/methodology/approach - A consideration of the conceptual ideas behind faceted classification and linked data architecture is made. Analysis of selected web documents is performed using Calais' Semantic Proxy to support the considerations. Findings - Technical language aside, the principles of both approaches are very similar. Modern classification techniques have the potential to automatically generate metadata to drive more precise information recall by including a semantic layer. Originality/value - Linked data have not been explicitly considered in this context before in the published literature.
    Theme
    Semantic Web
  14. Jacob, E.K.: Proposal for a classification of classifications built on Beghtol's distinction between "Naïve Classification" and "Professional Classification" (2010) 0.01
    0.008042922 = product of:
      0.037533637 = sum of:
        0.010785352 = weight(_text_:information in 2945) [ClassicSimilarity], result of:
          0.010785352 = score(doc=2945,freq=6.0), product of:
            0.053508412 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.030480823 = queryNorm
            0.20156369 = fieldWeight in 2945, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2945)
        0.018488824 = weight(_text_:retrieval in 2945) [ClassicSimilarity], result of:
          0.018488824 = score(doc=2945,freq=2.0), product of:
            0.092201896 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.030480823 = queryNorm
            0.20052543 = fieldWeight in 2945, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=2945)
        0.008259461 = product of:
          0.024778383 = sum of:
            0.024778383 = weight(_text_:22 in 2945) [ClassicSimilarity], result of:
              0.024778383 = score(doc=2945,freq=2.0), product of:
                0.10673865 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.030480823 = queryNorm
                0.23214069 = fieldWeight in 2945, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2945)
          0.33333334 = coord(1/3)
      0.21428572 = coord(3/14)
    
    Abstract
    Argues that Beghtol's (2003) use of the terms "naive classification" and "professional classification" is valid because they are nominal definitions and that the distinction between these two types of classification points up the need for researchers in knowledge organization to broaden their scope beyond traditional classification systems intended for information retrieval. Argues that work by Beghtol (2003), Kwasnik (1999) and Bailey (1994) offer direction for the development of a classification of classifications based on the pragmatic dimensions of extant classification systems. Bezugnahme auf: Beghtol, C.: Naïve classification systems and the global information society. In: Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine. Würzburg: Ergon Verlag 2004. S.19-22. (Advances in knowledge organization; vol.9)
  15. Zhonghong, W.; Chaudhry, A.S.; Khoo, C.: Potential and prospects of taxonomies for content organization (2006) 0.01
    0.0076491362 = product of:
      0.05354395 = sum of:
        0.046279203 = weight(_text_:wide in 169) [ClassicSimilarity], result of:
          0.046279203 = score(doc=169,freq=2.0), product of:
            0.13505316 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.030480823 = queryNorm
            0.342674 = fieldWeight in 169, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0546875 = fieldNorm(doc=169)
        0.0072647473 = weight(_text_:information in 169) [ClassicSimilarity], result of:
          0.0072647473 = score(doc=169,freq=2.0), product of:
            0.053508412 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.030480823 = queryNorm
            0.13576832 = fieldWeight in 169, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=169)
      0.14285715 = coord(2/14)
    
