Search (35 results, page 2 of 2)

  • × author_ss:"Zeng, M.L."
  1. Zeng, M.L.; Panzer, M.; Salaba, A.: Expressing classification schemes with OWL 2 Web Ontology Language : exploring issues and opportunities based on experiments using OWL 2 for three classification schemes 0.00
    3.3967898E-4 = product of:
      0.0057745427 = sum of:
        0.0057745427 = weight(_text_:in in 3130) [ClassicSimilarity], result of:
          0.0057745427 = score(doc=3130,freq=4.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.17003182 = fieldWeight in 3130, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=3130)
      0.05882353 = coord(1/17)
    
    Abstract
    Based on the research on three general classification schemes, this paper discusses issues encountered when expressing classification schemes in SKOS and explores opportunities of resolving major issues using OWL 2 Web Ontology Language.
    Source
    Paradigms and conceptual systems in knowledge organization: Proceedings of the Eleventh International ISKO conference, Rome, 23-26 February 2010, ed. Claudio Gnoli, Indeks, Frankfurt M
  2. Zumer, M.; Zeng, M.L.: ¬The new FRBR-LRM model : some accents (2016) 0.00
    3.3967898E-4 = product of:
      0.0057745427 = sum of:
        0.0057745427 = weight(_text_:in in 4940) [ClassicSimilarity], result of:
          0.0057745427 = score(doc=4940,freq=4.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.17003182 = fieldWeight in 4940, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=4940)
      0.05882353 = coord(1/17)
    
    Series
    Advances in knowledge organization; vol.15
    Source
    Knowledge organization for a sustainable world: challenges and perspectives for cultural, scientific, and technological sharing in a connected society : proceedings of the Fourteenth International ISKO Conference 27-29 September 2016, Rio de Janeiro, Brazil / organized by International Society for Knowledge Organization (ISKO), ISKO-Brazil, São Paulo State University ; edited by José Augusto Chaves Guimarães, Suellen Oliveira Milani, Vera Dodebei
  3. Chan, L.M.; Zeng, M.L.: Metadata interoperability and standardization - a study of methodology, part II : achieving interoperability at the record and repository levels (2006) 0.00
    3.177406E-4 = product of:
      0.0054015904 = sum of:
        0.0054015904 = weight(_text_:in in 1177) [ClassicSimilarity], result of:
          0.0054015904 = score(doc=1177,freq=14.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.15905021 = fieldWeight in 1177, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=1177)
      0.05882353 = coord(1/17)
    
    Abstract
    This is the second part of an analysis of the methods that have been used to achieve or improve interoperability among metadata schemas and their applications in order to facilitate the conversion and exchange of metadata and to enable cross-domain metadata harvesting and federated searches. From a methodological point of view, implementing interoperability may be considered at different levels of operation: schema level (discussed in Part I of the article), record level (discussed in Part II of the article), and repository level (also discussed in Part II). The results of efforts to improve interoperability may be observed from different perspectives as well, including element-based and value-based approaches. As discussed in Part I of this study, the results of efforts to improve interoperability can be observed at different levels: 1. Schema level - Efforts are focused on the elements of the schemas, being independent of any applications. The results usually appear as derived element sets or encoded schemas, crosswalks, application profiles, and element registries. 2. Record level - Efforts are intended to integrate the metadata records through the mapping of the elements according to the semantic meanings of these elements. Common results include converted records and new records resulting from combining values of existing records. 3. Repository level - With harvested or integrated records from varying sources, efforts at this level focus on mapping value strings associated with particular elements (e.g., terms associated with subject or format elements). The results enable cross-collection searching. In the following sections, we will continue to analyze interoperability efforts and methodologies, focusing on the record level and the repository level. It should be noted that the models to be discussed in this article are not always mutually exclusive. Sometimes, within a particular project, more than one method may be used.
  4. Zeng, M.L.; Zumer, M.: Introducing FRSAD and mapping it with SKOS and other models (2009) 0.00
    3.1201506E-4 = product of:
      0.005304256 = sum of:
        0.005304256 = weight(_text_:in in 3150) [ClassicSimilarity], result of:
          0.005304256 = score(doc=3150,freq=6.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.1561842 = fieldWeight in 3150, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=3150)
      0.05882353 = coord(1/17)
    
