Search (6 results, page 1 of 1)

  • × type_ss:"el"
  • × theme_ss:"Auszeichnungssprachen"
  1. Pott, O.; Wielage, G.: XML Praxis und Referenz (2000) 0.01
    0.011914677 = product of:
      0.08936007 = sum of:
        0.05993675 = weight(_text_:buch in 6985) [ClassicSimilarity], result of:
          0.05993675 = score(doc=6985,freq=6.0), product of:
            0.13472971 = queryWeight, product of:
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.028978055 = queryNorm
            0.4448666 = fieldWeight in 6985, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6985)
        0.02942332 = weight(_text_:und in 6985) [ClassicSimilarity], result of:
          0.02942332 = score(doc=6985,freq=28.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.45812157 = fieldWeight in 6985, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6985)
      0.13333334 = coord(2/15)
    
    Abstract
    Mit wohl einem der faszinierendsten und innovativsten Themen der Gegenwart und allernächsten Zukunft des Internet befasst sich dieses Buch: XML. Nie als HTML-Ersatz gedacht, erweitert es das Spektrum möglicher Anwendungen im Internet einerseits und schließt andererseits klaffende Lücken und technische Unzulänglichkeiten. Keine Frage: Wer sich als Web-Administrator, Autor eines privaten oder geschäftlichen Internet-Auftritts, Intranet-Verantwortlicher oder -Anwender mit HTML auseinandergesetzt hat, wird in Zukunft auch um XML nicht umhinkommen. Auch außerhalb der Online-Szene hat sich XML bereits heute als richtungsweisender Standard des Dokumentenmanagements etabliert. Dieses Buch bietet das komplette XML- und XSL-Wissen auf praxisnahem und hohem Niveau. Neben einer fundierten Einführung finden Sie das komplette Know-how, stets belegt und beschrieben durch Praxisanwendungen, das Sie für die Arbeit mit XML benötigen. Mit viel Engagement und Zeitaufwand haben uns Firmen, Freunde, Mitarbeiter und der Markt & Technik-Verlag unterstützt. Unser Dank gilt daher all jenen, die ihren Anteil am Gelingen dieses Buches hatten und noch haben werden. In der zweiten völlig aktualisierten und stark erweiterten Ausgabe dieses Buches konnten wir zahlreiche positive Rückmeldungen von Leserinnen und Lesern berücksichtigen. So greift dieses Buch jetzt auch neueste Entwicklungen aus der XML-Entwicklung auf. Dazu gehören beispielsweise SMIL und WML (WAP) oder die erst im Dezember 1999 veröffentlichte X-HTML Empfehlung.
  2. Lee, M.; Baillie, S.; Dell'Oro, J.: TML: a Thesaural Markpup Language (200?) 0.00
    0.0018163302 = product of:
      0.013622476 = sum of:
        0.009436456 = weight(_text_:und in 1622) [ClassicSimilarity], result of:
          0.009436456 = score(doc=1622,freq=2.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.14692576 = fieldWeight in 1622, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.046875 = fieldNorm(doc=1622)
        0.0041860198 = product of:
          0.0083720395 = sum of:
            0.0083720395 = weight(_text_:information in 1622) [ClassicSimilarity], result of:
              0.0083720395 = score(doc=1622,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.16457605 = fieldWeight in 1622, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1622)
          0.5 = coord(1/2)
      0.13333334 = coord(2/15)
    