    Abstract
    While taxonomies are being increasingly discussed in published and grey literature, the term taxonomy still seems to be stated quite loosely and obscurely. This paper aims at explaining and clarifying the concept of taxonomy in the context of information organization. To this end, the salient features of taxonomies are identified and their scope, nature, and role are further elaborated based on an extensive literature review. In the meantime, the connection and distinctions between taxonomies and classification schemes and thesauri are also identified, and the rationale that taxonomies are chosen as a viable knowledge organization system used in organization-wide websites to support browsing and aid navigation is clarified.
  16. Slavic, A.: On the nature and typology of documentary classifications and their use in a networked environment (2007) 0.01
    0.0070661167 = product of:
      0.03297521 = sum of:
        0.006226926 = weight(_text_:information in 780) [ClassicSimilarity], result of:
          0.006226926 = score(doc=780,freq=2.0), product of:
            0.053508412 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.030480823 = queryNorm
            0.116372846 = fieldWeight in 780, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=780)
        0.018488824 = weight(_text_:retrieval in 780) [ClassicSimilarity], result of:
          0.018488824 = score(doc=780,freq=2.0), product of:
            0.092201896 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.030480823 = queryNorm
            0.20052543 = fieldWeight in 780, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=780)
        0.008259461 = product of:
          0.024778383 = sum of:
            0.024778383 = weight(_text_:22 in 780) [ClassicSimilarity], result of:
              0.024778383 = score(doc=780,freq=2.0), product of:
                0.10673865 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.030480823 = queryNorm
                0.23214069 = fieldWeight in 780, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=780)
          0.33333334 = coord(1/3)
      0.21428572 = coord(3/14)
    
    Abstract
    Networked orientated standards for vocabulary publishing and exchange and proposals for terminological services and terminology registries will improve sharing and use of all knowledge organization systems in the networked information environment. This means that documentary classifications may also become more applicable for use outside their original domain of application. The paper summarises some characteristics common to documentary classifications and explains some terminological, functional and implementation aspects. The original purpose behind each classification scheme determines the functions that the vocabulary is designed to facilitate. These functions influence the structure, semantics and syntax, scheme coverage and format in which classification data are published and made available. The author suggests that attention should be paid to the differences between documentary classifications as these may determine their suitability for a certain purpose and may impose different requirements with respect to their use online. As we speak, many classifications are being created for knowledge organization and it may be important to promote expertise from the bibliographic domain with respect to building and using classification systems.
    Date
    22.12.2007 17:22:31
    Theme
    Klassifikationssysteme im Online-Retrieval
  17. Vickery, B.C.: Relations between subject fields : problems of constructing a general classification (1957) 0.01
    0.0070616435 = product of:
      0.049431503 = sum of:
        0.012453852 = weight(_text_:information in 566) [ClassicSimilarity], result of:
          0.012453852 = score(doc=566,freq=2.0), product of:
            0.053508412 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.030480823 = queryNorm
            0.23274569 = fieldWeight in 566, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=566)
        0.03697765 = weight(_text_:retrieval in 566) [ClassicSimilarity], result of:
          0.03697765 = score(doc=566,freq=2.0), product of:
            0.092201896 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.030480823 = queryNorm
            0.40105087 = fieldWeight in 566, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.09375 = fieldNorm(doc=566)
      0.14285715 = coord(2/14)
    
    Source
    Proceedings of the International Study Conference on Classification for Information Retrieval, held at Beatrice Webb House, Dorking, England, 13.-17.5.1957
  18. ¬The need for a faceted classification as the basis of all methods of information retrieval : Memorandum of the Classification Research Group (1997) 0.01
    0.007034762 = product of:
      0.04924333 = sum of:
        0.014380471 = weight(_text_:information in 562) [ClassicSimilarity], result of:
          0.014380471 = score(doc=562,freq=6.0), product of:
            0.053508412 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.030480823 = queryNorm
            0.2687516 = fieldWeight in 562, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=562)
        0.03486286 = weight(_text_:retrieval in 562) [ClassicSimilarity], result of:
          0.03486286 = score(doc=562,freq=4.0), product of:
            0.092201896 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.030480823 = queryNorm
            0.37811437 = fieldWeight in 562, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=562)
      0.14285715 = coord(2/14)
    
