Search (39 results, page 1 of 2)

  • × language_ss:"d"
  • × theme_ss:"Retrievalalgorithmen"
  1. Nagelschmidt, M.: Verfahren zur Anfragemodifikation im Information Retrieval (2008) 0.04
    0.043735515 = product of:
      0.13120654 = sum of:
        0.029840691 = weight(_text_:und in 2774) [ClassicSimilarity], result of:
          0.029840691 = score(doc=2774,freq=20.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.46462005 = fieldWeight in 2774, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.046875 = fieldNorm(doc=2774)
        0.01908586 = product of:
          0.03817172 = sum of:
            0.03817172 = weight(_text_:bibliothekswesen in 2774) [ClassicSimilarity], result of:
              0.03817172 = score(doc=2774,freq=2.0), product of:
                0.12917466 = queryWeight, product of:
                  4.457672 = idf(docFreq=1392, maxDocs=44218)
                  0.028978055 = queryNorm
                0.2955047 = fieldWeight in 2774, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.457672 = idf(docFreq=1392, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2774)
          0.5 = coord(1/2)
        0.038981467 = weight(_text_:informationswissenschaft in 2774) [ClassicSimilarity], result of:
          0.038981467 = score(doc=2774,freq=2.0), product of:
            0.13053758 = queryWeight, product of:
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.028978055 = queryNorm
            0.29862255 = fieldWeight in 2774, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.046875 = fieldNorm(doc=2774)
        0.03817172 = weight(_text_:bibliothekswesen in 2774) [ClassicSimilarity], result of:
          0.03817172 = score(doc=2774,freq=2.0), product of:
            0.12917466 = queryWeight, product of:
              4.457672 = idf(docFreq=1392, maxDocs=44218)
              0.028978055 = queryNorm
            0.2955047 = fieldWeight in 2774, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.457672 = idf(docFreq=1392, maxDocs=44218)
              0.046875 = fieldNorm(doc=2774)
        0.0051268064 = product of:
          0.010253613 = sum of:
            0.010253613 = weight(_text_:information in 2774) [ClassicSimilarity], result of:
              0.010253613 = score(doc=2774,freq=6.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.20156369 = fieldWeight in 2774, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2774)
          0.5 = coord(1/2)
      0.33333334 = coord(5/15)
    
    Abstract
    Für das Modifizieren von Suchanfragen kennt das Information Retrieval vielfältige Möglichkeiten. Nach einer einleitenden Darstellung der Wechselwirkung zwischen Informationsbedarf und Suchanfrage wird eine konzeptuelle und typologische Annäherung an Verfahren zur Anfragemodifikation gegeben. Im Anschluss an eine kurze Charakterisierung des Fakten- und des Information Retrieval, sowie des Vektorraum- und des probabilistischen Modells, werden intellektuelle, automatische und interaktive Modifikationsverfahren vorgestellt. Neben klassischen intellektuellen Verfahren, wie der Blockstrategie und der "Citation Pearl Growing"-Strategie, umfasst die Darstellung der automatischen und interaktiven Verfahren Modifikationsmöglichkeiten auf den Ebenen der Morphologie, der Syntax und der Semantik von Suchtermen. Darüber hinaus werden das Relevance Feedback, der Nutzen informetrischer Analysen und die Idee eines assoziativen Retrievals auf der Basis von Clustering- und terminologischen Techniken, sowie zitationsanalytischen Verfahren verfolgt. Ein Eindruck für die praktischen Gestaltungsmöglichkeiten der behandelten Verfahren soll abschließend durch fünf Anwendungsbeispiele vermittelt werden.
    Footnote
    Diplomarbeit im Studiengang Bibliothekswesen
    Imprint
    Köln : Fachhochschule, Institut für Informationswissenschaft
  2. Hüther, H.: Selix im DFG-Projekt Kascade (1998) 0.02
    0.01942209 = product of:
      0.14566566 = sum of:
        0.015727427 = weight(_text_:und in 5151) [ClassicSimilarity], result of:
          0.015727427 = score(doc=5151,freq=2.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.24487628 = fieldWeight in 5151, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.078125 = fieldNorm(doc=5151)
        0.12993823 = weight(_text_:informationswissenschaft in 5151) [ClassicSimilarity], result of:
          0.12993823 = score(doc=5151,freq=8.0), product of:
            0.13053758 = queryWeight, product of:
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.028978055 = queryNorm
            0.99540854 = fieldWeight in 5151, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.078125 = fieldNorm(doc=5151)
      0.13333334 = coord(2/15)
    
    Series
    Schriften zur Informationswissenschaft; Bd.34
    Source
    Knowledge Management und Kommunikationssysteme: Proceedings des 6. Internationalen Symposiums für Informationswissenschaft (ISI '98) Prag, 3.-7. November 1998 / Hochschulverband für Informationswissenschaft (HI) e.V. Konstanz ; Fachrichtung Informationswissenschaft der Universität des Saarlandes, Saarbrücken. Hrsg.: Harald H. Zimmermann u. Volker Schramm
  3. Fuhr, N.: Modelle im Information Retrieval (2013) 0.02
    0.018837553 = product of:
      0.09418776 = sum of:
        0.022241939 = weight(_text_:und in 724) [ClassicSimilarity], result of:
          0.022241939 = score(doc=724,freq=4.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.34630734 = fieldWeight in 724, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.078125 = fieldNorm(doc=724)
        0.064969115 = weight(_text_:informationswissenschaft in 724) [ClassicSimilarity], result of:
          0.064969115 = score(doc=724,freq=2.0), product of:
            0.13053758 = queryWeight, product of:
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.028978055 = queryNorm
            0.49770427 = fieldWeight in 724, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.078125 = fieldNorm(doc=724)
        0.0069766995 = product of:
          0.013953399 = sum of:
            0.013953399 = weight(_text_:information in 724) [ClassicSimilarity], result of:
              0.013953399 = score(doc=724,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.27429342 = fieldWeight in 724, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.078125 = fieldNorm(doc=724)
          0.5 = coord(1/2)
      0.2 = coord(3/15)
    