    Abstract
    The Functional Requirements for Subject Authority Records (FRSAR) Working Group was formed in 2005 as the third IFLA working group of the FRBR family to address subject authority data issues and to investigate the direct and indirect uses of subject authority data by a wide range of users. This paper introduces the Functional Requirements for Subject Authority Data (FRSAD), the model developed by the FRSAR Working Group, and discusses it in the context of other related conceptual models defined in the specifications during recent years, including the British Standard BS8723-5: Structured vocabularies for information retrieval - Guide Part 5: Exchange formats and protocols for interoperability, W3C's SKOS Simple Knowledge Organization System Reference, and OWL Web Ontology Language Reference. These models enable the consideration of the functions of subject authority data and concept schemes at a higher level that is independent of any implementation, system, or specific context, while allowing us to focus on the semantics, structures, and interoperability of subject authority data.
  5. Zumer, M.; Zeng, M.L.; Mitchell, J.S.: FRBRizing KOS relationships : applying the FRBR model to versions of the DDC (2012) 0.00
    3.1201506E-4 = product of:
      0.005304256 = sum of:
        0.005304256 = weight(_text_:in in 846) [ClassicSimilarity], result of:
          0.005304256 = score(doc=846,freq=6.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.1561842 = fieldWeight in 846, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=846)
      0.05882353 = coord(1/17)
    
    Abstract
    The paper presents the approach of using the Functional Requirements for Bibliographic Records (FRBR) model to investigate the complicated sets of relationships among different versions of a classification system for the purposes of specifying provenance of classification data and facilitating collaborative efforts for using and reusing classification data, particularly in a linked data setting. The long-term goal of this research goes beyond the Dewey Decimal Classification that is used as a case. It addresses the questions of if and how the modelling approach and the FRBR-based model itself can be generalized and applied to other classification systems, multilingual and multicultural vocabularies, and even non-KOS resources that share similar characteristics.
    Series
    Advances in knowledge organization; vol.13
    Source
    Categories, contexts and relations in knowledge organization: Proceedings of the Twelfth International ISKO Conference 6-9 August 2012, Mysore, India. Eds.: Neelameghan, A. u. K.S. Raghavan
  6. Chan, L.M.; Zeng, M.L.: Metadata interoperability and standardization - a study of methodology, part I : achieving interoperability at the schema level (2006) 0.00
    3.0023666E-4 = product of:
      0.005104023 = sum of:
        0.005104023 = weight(_text_:in in 1176) [ClassicSimilarity], result of:
          0.005104023 = score(doc=1176,freq=8.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.15028831 = fieldWeight in 1176, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1176)
      0.05882353 = coord(1/17)
    
    Abstract
    The rapid growth of Internet resources and digital collections has been accompanied by a proliferation of metadata schemas, each of which has been designed based on the requirements of particular user communities, intended users, types of materials, subject domains, project needs, etc. Problems arise when building large digital libraries or repositories with metadata records that were prepared according to diverse schemas. This article (published in two parts) contains an analysis of the methods that have been used to achieve or improve interoperability among metadata schemas and applications, for the purposes of facilitating conversion and exchange of metadata and enabling cross-domain metadata harvesting and federated searches. From a methodological point of view, implementing interoperability may be considered at different levels of operation: schema level, record level, and repository level. Part I of the article intends to explain possible situations in which metadata schemas may be created or implemented, whether in individual projects or in integrated repositories. It also discusses approaches used at the schema level. Part II of the article will discuss metadata interoperability efforts at the record and repository levels.
  7. Zeng, M.L.; Sula, C.A.; Gracy, K.F.; Hyvönen, E.; Alves Lima, V.M.: JASIST special issue on digital humanities (DH) : guest editorial (2022) 0.00
    2.941706E-4 = product of:
      0.0050009005 = sum of:
        0.0050009005 = weight(_text_:in in 462) [ClassicSimilarity], result of:
          0.0050009005 = score(doc=462,freq=12.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.14725187 = fieldWeight in 462, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=462)
      0.05882353 = coord(1/17)
    