    Footnote
    Wiederabdruck aus: Proceedings of the International Study Conference on Classification for Information Retrieval, Dorking. London: Aslib 1957.
    Imprint
    The Hague : International Federation for Information and Documentation (FID)
  19. Zhang, J.; Zeng, M.L.: ¬A new similarity measure for subject hierarchical structures (2014) 0.01
    0.007000382 = product of:
      0.03266845 = sum of:
        0.01037821 = weight(_text_:information in 1778) [ClassicSimilarity], result of:
          0.01037821 = score(doc=1778,freq=8.0), product of:
            0.053508412 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.030480823 = queryNorm
            0.19395474 = fieldWeight in 1778, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1778)
        0.015407355 = weight(_text_:retrieval in 1778) [ClassicSimilarity], result of:
          0.015407355 = score(doc=1778,freq=2.0), product of:
            0.092201896 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.030480823 = queryNorm
            0.16710453 = fieldWeight in 1778, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1778)
        0.006882885 = product of:
          0.020648655 = sum of:
            0.020648655 = weight(_text_:22 in 1778) [ClassicSimilarity], result of:
              0.020648655 = score(doc=1778,freq=2.0), product of:
                0.10673865 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.030480823 = queryNorm
                0.19345059 = fieldWeight in 1778, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1778)
          0.33333334 = coord(1/3)
      0.21428572 = coord(3/14)
    
    Abstract
    Purpose - The purpose of this paper is to introduce a new similarity method to gauge the differences between two subject hierarchical structures. Design/methodology/approach - In the proposed similarity measure, nodes on two hierarchical structures are projected onto a two-dimensional space, respectively, and both structural similarity and subject similarity of nodes are considered in the similarity between the two hierarchical structures. The extent to which the structural similarity impacts on the similarity can be controlled by adjusting a parameter. An experiment was conducted to evaluate soundness of the measure. Eight experts whose research interests were information retrieval and information organization participated in the study. Results from the new measure were compared with results from the experts. Findings - The evaluation shows strong correlations between the results from the new method and the results from the experts. It suggests that the similarity method achieved satisfactory results. Practical implications - Hierarchical structures that are found in subject directories, taxonomies, classification systems, and other classificatory structures play an extremely important role in information organization and information representation. Measuring the similarity between two subject hierarchical structures allows an accurate overarching understanding of the degree to which the two hierarchical structures are similar. Originality/value - Both structural similarity and subject similarity of nodes were considered in the proposed similarity method, and the extent to which the structural similarity impacts on the similarity can be adjusted. In addition, a new evaluation method for a hierarchical structure similarity was presented.
    Date
    8. 4.2015 16:22:13
  20. Karamuftuoglu, M.: Need for a systemic theory of classification in information science (2007) 0.01
    0.006928355 = product of:
      0.04849848 = sum of:
        0.016474897 = weight(_text_:information in 615) [ClassicSimilarity], result of:
          0.016474897 = score(doc=615,freq=14.0), product of:
            0.053508412 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.030480823 = queryNorm
            0.3078936 = fieldWeight in 615, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=615)
        0.032023586 = weight(_text_:retrieval in 615) [ClassicSimilarity], result of:
          0.032023586 = score(doc=615,freq=6.0), product of:
            0.092201896 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.030480823 = queryNorm
            0.34732026 = fieldWeight in 615, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=615)
      0.14285715 = coord(2/14)
    
    Abstract
    In the article, the author aims to clarify some of the issues surrounding the discussion regarding the usefulness of a substantive classification theory in information science (IS) by means of a broad perspective. By utilizing a concrete example from the High Accuracy Retrieval from Documents (HARD) track of a Text REtrieval Conference (TREC), the author suggests that the bag of words approach to information retrieval (IR) and techniques such as relevance feedback have significant limitations in expressing and resolving complex user information needs. He argues that a comprehensive analysis of information needs involves explicating often-implicit assumptions made by the authors of scholarly documents, as well as everyday texts such as news articles. He also argues that progress in IS can be furthered by developing general theories that are applicable to multiple domains. The concrete example of application of the domain-analytic approach to subject analysis in IS to the aesthetic evaluation of works of information arts is used to support this argument.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.13, S.1977-1987

Authors

Languages

Types

  • a 132
  • m 9
  • el 7
  • s 4
  • n 1
  • More… Less…