    Source
    Grundlagen der praktischen Information und Dokumentation. Handbuch zur Einführung in die Informationswissenschaft und -praxis. 6., völlig neu gefaßte Ausgabe. Hrsg. von R. Kuhlen, W. Semar u. D. Strauch. Begründet von Klaus Laisiepen, Ernst Lutterbeck, Karl-Heinrich Meyer-Uhlenried
  4. Mandl, T.: Tolerantes Information Retrieval : Neuronale Netze zur Erhöhung der Adaptivität und Flexibilität bei der Informationssuche (2001) 0.02
    0.017132692 = product of:
      0.06424759 = sum of:
        0.01957526 = weight(_text_:buch in 5965) [ClassicSimilarity], result of:
          0.01957526 = score(doc=5965,freq=4.0), product of:
            0.13472971 = queryWeight, product of:
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.028978055 = queryNorm
            0.14529282 = fieldWeight in 5965, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.015625 = fieldNorm(doc=5965)
        0.01860894 = weight(_text_:und in 5965) [ClassicSimilarity], result of:
          0.01860894 = score(doc=5965,freq=70.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.28974152 = fieldWeight in 5965, product of:
              8.3666 = tf(freq=70.0), with freq of:
                70.0 = termFreq=70.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.015625 = fieldNorm(doc=5965)
        0.022505963 = weight(_text_:informationswissenschaft in 5965) [ClassicSimilarity], result of:
          0.022505963 = score(doc=5965,freq=6.0), product of:
            0.13053758 = queryWeight, product of:
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.028978055 = queryNorm
            0.17240983 = fieldWeight in 5965, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.015625 = fieldNorm(doc=5965)
        0.0035574324 = product of:
          0.007114865 = sum of:
            0.007114865 = weight(_text_:information in 5965) [ClassicSimilarity], result of:
              0.007114865 = score(doc=5965,freq=26.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.13986275 = fieldWeight in 5965, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.015625 = fieldNorm(doc=5965)
          0.5 = coord(1/2)
      0.26666668 = coord(4/15)
    