    Abstract
    More than 15 years ago, A Companion to Digital Humanities marked out the area of digital humanities (DH) "as a discipline in its own right" (Schreibman et al., 2004, p. xxiii). In the years that followed, there is ample evidence that the DH domain, formed by the intersection of humanities disciplines and digital information technology, has undergone remarkable expansion. This growth is reflected in A New Companion to Digital Humanities (Schreibman et al., 2016). The extensively revised contents of the second edition were contributed by a global team of authors who are pioneers of innovative research in the field. Over this formative period, DH has become a widely recognized, impactful mode of scholarship and an institutional unit for collaborative, transdisciplinary, and computationally engaged research, teaching, and publication (Burdick et al., 2012; Svensson, 2010; Van Ruyskensvelde, 2014). The field of DH has advanced tremendously over the last decade and continues to expand. Meanwhile, competing definitions and approaches of DH scholars continue to spark debate. "Complexity" was a theme of the DH2019 international conference, as it demonstrates the multifaceted connections within DH scholarship today (Alliance of Digital Humanities Organizations, 2019). Yet, while it is often assumed that the DH is in flux and not particularly fixed as an institutional or intellectual construct, there are also obviously touchstones within the DH field, most visibly in the relationship between traditional humanities disciplines and technological infrastructures. Thus, it is still meaningful to "bring together the humanistic and the digital through embracing a non-territorial and liminal zone" (Svensson, 2016, p. 477). This is the focus of this JASIST special issue, which mirrors the increasing attention on DH worldwide.
  8. Zeng, M.L.: Metadata elements for object description and representaion : a case report from a digitized historical fashion collection project (1999) 0.00
    2.5475924E-4 = product of:
      0.004330907 = sum of:
        0.004330907 = weight(_text_:in in 4055) [ClassicSimilarity], result of:
          0.004330907 = score(doc=4055,freq=4.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.12752387 = fieldWeight in 4055, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=4055)
      0.05882353 = coord(1/17)
    
    Abstract
    This project's goal is to develop a catalog for a digitized collection of historical fashion objects held at the Kent State University Museum and to analyze and evaluate how well existing metadata formats can be applied to a fashion collection. The project considered the known and anticipated uses of the collection and the identification of the metadata elements that would be needed to support these uses. From a set of 90 museum accession records, 42 fashion objects were selected for cataloging. 2 metadata treatments were created for these 42 items using (a) AACR in use with USMARC formats, (b) the Dublic Core set of elements designed for minimal level cataloging, and (c) the Visual Resources Association (VRA) Core Categories for Visual Resources created for developing local databases and cataloging records for visual resource collections. Comparison and analysis of the formats resulted in the adoption of a modified VRA metadata format to catalog the entire digitized historical fashion collection
  9. Salaba, A.; Zeng, M.L.; Zumer, M.: Functional Requirements for Subject Authority Records (2006) 0.00
    2.1016564E-4 = product of:
      0.0035728158 = sum of:
        0.0035728158 = weight(_text_:in in 279) [ClassicSimilarity], result of:
          0.0035728158 = score(doc=279,freq=2.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.10520181 = fieldWeight in 279, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=279)
      0.05882353 = coord(1/17)
    
    Series
    Advances in knowledge organization; vol.10
  10. Panzer, M.; Zeng, M.L.: Modeling classification systems in SKOS : Some challenges and best-practice (2009) 0.00
    2.1016564E-4 = product of:
      0.0035728158 = sum of:
        0.0035728158 = weight(_text_:in in 3717) [ClassicSimilarity], result of:
          0.0035728158 = score(doc=3717,freq=2.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.10520181 = fieldWeight in 3717, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3717)
      0.05882353 = coord(1/17)
    
  11. Zumer, M.; Zeng, M.L.; Salaba, A.: FRSAD: conceptual modeling of aboutness (2012) 0.00
    2.1016564E-4 = product of:
      0.0035728158 = sum of:
        0.0035728158 = weight(_text_:in in 1960) [ClassicSimilarity], result of:
          0.0035728158 = score(doc=1960,freq=2.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.10520181 = fieldWeight in 1960, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1960)
      0.05882353 = coord(1/17)
    
    Footnote
    Rez. in: Cataloging and classification quarterly 52(2014) no.3, S.343-346 (T. Brenndorfer)
  12. Zeng, M.L.: Knowledge Organization Systems (KOS) (2008) 0.00
    1.8014197E-4 = product of:
      0.0030624135 = sum of:
        0.0030624135 = weight(_text_:in in 2316) [ClassicSimilarity], result of:
          0.0030624135 = score(doc=2316,freq=2.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.09017298 = fieldWeight in 2316, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2316)
      0.05882353 = coord(1/17)
    