    Abstract
    Ein wesentliches Bedürfnis im Rahmen der Mensch-Maschine-Interaktion ist die Suche nach Information. Um Information Retrieval (IR) Systeme kognitiv adäquat zu gestalten und sie an den Menschen anzupassen bieten sich Modelle des Soft Computing an. Ein umfassender state-of-the-art Bericht zu neuronalen Netzen im IR zeigt dass die meisten bestehenden Modelle das Potential neuronaler Netze nicht ausschöpfen. Das vorgestellte COSIMIR-Modell (Cognitive Similarity learning in Information Retrieval) basiert auf neuronalen Netzen und lernt, die Ähnlichkeit zwischen Anfrage und Dokument zu berechnen. Es trägt somit die kognitive Modellierung in den Kern eines IR Systems. Das Transformations-Netzwerk ist ein weiteres neuronales Netzwerk, das die Behandlung von Heterogenität anhand von Expertenurteilen lernt. Das COSIMIR-Modell und das Transformations-Netzwerk werden ausführlich diskutiert und anhand realer Datenmengen evaluiert
    Content
    Kapitel: 1 Einleitung - 2 Grundlagen des Information Retrieval - 3 Grundlagen neuronaler Netze - 4 Neuronale Netze im Information Retrieval - 5 Heterogenität und ihre Behandlung im Information Retrieval - 6 Das COSIMIR-Modell - 7 Experimente mit dem COSIMIR-Modell und dem Transformations-Netzwerk - 8 Fazit
    Footnote
    Rez. in: nfd - Information 54(2003) H.6, S.379-380 (U. Thiel): "Kannte G. Salton bei der Entwicklung des Vektorraummodells die kybernetisch orientierten Versuche mit assoziativen Speicherstrukturen? An diese und ähnliche Vermutungen, die ich vor einigen Jahren mit Reginald Ferber und anderen Kollegen diskutierte, erinnerte mich die Thematik des vorliegenden Buches. Immerhin lässt sich feststellen, dass die Vektorrepräsentation eine genial einfache Darstellung sowohl der im Information Retrieval (IR) als grundlegende Datenstruktur benutzten "inverted files" als auch der assoziativen Speichermatrizen darstellt, die sich im Laufe der Zeit Über Perzeptrons zu Neuronalen Netzen (NN) weiterentwickelten. Dieser formale Zusammenhang stimulierte in der Folge eine Reihe von Ansätzen, die Netzwerke im Retrieval zu verwenden, wobei sich, wie auch im vorliegenden Band, hybride Ansätze, die Methoden aus beiden Disziplinen kombinieren, als sehr geeignet erweisen. Aber der Reihe nach... Das Buch wurde vom Autor als Dissertation beim Fachbereich IV "Sprachen und Technik" der Universität Hildesheim eingereicht und resultiert aus einer Folge von Forschungsbeiträgen zu mehreren Projekten, an denen der Autor in der Zeit von 1995 bis 2000 an verschiedenen Standorten beteiligt war. Dies erklärt die ungewohnte Breite der Anwendungen, Szenarien und Domänen, in denen die Ergebnisse gewonnen wurden. So wird das in der Arbeit entwickelte COSIMIR Modell (COgnitive SIMilarity learning in Information Retrieval) nicht nur anhand der klassischen Cranfield-Kollektion evaluiert, sondern auch im WING-Projekt der Universität Regensburg im Faktenretrieval aus einer Werkstoffdatenbank eingesetzt. Weitere Versuche mit der als "Transformations-Netzwerk" bezeichneten Komponente, deren Aufgabe die Abbildung von Gewichtungsfunktionen zwischen zwei Termräumen ist, runden das Spektrum der Experimente ab. Aber nicht nur die vorgestellten Resultate sind vielfältig, auch der dem Leser angebotene "State-of-the-Art"-Überblick fasst in hoch informativer Breite Wesentliches aus den Gebieten IR und NN zusammen und beleuchtet die Schnittpunkte der beiden Bereiche. So werden neben den Grundlagen des Text- und Faktenretrieval die Ansätze zur Verbesserung der Adaptivität und zur Beherrschung von Heterogenität vorgestellt, während als Grundlagen Neuronaler Netze neben einer allgemeinen Einführung in die Grundbegriffe u.a. das Backpropagation-Modell, KohonenNetze und die Adaptive Resonance Theory (ART) geschildert werden. Einweiteres Kapitel stellt die bisherigen NN-orientierten Ansätze im IR vor und rundet den Abriss der relevanten Forschungslandschaft ab. Als Vorbereitung der Präsentation des COSIMIR-Modells schiebt der Autor an dieser Stelle ein diskursives Kapitel zum Thema Heterogenität im IR ein, wodurch die Ziele und Grundannahmen der Arbeit noch einmal reflektiert werden. Als Dimensionen der Heterogenität werden der Objekttyp, die Qualität der Objekte und ihrer Erschließung und die Mehrsprachigkeit genannt. Wenn auch diese Systematik im Wesentlichen die Akzente auf Probleme aus den hier tangierten Projekten legt, und weniger eine umfassende Aufbereitung z.B. der Literatur zum Problem der Relevanz anstrebt, ist sie dennoch hilfreich zum Verständnis der in den nachfolgenden Kapitel oft nur implizit angesprochenen Designentscheidungen bei der Konzeption der entwickelten Prototypen. Der Ansatz, Heterogenität durch Transformationen zu behandeln, wird im speziellen Kontext der NN konkretisiert, wobei andere Möglichkeiten, die z.B. Instrumente der Logik und Probabilistik einzusetzen, nur kurz diskutiert werden. Eine weitergehende Analyse hätte wohl auch den Rahmen der Arbeit zu weit gespannt,
    da nun nach fast 200 Seiten der Hauptteil der Dissertation folgt - die Vorstellung und Bewertung des bereits erwähnten COSIMIR Modells. Das COSIMIR Modell "berechnet die Ähnlichkeit zwischen den zwei anliegenden Input-Vektoren" (P.194). Der Output des Netzwerks wird an einem einzigen Knoten abgegriffen, an dem sich ein sogenannten Relevanzwert einstellt, wenn die Berechnungen der Gewichtungen interner Knoten zum Abschluss kommen. Diese Gewichtungen hängen von den angelegten Inputvektoren, aus denen die Gewichte der ersten Knotenschicht ermittelt werden, und den im Netzwerk vorgegebenen Kantengewichten ab. Die Gewichtung von Kanten ist der Kernpunkt des neuronalen Ansatzes: In Analogie zum biologischen Urbild (Dendrit mit Synapsen) wächst das Gewicht der Kante mit jeder Aktivierung während einer Trainingsphase. Legt man in dieser Phase zwei Inputvektoren, z.B. Dokumentvektor und Ouery gleichzeitig mit dem Relevanzurteil als Wert des Outputknoten an, verteilen sich durch den BackpropagationProzess die Gewichte entlang der Pfade, die zwischen den beteiligten Knoten bestehen. Da alle Knoten miteinander verbunden sind, entstehen nach mehreren Trainingsbeispielen bereits deutlich unterschiedliche Kantengewichte, weil die aktiv beteiligten Kanten die Änderungen akkumulativ speichern. Eine Variation des Verfahrens benutzt das NN als "Transformationsnetzwerk", wobei die beiden Inputvektoren mit einer Dokumentrepräsentation und einem dazugehörigen Indexat (von einem Experten bereitgestellt) belegt werden. Neben der schon aufgezeigten Trainingsnotwendigkeit weisen die Neuronalen Netze eine weitere intrinsische Problematik auf: Je mehr äußere Knoten benötigt werden, desto mehr interne Kanten (und bei der Verwendung von Zwischenschichten auch Knoten) sind zu verwalten, deren Anzahl nicht linear wächst. Dieser algorithmische Befund setzt naiven Einsätzen der NN-Modelle in der Praxis schnell Grenzen, deshalb ist es umso verdienstvoller, dass der Autor einen innovativen Weg zur Lösung des Problems mit den Mitteln des IR vorschlagen kann. Er verwendet das Latent Semantic Indexing, welches Dokumentrepräsentationen aus einem hochdimensionalen Vektorraum in einen niederdimensionalen abbildet, um die Anzahl der Knoten deutlich zu reduzieren. Damit ist eine sehr schöne Synthese gelungen, welche die eingangs angedeuteten formalen Übereinstimmungen zwischen Vektorraummodellen im IR und den NN aufzeigt und ausnutzt.
    Im abschließenden Kapitel des Buchs berichtet der Autor über eine Reihe von Experimenten, die im Kontext unterschiedlicher Anwendungen durchgeführt wurden. Die Evaluationen wurden sehr sorgfältig durchgeführt und werden kompetent kommentiert, so dass der Leser sich ein Bild von der Komplexität der Untersuchungen machen kann. Inhaltlich sind die Ergebnisse unterschiedlich, die Verwendung des NN-Ansatzes ist sehr abhängig von der Menge und Qualität des Trainingsmaterials (so sind die Ergebnisse auf der Cranfield-Kollektion wegen der geringen Anzahl von zur Verfügung stehenden Relevanzurteilen schlechter als die der traditionellen Verfahren). Das Experiment mit Werkstoffinformationen im Projekt WING ist eine eher traditionelle NN-Applikation: Aus Merkmalsvektoren soll auf die "Anwendungsähnlichkeit" von Werkstoffen geschlossen werden, was offenbar gut gelingt. Hier sind die konkurrierenden Verfahren aber weniger im IR zu vermuten, sondern eher im Gebiet des Data Mining. Die Versuche mit Textdaten sind Anregung, hier weitere, systematischere Untersuchungen vorzunehmen. So sollte z.B. nicht nur ein Vergleich mit klassischen One-shot IR-Verfahren durchgeführt werden, viel interessanter und aussagekräftiger ist die Gegenüberstellung von NN-Systemen und lernfähigen IR-Systemen, die z.B. über Relevance Feedback Wissen akkumulieren (vergleichbar den NN in der Trainingsphase). Am Ende könnte dann nicht nur ein einheitliches Modell stehen, sondern auch Erkenntnisse darüber, welches Lernverfahren wann vorzuziehen ist. Fazit: Das Buch ist ein hervorragendes Beispiel der "Schriften zur Informationswissenschaft", mit denen der HI (Hochschulverband für Informationswissenschaft) die Ergebnisse der informationswissenschaftlichen Forschung seit etlichen Jahren einem größerem Publikum vorstellt. Es bietet einen umfassenden Überblick zum dynamisch sich entwickelnden Gebiet der Neuronalen Netze im IR, die sich anschicken, ein "tolerantes Information Retrieval" zu ermöglichen."
    RSWK
    Information Retrieval / Neuronales Netz
    Series
    Schriften zur Informationswissenschaft; Bd.39
    Subject
    Information Retrieval / Neuronales Netz
  5. Elsweiler, D.; Kruschwitz, U.: Interaktives Information Retrieval (2023) 0.02
    0.016544105 = product of:
      0.082720526 = sum of:
        0.025163881 = weight(_text_:und in 797) [ClassicSimilarity], result of:
          0.025163881 = score(doc=797,freq=8.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.39180204 = fieldWeight in 797, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0625 = fieldNorm(doc=797)
        0.05197529 = weight(_text_:informationswissenschaft in 797) [ClassicSimilarity], result of:
          0.05197529 = score(doc=797,freq=2.0), product of:
            0.13053758 = queryWeight, product of:
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.028978055 = queryNorm
            0.3981634 = fieldWeight in 797, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.0625 = fieldNorm(doc=797)
        0.0055813594 = product of:
          0.011162719 = sum of:
            0.011162719 = weight(_text_:information in 797) [ClassicSimilarity], result of:
              0.011162719 = score(doc=797,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.21943474 = fieldWeight in 797, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0625 = fieldNorm(doc=797)
          0.5 = coord(1/2)
      0.2 = coord(3/15)
    
    Abstract
    Interaktives Information Retrieval (IIR) zielt darauf ab, die komplexen Interaktionen zwischen Nutzer*innen und Systemen im IR zu verstehen. Es gibt umfangreiche Literatur zu Themen wie der formalen Modellierung des Suchverhaltens, der Simulation der Interaktion, den interaktiven Funktionen zur Unterstützung des Suchprozesses und der Evaluierung interaktiver Suchsysteme. Dabei ist die interaktive Unterstützung nicht allein auf die Suche beschränkt, sondern hat ebenso die Hilfe bei Navigation und Exploration zum Ziel.
    Source
    Grundlagen der Informationswissenschaft. Hrsg.: Rainer Kuhlen, Dirk Lewandowski, Wolfgang Semar und Christa Womser-Hacker. 7., völlig neu gefasste Ausg
  6. Reimer, U.: Empfehlungssysteme (2023) 0.01
    0.013405803 = product of:
      0.067029014 = sum of:
        0.015569357 = weight(_text_:und in 519) [ClassicSimilarity], result of:
          0.015569357 = score(doc=519,freq=4.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.24241515 = fieldWeight in 519, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0546875 = fieldNorm(doc=519)
        0.04547838 = weight(_text_:informationswissenschaft in 519) [ClassicSimilarity], result of:
          0.04547838 = score(doc=519,freq=2.0), product of:
            0.13053758 = queryWeight, product of:
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.028978055 = queryNorm
            0.348393 = fieldWeight in 519, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.0546875 = fieldNorm(doc=519)
        0.005981274 = product of:
          0.011962548 = sum of:
            0.011962548 = weight(_text_:information in 519) [ClassicSimilarity], result of:
              0.011962548 = score(doc=519,freq=6.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.23515764 = fieldWeight in 519, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=519)
          0.5 = coord(1/2)
      0.2 = coord(3/15)
    
    Abstract
    Mit der wachsenden Informationsflut steigen die Anforderungen an Informationssysteme, aus der Menge potenziell relevanter Information die in einem bestimmten Kontext relevanteste zu selektieren. Empfehlungssysteme spielen hier eine besondere Rolle, da sie personalisiert - d. h. kontextspezifisch und benutzerindividuell - relevante Information herausfiltern können. Definition: Ein Empfehlungssystem empfiehlt einem Benutzer bzw. einer Benutzerin in einem definierten Kontext aus einer gegebenen Menge von Empfehlungsobjekten eine Teilmenge als relevant. Empfehlungssysteme machen Benutzer auf Objekte aufmerksam, die sie möglicherweise nie gefunden hätten, weil sie nicht danach gesucht hätten oder sie in der schieren Menge an insgesamt relevanter Information untergegangen wären.
    Source
    Grundlagen der Informationswissenschaft. Hrsg.: Rainer Kuhlen, Dirk Lewandowski, Wolfgang Semar und Christa Womser-Hacker. 7., völlig neu gefasste Ausg
  7. Fuhr, N.: Theorie des Information Retrieval I : Modelle (2004) 0.01
    0.011799767 = product of:
      0.058998834 = sum of:
        0.022241939 = weight(_text_:und in 2912) [ClassicSimilarity], result of:
          0.022241939 = score(doc=2912,freq=16.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.34630734 = fieldWeight in 2912, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2912)
        0.032484557 = weight(_text_:informationswissenschaft in 2912) [ClassicSimilarity], result of:
          0.032484557 = score(doc=2912,freq=2.0), product of:
            0.13053758 = queryWeight, product of:
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.028978055 = queryNorm
            0.24885213 = fieldWeight in 2912, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2912)
        0.004272339 = product of:
          0.008544678 = sum of:
            0.008544678 = weight(_text_:information in 2912) [ClassicSimilarity], result of:
              0.008544678 = score(doc=2912,freq=6.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.16796975 = fieldWeight in 2912, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2912)
          0.5 = coord(1/2)
      0.2 = coord(3/15)
    
    Abstract
    Information-Retrieval-(IR-)Modelle spezifizieren, wie zur einer gegebenen Anfrage die Antwortdokumente aus einer Dokumentenkollektion bestimmt werden. Dabei macht jedes Modell bestimmte Annahmen über die Struktur von Dokumenten und Anfragen und definiert dann die so genannte Retrievalfunktion, die das Retrievalgewicht eines Dokumentes bezüglich einer Anfrage bestimmt - im Falle des Booleschen Retrieval etwa eines der Gewichte 0 oder 1. Die Dokumente werden dann nach fallenden Gewichten sortiert und dem Benutzer präsentiert. Zunächst sollen hier einige grundlegende Charakteristika von Retrievalmodellen beschrieben werden, bevor auf die einzelnen Modelle näher eingegangen wird. Wie eingangs erwähnt, macht jedes Modell Annahmen über die Struktur von Dokumenten und Fragen. Ein Dokument kann entweder als Menge oder Multimenge von so genannten Termen aufgefasst werden, wobei im zweiten Fall das Mehrfachvorkommen berücksichtigt wird. Dabei subsummiert 'Term' einen Suchbegriff, der ein einzelnes Wort, ein mehrgliedriger Begriff oder auch ein komplexes Freitextmuster sein kann. Diese Dokumentrepräsentation wird wiederum auf eine so genannte Dokumentbeschreibung abgebildet, in der die einzelnen Terme gewichtet sein können; dies ist Aufgabe der in Kapitel B 5 beschriebenen Indexierungsmodelle. Im Folgenden unterscheiden wir nur zwischen ungewichteter (Gewicht eines Terms ist entweder 0 oderl) und gewichteter Indexierung (das Gewicht ist eine nichtnegative reelle Zahl). Ebenso wie bei Dokumenten können auch die Terme in der Frage entweder ungewichtet oder gewichtet sein. Daneben unterscheidet man zwischen linearen (Frage als Menge von Termen, ungewichtet oder gewichtet) und Booleschen Anfragen.
    Source
    Grundlagen der praktischen Information und Dokumentation. 5., völlig neu gefaßte Ausgabe. 2 Bde. Hrsg. von R. Kuhlen, Th. Seeger u. D. Strauch. Begründet von Klaus Laisiepen, Ernst Lutterbeck, Karl-Heinrich Meyer-Uhlenried. Bd.1: Handbuch zur Einführung in die Informationswissenschaft und -praxis
  8. Fuhr, N.: Modelle im Information Retrieval (2023) 0.01
    0.010711341 = product of:
      0.053556707 = sum of:
        0.017583797 = weight(_text_:und in 800) [ClassicSimilarity], result of:
          0.017583797 = score(doc=800,freq=10.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.27378 = fieldWeight in 800, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=800)
        0.032484557 = weight(_text_:informationswissenschaft in 800) [ClassicSimilarity], result of:
          0.032484557 = score(doc=800,freq=2.0), product of:
            0.13053758 = queryWeight, product of:
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.028978055 = queryNorm
            0.24885213 = fieldWeight in 800, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.0390625 = fieldNorm(doc=800)
        0.0034883497 = product of:
          0.0069766995 = sum of:
            0.0069766995 = weight(_text_:information in 800) [ClassicSimilarity], result of:
              0.0069766995 = score(doc=800,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.13714671 = fieldWeight in 800, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=800)
          0.5 = coord(1/2)
      0.2 = coord(3/15)
    