    Abstract
    Knowledge organization systems (KOS) can be described based on their structures (from flat to multidimensional) and main functions. The latter include eliminating ambiguity, controlling synonyms or equivalents, establishing explicit semantic relationships such as hierarchical and associative relationships, and presenting both relationships and properties of concepts in the knowledge models. Examples of KOS include lists, authority files, gazetteers, synonym rings, taxonomies and classification schemes, thesauri, and ontologies. These systems model the underlying semantic structure of a domain and provide semantics, navigation, and translation through labels, definitions, typing, relationships, and properties for concepts. The term knowledge organization systems (KOS) is intended to encompass all types of schemes for organizing information and promoting knowledge management, such as classification schemes, gazetteers, lexical databases, taxonomies, thesauri, and ontologies (Hodge 2000). These systems model the underlying semantic structure of a domain and provide semantics, navigation, and translation through labels, definitions, typing, relationships, and properties for concepts (Hill et al. 2002, Koch and Tudhope 2004). Embodied as (Web) services, they facilitate resource discovery and retrieval by acting as semantic road maps, thereby making possible a common orientation for indexers and future users, either human or machine (Koch and Tudhope 2003, 2004).
  13. Mitchell, J.S.; Zeng, M.L.; Zumer, M.: Extending models for controlled vocabularies to classification systems : modeling DDC with FRSAD (2011) 0.00
    1.5011833E-4 = product of:
      0.0025520115 = sum of:
        0.0025520115 = weight(_text_:in in 4092) [ClassicSimilarity], result of:
          0.0025520115 = score(doc=4092,freq=2.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.07514416 = fieldWeight in 4092, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4092)
      0.05882353 = coord(1/17)
    
    Abstract
    The Functional Requirements for Subject Authority Data (FRSAD) conceptual model identifies entities, attributes and relationships as they relate to subject authority data. FRSAD includes two main entities, thema (any entity used as a subject of a work) and nomen (any sign or sequence of signs that a thema is known by, referred to, or addressed as). In a given controlled vocabulary and within a domain, a nomen is the appellation of only one thema. The authors consider the question, can the FRSAD conceptual model be extended beyond controlled vocabularies (its original focus) to model classification data? Models that are developed based on the structures and functions of controlled vocabularies (such as thesauri and subject heading systems) often need to be adjusted or extended to accommodate classification systems that have been developed with different focused functions, structures and fundamental theories. The Dewey Decimal Classification (DDC) system is used as a case study to test applicability of the FRSAD model for classification data, and as a springboard for a general discussion of issues related to the use of FRSAD for the representation of classification data.
  14. Mitchell, J.S.; Zeng, M.L.; Zumer, M.: Extending models for controlled vocabularies to classification systems : modelling DDC with FRSAD (2011) 0.00
    1.5011833E-4 = product of:
      0.0025520115 = sum of:
        0.0025520115 = weight(_text_:in in 4828) [ClassicSimilarity], result of:
          0.0025520115 = score(doc=4828,freq=2.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.07514416 = fieldWeight in 4828, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4828)
      0.05882353 = coord(1/17)
    
    Abstract
    The Functional Requirements for Subject Authority Data (FRSAD) conceptual model identifies entities, attributes and relationships as they relate to subject authority data. FRSAD includes two main entities, thema (any entity used as a subject of a work) and nomen (any sign or sequence of signs that a thema is known by, referred to, or addressed as). In a given controlled vocabulary and within a domain, a nomen is the appellation of only one thema. The authors consider the question, can the FRSAD conceptual model be extended beyond controlled vocabularies (its original focus) to model classification data? Models that are developed based on the structures and functions of controlled vocabularies (such as thesauri and subject heading systems) often need to be adjusted or extended to accommodate classification systems that have been developed with different focused functions, structures and fundamental theories. The Dewey Decimal Classification (DDC) system is used as a case study to test applicability of the FRSAD model for classification data, and as a springboard for a general discussion of issues related to the use of FRSAD for the representation of classification data.
  15. Zumer, M.; Zeng, M.L.: Application of FRBR and FRSAD to classification systems (2015) 0.00
    1.5011833E-4 = product of:
      0.0025520115 = sum of:
        0.0025520115 = weight(_text_:in in 2284) [ClassicSimilarity], result of:
          0.0025520115 = score(doc=2284,freq=2.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.07514416 = fieldWeight in 2284, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2284)
      0.05882353 = coord(1/17)
    
    Abstract
    The Functional Requirements for Subject Authority Data (FRSAD) conceptual model defines entities, attributes and relationships as they relate to subject authority data. FRSAD includes two main entities, thema (any entity used as the subject of a work) and nomen (any sign or arrangement of signs that a thema is known by, referred to, or addressed as). In a given controlled vocabulary and within a domain, a nomen is the appellation of only one thema. The authors consider the question: can the FRSAD conceptual model be extended beyond controlled vocabularies (its original focus) to model classification data? Models that are developed based on the structures and functions of controlled vocabularies (such as thesauri and subject heading systems) often need to be adjusted or extended to accommodate classification systems that have been developed with different focused functions, structures and fundamental theories. The Dewey Decimal Classification (DDC) system and Universal Decimal Classification (UDC) are used as a case study to test applicability of the FRSAD model for classification data and the applicability of the Functional Requirements for Bibliographic Records (FRBR) for modelling versions, such as different adaptations and different language editions.