    Abstract
    Information-Retrieval-Modelle -(IR-Modelle) spezifizieren, wie zu einer gegebenen Anfrage die Antwortdokumente aus einer Dokumentenkollektion bestimmt werden. Ausgangsbasis jedes Modells sind dabei zunächst bestimmte Annahmen über die Wissensrepräsentation (s. Teil B Methoden und Systeme der Inhaltserschließung) von Fragen und Dokumenten. Hier bezeichnen wir die Elemente dieser Repräsentationen als Terme, wobei es aus der Sicht des Modells egal ist, wie diese Terme aus dem Dokument (und analog aus der von Benutzenden eingegebenen Anfrage) abgeleitet werden: Bei Texten werden hierzu häufig computerlinguistische Methoden eingesetzt, aber auch komplexere automatische oder manuelle Erschließungsverfahren können zur Anwendung kommen. Repräsentationen besitzen ferner eine bestimmte Struktur. Ein Dokument wird meist als Menge oder Multimenge von Termen aufgefasst, wobei im zweiten Fall das Mehrfachvorkommen berücksichtigt wird. Diese Dokumentrepräsentation wird wiederum auf eine sogenannte Dokumentbeschreibung abgebildet, in der die einzelnen Terme gewichtet sein können. Im Folgenden unterscheiden wir nur zwischen ungewichteter (Gewicht eines Terms ist entweder 0 oder 1) und gewichteter Indexierung (das Gewicht ist eine nichtnegative reelle Zahl). Analog dazu gibt es eine Fragerepräsentation; legt man eine natürlichsprachige Anfrage zugrunde, so kann man die o. g. Verfahren für Dokumenttexte anwenden. Alternativ werden auch grafische oder formale Anfragesprachen verwendet, wobei aus Sicht der Modelle insbesondere deren logische Struktur (etwa beim Booleschen Retrieval) relevant ist. Die Fragerepräsentation wird dann in eine Fragebeschreibung überführt.
    Source
    Grundlagen der Informationswissenschaft. Hrsg.: Rainer Kuhlen, Dirk Lewandowski, Wolfgang Semar und Christa Womser-Hacker. 7., völlig neu gefasste Ausg
  9. Lanvent, A.: Praxis - Windows-Suche und Indexdienst : Auch Windows kann bei der Suche den Turbo einlegen: mit dem Indexdienst (2004) 0.01
    0.008068134 = product of:
      0.060511 = sum of:
        0.023591138 = weight(_text_:und in 3316) [ClassicSimilarity], result of:
          0.023591138 = score(doc=3316,freq=18.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.3673144 = fieldWeight in 3316, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3316)
        0.036919862 = product of:
          0.073839724 = sum of:
            0.073839724 = weight(_text_:auskunft in 3316) [ClassicSimilarity], result of:
              0.073839724 = score(doc=3316,freq=2.0), product of:
                0.19680773 = queryWeight, product of:
                  6.7916126 = idf(docFreq=134, maxDocs=44218)
                  0.028978055 = queryNorm
                0.37518713 = fieldWeight in 3316, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  6.7916126 = idf(docFreq=134, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3316)
          0.5 = coord(1/2)
      0.13333334 = coord(2/15)
    
    Content
    "Für eine 4-GByte-Festplatte mit mehreren Partitionen sucht Windows XP im Volltextmodus weit über zwei Stunden. Der Indexdienst verkürzt diese Recherchedauer drastisch um mehr als eine Stunde. Im Gegensatz zu den Indizes der kommerziellen Suchwerkzeuge erfasst der Windows-Indexdienst nur Text-, HTML- und OfficeDateien über entsprechend integrierte Dokumentfilter. Da er weder ZIP-Files noch PDFs erkennt und auch keine E-Mails scannt, ist er mit komplexen Anfragen schnell überfordert. Standardmäßig ist der Indexdienst zwar installiert, aber nicht aktiviert. Das erledigt der Anwender über Start/Arbeitsplatz und den Befehl Verwalten aus dem Kontextmenü. In der Computerverwaltung aktiviert der Benutzer den Eintrag Indexdienst und wählt Starten aus dem Kontextmenü. Die zu indizierenden Elemente verwaltet Windows über so genannte Kataloge, mit deren Hilfe der User bestimmt, welche Dateitypen aus welchen Ordnern indiziert werden sollen. Zwar kann der Anwender neben dem Katalog System weitere Kataloge einrichten. Ausreichend ist es aber in den meisten Fällen, dem Katalog System weitere Indizierungsordner über die Befehle Neu/Verzeichnis hinzuzufügen. Klickt der Benutzer dann einen der Indizierungsordner mit der rechten Maustaste an und wählt Alle Tasks/Erneut prüfen (Vollständig), beginnt der mitunter langwierige Indizierungsprozess. Über den Eigenschaften-Dialog lässt sich allerdings der Leistungsverbrauch drosseln. Eine inkrementelle Indizierung, bei der Windows nur neue Elemente im jeweiligen Verzeichnis unter die Lupe nimmt, erreicht der Nutzer über Alle Tasks/Erneut prüfen (inkrementell). Einschalten lässt sich der Indexdienst auch über die Eigenschaften eines Ordners und den Befehl Erweitert/ln-halt für schnelle Dateisuche indizieren. Auskunft über die dem Indexdienst zugeordneten Ordner und Laufwerke erhalten Sie, wenn Sie die WindowsSuche starten und Weitere Optionen/ Andere Suchoptionen/Bevorzugte Einstellungen ändern/Indexdienst verwenden anklicken."
  10. Kanaeva, Z.: Ranking: Google und CiteSeer (2005) 0.01
    0.007509168 = product of:
      0.056318756 = sum of:
        0.01906849 = weight(_text_:und in 3276) [ClassicSimilarity], result of:
          0.01906849 = score(doc=3276,freq=6.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.2968967 = fieldWeight in 3276, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3276)
        0.037250265 = sum of:
          0.009767379 = weight(_text_:information in 3276) [ClassicSimilarity], result of:
            0.009767379 = score(doc=3276,freq=4.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.1920054 = fieldWeight in 3276, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0546875 = fieldNorm(doc=3276)
          0.027482886 = weight(_text_:22 in 3276) [ClassicSimilarity], result of:
            0.027482886 = score(doc=3276,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.2708308 = fieldWeight in 3276, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=3276)
      0.13333334 = coord(2/15)
    
    Abstract
    Im Rahmen des klassischen Information Retrieval wurden verschiedene Verfahren für das Ranking sowie die Suche in einer homogenen strukturlosen Dokumentenmenge entwickelt. Die Erfolge der Suchmaschine Google haben gezeigt dass die Suche in einer zwar inhomogenen aber zusammenhängenden Dokumentenmenge wie dem Internet unter Berücksichtigung der Dokumentenverbindungen (Links) sehr effektiv sein kann. Unter den von der Suchmaschine Google realisierten Konzepten ist ein Verfahren zum Ranking von Suchergebnissen (PageRank), das in diesem Artikel kurz erklärt wird. Darüber hinaus wird auf die Konzepte eines Systems namens CiteSeer eingegangen, welches automatisch bibliographische Angaben indexiert (engl. Autonomous Citation Indexing, ACI). Letzteres erzeugt aus einer Menge von nicht vernetzten wissenschaftlichen Dokumenten eine zusammenhängende Dokumentenmenge und ermöglicht den Einsatz von Banking-Verfahren, die auf den von Google genutzten Verfahren basieren.
    Date
    20. 3.2005 16:23:22
    Source
    Information - Wissenschaft und Praxis. 56(2005) H.2, S.87-92
  11. Mayr, P.: Re-Ranking auf Basis von Bradfordizing für die verteilte Suche in Digitalen Bibliotheken (2009) 0.01
    0.0064893416 = product of:
      0.04867006 = sum of:
        0.022682417 = weight(_text_:und in 4302) [ClassicSimilarity], result of:
          0.022682417 = score(doc=4302,freq=26.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.3531656 = fieldWeight in 4302, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.03125 = fieldNorm(doc=4302)
        0.025987646 = weight(_text_:informationswissenschaft in 4302) [ClassicSimilarity], result of:
          0.025987646 = score(doc=4302,freq=2.0), product of:
            0.13053758 = queryWeight, product of:
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.028978055 = queryNorm
            0.1990817 = fieldWeight in 4302, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.03125 = fieldNorm(doc=4302)
      0.13333334 = coord(2/15)
    
    Abstract
    Trotz großer Dokumentmengen für datenbankübergreifende Literaturrecherchen erwarten akademische Nutzer einen möglichst hohen Anteil an relevanten und qualitativen Dokumenten in den Trefferergebnissen. Insbesondere die Reihenfolge und Struktur der gelisteten Ergebnisse (Ranking) spielt, neben dem direkten Volltextzugriff auf die Dokumente, inzwischen eine entscheidende Rolle beim Design von Suchsystemen. Nutzer erwarten weiterhin flexible Informationssysteme, die es unter anderem zulassen, Einfluss auf das Ranking der Dokumente zu nehmen bzw. alternative Rankingverfahren zu verwenden. In dieser Arbeit werden zwei Mehrwertverfahren für Suchsysteme vorgestellt, die die typischen Probleme bei der Recherche nach wissenschaftlicher Literatur behandeln und damit die Recherchesituation messbar verbessern können. Die beiden Mehrwertdienste semantische Heterogenitätsbehandlung am Beispiel Crosskonkordanzen und Re-Ranking auf Basis von Bradfordizing, die in unterschiedlichen Phasen der Suche zum Einsatz kommen, werden hier ausführlich beschrieben und im empirischen Teil der Arbeit bzgl. der Effektivität für typische fachbezogene Recherchen evaluiert. Vorrangiges Ziel der Promotion ist es, zu untersuchen, ob das hier vorgestellte alternative Re-Rankingverfahren Bradfordizing im Anwendungsbereich bibliographischer Datenbanken zum einen operabel ist und zum anderen voraussichtlich gewinnbringend in Informationssystemen eingesetzt und dem Nutzer angeboten werden kann. Für die Tests wurden Fragestellungen und Daten aus zwei Evaluationsprojekten (CLEF und KoMoHe) verwendet. Die intellektuell bewerteten Dokumente stammen aus insgesamt sieben wissenschaftlichen Fachdatenbanken der Fächer Sozialwissenschaften, Politikwissenschaft, Wirtschaftswissenschaften, Psychologie und Medizin. Die Evaluation der Crosskonkordanzen (insgesamt 82 Fragestellungen) zeigt, dass sich die Retrievalergebnisse signifikant für alle Crosskonkordanzen verbessern; es zeigt sich zudem, dass interdisziplinäre Crosskonkordanzen den stärksten (positiven) Effekt auf die Suchergebnisse haben. Die Evaluation des Re-Ranking nach Bradfordizing (insgesamt 164 Fragestellungen) zeigt, dass die Dokumente der Kernzone (Kernzeitschriften) für die meisten Testreihen eine signifikant höhere Precision als Dokumente der Zone 2 und Zone 3 (Peripheriezeitschriften) ergeben. Sowohl für Zeitschriften als auch für Monographien kann dieser Relevanzvorteil nach Bradfordizing auf einer sehr breiten Basis von Themen und Fragestellungen an zwei unabhängigen Dokumentkorpora empirisch nachgewiesen werden.
    Imprint
    Berlin : Humboldt-Universität zu Berlin / Institut für Bibliotheks- und Informationswissenschaft
  12. Tober, M.; Hennig, L.; Furch, D.: SEO Ranking-Faktoren und Rang-Korrelationen 2014 : Google Deutschland (2014) 0.01
    0.005845145 = product of:
      0.043838583 = sum of:
        0.028134076 = weight(_text_:und in 1484) [ClassicSimilarity], result of:
          0.028134076 = score(doc=1484,freq=10.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.438048 = fieldWeight in 1484, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0625 = fieldNorm(doc=1484)
        0.015704507 = product of:
          0.031409014 = sum of:
            0.031409014 = weight(_text_:22 in 1484) [ClassicSimilarity], result of:
              0.031409014 = score(doc=1484,freq=2.0), product of:
                0.101476215 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.028978055 = queryNorm
                0.30952093 = fieldWeight in 1484, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1484)
          0.5 = coord(1/2)
      0.13333334 = coord(2/15)
    
    Abstract
    Dieses Whitepaper beschäftigt sich mit der Definition und Bewertung von Faktoren, die eine hohe Rangkorrelation-Koeffizienz mit organischen Suchergebnissen aufweisen und dient dem Zweck der tieferen Analyse von Suchmaschinen-Algorithmen. Die Datenerhebung samt Auswertung bezieht sich auf Ranking-Faktoren für Google-Deutschland im Jahr 2014. Zusätzlich wurden die Korrelationen und Faktoren unter anderem anhand von Durchschnitts- und Medianwerten sowie Entwicklungstendenzen zu den Vorjahren hinsichtlich ihrer Relevanz für vordere Suchergebnis-Positionen interpretiert.
    Date
    13. 9.2014 14:45:22
  13. Fuhr, N.: Rankingexperimente mit gewichteter Indexierung (1986) 0.01
    0.0056572896 = product of:
      0.04242967 = sum of:
        0.018872911 = weight(_text_:und in 2051) [ClassicSimilarity], result of:
          0.018872911 = score(doc=2051,freq=2.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.29385152 = fieldWeight in 2051, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.09375 = fieldNorm(doc=2051)
        0.023556758 = product of:
          0.047113515 = sum of:
            0.047113515 = weight(_text_:22 in 2051) [ClassicSimilarity], result of:
              0.047113515 = score(doc=2051,freq=2.0), product of:
                0.101476215 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.028978055 = queryNorm
                0.46428138 = fieldWeight in 2051, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=2051)
          0.5 = coord(1/2)
      0.13333334 = coord(2/15)
    
    Date
    14. 6.2015 22:12:56
    Source
    Automatische Indexierung zwischen Forschung und Anwendung, Hrsg.: G. Lustig
  14. Mandl, T.: Web- und Multimedia-Dokumente : Neuere Entwicklungen bei der Evaluierung von Information Retrieval Systemen (2003) 0.01
    0.0052858987 = product of:
      0.039644238 = sum of:
        0.030819334 = weight(_text_:und in 1734) [ClassicSimilarity], result of:
          0.030819334 = score(doc=1734,freq=12.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.47985753 = fieldWeight in 1734, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0625 = fieldNorm(doc=1734)
        0.008824904 = product of:
          0.017649809 = sum of:
            0.017649809 = weight(_text_:information in 1734) [ClassicSimilarity], result of:
              0.017649809 = score(doc=1734,freq=10.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.3469568 = fieldWeight in 1734, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1734)
          0.5 = coord(1/2)
      0.13333334 = coord(2/15)
    
    Abstract
    Die Menge an Daten im Internet steigt weiter rapide an. Damit wächst auch der Bedarf an qualitativ hochwertigen Information Retrieval Diensten zur Orientierung und problemorientierten Suche. Die Entscheidung für die Benutzung oder Beschaffung von Information Retrieval Software erfordert aussagekräftige Evaluierungsergebnisse. Dieser Beitrag stellt neuere Entwicklungen bei der Evaluierung von Information Retrieval Systemen vor und zeigt den Trend zu Spezialisierung und Diversifizierung von Evaluierungsstudien, die den Realitätsgrad derErgebnisse erhöhen. DerSchwerpunkt liegt auf dem Retrieval von Fachtexten, Internet-Seiten und Multimedia-Objekten.
    Source
    Information - Wissenschaft und Praxis. 54(2003) H.4, S.203-210
  15. Dreßler, H.: Fuzzy Information Retrieval (2008) 0.00
    0.004771384 = product of:
      0.035785377 = sum of:
        0.027240701 = weight(_text_:und in 2300) [ClassicSimilarity], result of:
          0.027240701 = score(doc=2300,freq=6.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.42413816 = fieldWeight in 2300, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.078125 = fieldNorm(doc=2300)
        0.008544678 = product of:
          0.017089356 = sum of:
            0.017089356 = weight(_text_:information in 2300) [ClassicSimilarity], result of:
              0.017089356 = score(doc=2300,freq=6.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.3359395 = fieldWeight in 2300, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2300)
          0.5 = coord(1/2)
      0.13333334 = coord(2/15)
    
    Abstract
    Nach einer Erläuterung der Grundlagen der Fuzzylogik wird das Prinzip der unscharfen Suche dargestellt und die Unterschiede zum herkömmlichen Information Retrieval beschrieben. Am Beispiel der Suche nach Steinen für ein Mauerwerk wird gezeigt, wie eine unscharfe Suche in der D&WFuzzydatenbank erfolgreich durchgeführt werden kann und zu eindeutigen Ergebnissen führt.
    Source
    Information - Wissenschaft und Praxis. 59(2008) H.6/7, S.351-352
  16. Fuhr, N.: Zur Überwindung der Diskrepanz zwischen Retrievalforschung und -praxis (1990) 0.00
    0.0042774263 = product of:
      0.032080695 = sum of:
        0.028134076 = weight(_text_:und in 6625) [ClassicSimilarity], result of:
          0.028134076 = score(doc=6625,freq=10.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.438048 = fieldWeight in 6625, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0625 = fieldNorm(doc=6625)
        0.0039466172 = product of:
          0.0078932345 = sum of:
            0.0078932345 = weight(_text_:information in 6625) [ClassicSimilarity], result of:
              0.0078932345 = score(doc=6625,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.1551638 = fieldWeight in 6625, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6625)
          0.5 = coord(1/2)
      0.13333334 = coord(2/15)
    
    Abstract
    In diesem Beitrag werden einige Forschungsergebnisse des Information Retrieval vorgestellt, die unmittelbar zur Verbesserung der Retrievalqualität für bereits existierende Datenbanken eingesetzt werden können: Linguistische Algorithmen zur Grund- und Stammformreduktion unterstützen die Suche nach Flexions- und Derivationsformen von Suchtermen. Rankingalgorithmen, die Frage- und Dokumentterme gewichten, führen zu signifikant besseren Retrievalergebnissen als beim Booleschen Retrieval. Durch Relevance Feedback können die Retrievalqualität weiter gesteigert und außerdem der Benutzer bei der sukzessiven Modifikation seiner Frageformulierung unterstützt werden. Es wird eine benutzerfreundliche Bedienungsoberfläche für ein System vorgestellt, das auf diesen Konzepten basiert.
  17. Mayr, P.: Bradfordizing als Re-Ranking-Ansatz in Literaturinformationssystemen (2011) 0.00
    0.0034765953 = product of:
      0.026074464 = sum of:
        0.0231145 = weight(_text_:und in 4292) [ClassicSimilarity], result of:
          0.0231145 = score(doc=4292,freq=12.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.35989314 = fieldWeight in 4292, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.046875 = fieldNorm(doc=4292)
        0.002959963 = product of:
          0.005919926 = sum of:
            0.005919926 = weight(_text_:information in 4292) [ClassicSimilarity], result of:
              0.005919926 = score(doc=4292,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.116372846 = fieldWeight in 4292, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4292)
          0.5 = coord(1/2)
      0.13333334 = coord(2/15)
    
    Abstract
    In diesem Artikel wird ein Re-Ranking-Ansatz für Suchsysteme vorgestellt, der die Recherche nach wissenschaftlicher Literatur messbar verbessern kann. Das nichttextorientierte Rankingverfahren Bradfordizing wird eingeführt und anschließend im empirischen Teil des Artikels bzgl. der Effektivität für typische fachbezogene Recherche-Topics evaluiert. Dem Bradford Law of Scattering (BLS), auf dem Bradfordizing basiert, liegt zugrunde, dass sich die Literatur zu einem beliebigen Fachgebiet bzw. -thema in Zonen unterschiedlicher Dokumentenkonzentration verteilt. Dem Kernbereich mit hoher Konzentration der Literatur folgen Bereiche mit mittlerer und geringer Konzentration. Bradfordizing sortiert bzw. rankt eine Dokumentmenge damit nach den sogenannten Kernzeitschriften. Der Retrievaltest mit 164 intellektuell bewerteten Fragestellungen in Fachdatenbanken aus den Bereichen Sozial- und Politikwissenschaften, Wirtschaftswissenschaften, Psychologie und Medizin zeigt, dass die Dokumente der Kernzeitschriften signifikant häufiger relevant bewertet werden als Dokumente der zweiten Dokumentzone bzw. den Peripherie-Zeitschriften. Die Implementierung von Bradfordizing und weiteren Re-Rankingverfahren liefert unmittelbare Mehrwerte für den Nutzer.
    Source
    Information - Wissenschaft und Praxis. 62(2011) H.1, S.3-10
  18. Behnert, C.; Plassmeier, K.; Borst, T.; Lewandowski, D.: Evaluierung von Rankingverfahren für bibliothekarische Informationssysteme (2019) 0.00
    0.003396225 = product of:
      0.025471685 = sum of:
        0.022018395 = weight(_text_:und in 5023) [ClassicSimilarity], result of:
          0.022018395 = score(doc=5023,freq=8.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.34282678 = fieldWeight in 5023, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5023)
        0.00345329 = product of:
          0.00690658 = sum of:
            0.00690658 = weight(_text_:information in 5023) [ClassicSimilarity], result of:
              0.00690658 = score(doc=5023,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.13576832 = fieldWeight in 5023, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5023)
          0.5 = coord(1/2)
      0.13333334 = coord(2/15)
    
    Abstract
    Dieser Beitrag beschreibt eine Studie zur Entwicklung und Evaluierung von Rankingverfahren für bibliothekarische Informationssysteme. Dazu wurden mögliche Faktoren für das Relevanzranking ausgehend von den Verfahren in Websuchmaschinen identifiziert, auf den Bibliothekskontext übertragen und systematisch evaluiert. Mithilfe eines Testsystems, das auf dem ZBW-Informationsportal EconBiz und einer web-basierten Software zur Evaluierung von Suchsystemen aufsetzt, wurden verschiedene Relevanzfaktoren (z. B. Popularität in Verbindung mit Aktualität) getestet. Obwohl die getesteten Rankingverfahren auf einer theoretischen Ebene divers sind, konnten keine einheitlichen Verbesserungen gegenüber den Baseline-Rankings gemessen werden. Die Ergebnisse deuten darauf hin, dass eine Adaptierung des Rankings auf individuelle Nutzer bzw. Nutzungskontexte notwendig sein könnte, um eine höhere Performance zu erzielen.
    Source
    Information - Wissenschaft und Praxis. 70(2019) H.1, S.14-23
  19. Wilhelmy, A.: Phonetische Ähnlichkeitssuche in Datenbanken (1991) 0.00
    0.0032080694 = product of:
      0.02406052 = sum of:
        0.021100556 = weight(_text_:und in 5684) [ClassicSimilarity], result of:
          0.021100556 = score(doc=5684,freq=10.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.328536 = fieldWeight in 5684, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.046875 = fieldNorm(doc=5684)
        0.002959963 = product of:
          0.005919926 = sum of:
            0.005919926 = weight(_text_:information in 5684) [ClassicSimilarity], result of:
              0.005919926 = score(doc=5684,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.116372846 = fieldWeight in 5684, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5684)
          0.5 = coord(1/2)
      0.13333334 = coord(2/15)
    
    Abstract
    In dialoggesteuerten Systemen zur Informationswiedergewinnung (Information Retrieval Systems, IRS) kann man - vergröbernd - das Wechselspiel zwischen Mensch und Computer als iterativen Prozess zur Erhöhung von Genauigkeit (Precision) auf der einen und Vollständigkeit (Recall) der Nachweise auf der anderen Seite verstehen. Vorgestellt wird ein maschinell anwendbares Verfahren, das auf phonologische Untersuchungen des Sprachwissenschaftlers Nikolaj S. Trubetzkoy (1890-1938) zurückgeht. In den Grundzügen kann es erheblich zur Verbesserung der Nachweisvollständigkeit beitragen. Dadurch, daß es die 'Ähnlichkeitsumgebungen' von Suchbegriffen in die Recherche mit einbezieht, zeigt es sich vor allem für Systeme mit koordinativer maschineller Indexierung als vorteilhaft. Bei alphabetischen Begriffen erweist sich die Einführung eines solchen zunächst nur auf den Benutzer hin orientierten Verfahrens auch aus technischer Sicht als günstig, da damit die Anzahl der Zugriffe bei den Suchvorgängen auch für große Datenvolumina niedrig gehalten werden kann
    Source
    Bibliotheken mit und ohne Grenzen: Informationsgesellschaft und Bibliothek. Der österreichische Bibliothekartag 1990, Bregenz, 4.-8.9.1990, Vorträge und Kommissionssitzungen
  20. Stock, M.; Stock, W.G.: Internet-Suchwerkzeuge im Vergleich (IV) : Relevance Ranking nach "Popularität" von Webseiten: Google (2001) 0.00
    0.0025739179 = product of:
      0.019304384 = sum of:
        0.01634442 = weight(_text_:und in 5771) [ClassicSimilarity], result of:
          0.01634442 = score(doc=5771,freq=6.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.2544829 = fieldWeight in 5771, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.046875 = fieldNorm(doc=5771)
        0.002959963 = product of:
          0.005919926 = sum of:
            0.005919926 = weight(_text_:information in 5771) [ClassicSimilarity], result of:
              0.005919926 = score(doc=5771,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.116372846 = fieldWeight in 5771, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5771)
          0.5 = coord(1/2)
      0.13333334 = coord(2/15)
    
    Abstract
    In unserem Retrievaltest von Suchwerkzeugen im World Wide Web (Password 11/2000) schnitt die Suchmaschine Google am besten ab. Im Vergleich zu anderen Search Engines setzt Google kaum auf Informationslinguistik, sondern auf Algorithmen, die sich aus den Besonderheiten der Web-Dokumente ableiten lassen. Kernstück der informationsstatistischen Technik ist das "PageRank"- Verfahren (benannt nach dem Entwickler Larry Page), das aus der Hypertextstruktur des Web die "Popularität" von Seiten anhand ihrer ein- und ausgehenden Links berechnet. Google besticht durch das Angebot intuitiv verstehbarer Suchbildschirme sowie durch einige sehr nützliche "Kleinigkeiten" wie die Angabe des Rangs einer Seite, Highlighting, Suchen in der Seite, Suchen innerhalb eines Suchergebnisses usw., alles verstaut in einer eigenen Befehlsleiste innerhalb des Browsers. Ähnlich wie RealNames bietet Google mit dem Produkt "AdWords" den Aufkauf von Suchtermen an. Nach einer Reihe von nunmehr vier Password-Artikeln über InternetSuchwerkzeugen im Vergleich wollen wir abschließend zu einer Bewertung kommen. Wie ist der Stand der Technik bei Directories und Search Engines aus informationswissenschaftlicher Sicht einzuschätzen? Werden die "typischen" Internetnutzer, die ja in der Regel keine Information Professionals sind, adäquat bedient? Und können auch Informationsfachleute von den Suchwerkzeugen profitieren?