    Abstract
    Thesauri are used to provide controlled vocabularies for resource classification. Their use can greatly assist document discovery because thesauri man date a consistent shared terminology for describing documents. A particular thesauras classifies documents according to an information community's needs. As a result, there are many different thesaural schemas. This has led to a proliferation of schema-specific thesaural systems. In our research, we exploit schematic regularities to design a generic thesaural ontology and specfiy it as a markup language. The language provides a common representational framework in which to encode the idiosyncrasies of specific thesauri. This approach has several advantages: it offers consistent syntax and semantics in which to express thesauri; it allows general purpose thesaural applications to leverage many thesauri; and it supports a single thesaural user interface by which information communities can consistently organise, score and retrieve electronic documents.
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  3. Miller, D.R.: XML: Libraries' strategic opportunity (2001) 0.00
    2.848226E-4 = product of:
      0.004272339 = sum of:
        0.004272339 = product of:
          0.008544678 = sum of:
            0.008544678 = weight(_text_:information in 1467) [ClassicSimilarity], result of:
              0.008544678 = score(doc=1467,freq=6.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.16796975 = fieldWeight in 1467, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1467)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    XML (eXtensible Markup Language) is fast gaining favor as the universal format for data and document exchange -- in effect becoming the lingua franca of the Information Age. Currently, "library information" is at a particular disadvantage on the rapidly evolving World Wide Web. Why? Despite libraries'explorations of web catalogs, scanning projects, digital data repositories, and creation of web pages galore, there remains a digital divide. The core of libraries' data troves are stored in proprietary formats of integrated library systems (ILS) and in the complex and arcane MARC formats -- both restricted chiefly to the province of technical services and systems librarians. Even they are hard-pressed to extract and integrate this wealth of data with resources from outside this rarefied environment. Segregation of library information underlies many difficulties: producing standard bibliographic citations from MARC data, automatically creating new materials lists (including new web resources) on a particular topic, exchanging data with our vendors, and even migrating from one ILS to another. Why do we continue to hobble our potential by embracing these self-imposed limitations? Most ILSs began in libraries, which soon recognized the pitfalls of do-it-yourself solutions. Thus, we wisely anticipated the necessity for standards. However, with the advent of the web, we soon found "our" collections and a flood of new resources appearing in digital format on opposite sides of the divide. If we do not act quickly to integrate library resources with mainstream web resources, we are in grave danger of becoming marginalized
  4. Pepper, S.; Moore, G.; TopicMaps.Org Authoring Group: XML Topic Maps (XTM) 1.0 : TopicMaps.Org Specification (2001) 0.00
    2.79068E-4 = product of:
      0.0041860198 = sum of:
        0.0041860198 = product of:
          0.0083720395 = sum of:
            0.0083720395 = weight(_text_:information in 1623) [ClassicSimilarity], result of:
              0.0083720395 = score(doc=1623,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.16457605 = fieldWeight in 1623, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1623)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    This specification provides a model and grammar for representing the structure of information resources used to define topics, and the associations (relationships) between topics. Names, resources, and relationships are said to be characteristics of abstract subjects, which are called topics. Topics have their characteristics within scopes: i.e. the limited contexts within which the names and resources are regarded as their name, resource, and relationship characteristics. One or more interrelated documents employing this grammar is called a topic map.TopicMaps.Org is an independent consortium of parties developing the applicability of the topic map paradigm [ISO13250] to the World Wide Web by leveraging the XML family of specifications. This specification describes version 1.0 of XML Topic Maps (XTM) 1.0 [XTM], an abstract model and XML grammar for interchanging Web-based topic maps, written by the members of the TopicMaps.Org Authoring Group. More information on XTM and TopicMaps.Org is available at http://www.topicmaps.org/about.html. All versions of the XTM Specification are permanently licensed to the public, as provided by the Charter of TopicMaps.Org.
  5. Mayo, D.; Bowers, K.: ¬The devil's shoehorn : a case study of EAD to ArchivesSpace migration at a large university (2017) 0.00
    2.3255666E-4 = product of:
      0.0034883497 = sum of:
        0.0034883497 = product of:
          0.0069766995 = sum of:
            0.0069766995 = weight(_text_:information in 3373) [ClassicSimilarity], result of:
              0.0069766995 = score(doc=3373,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.13714671 = fieldWeight in 3373, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3373)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    A band of archivists and IT professionals at Harvard took on a project to convert nearly two million descriptions of archival collection components from marked-up text into the ArchivesSpace archival metadata management system. Starting in the mid-1990s, Harvard was an alpha implementer of EAD, an SGML (later XML) text markup language for electronic inventories, indexes, and finding aids that archivists use to wend their way through the sometimes quirky filing systems that bureaucracies establish for their records or the utter chaos in which some individuals keep their personal archives. These pathfinder documents, designed to cope with messy reality, can themselves be difficult to classify. Portions of them are rigorously structured, while other parts are narrative. Early documents predate the establishment of the standard; many feature idiosyncratic encoding that had been through several machine conversions, while others were freshly encoded and fairly consistent. In this paper, we will cover the practical and technical challenges involved in preparing a large (900MiB) corpus of XML for ingest into an open-source archival information system (ArchivesSpace). This case study will give an overview of the project, discuss problem discovery and problem solving, and address the technical challenges, analysis, solutions, and decisions and provide information on the tools produced and lessons learned. The authors of this piece are Kate Bowers, Collections Services Archivist for Metadata, Systems, and Standards at the Harvard University Archive, and Dave Mayo, a Digital Library Software Engineer for Harvard's Library and Technology Services. Kate was heavily involved in both metadata analysis and later problem solving, while Dave was the sole full-time developer assigned to the migration project.
  6. Miller, E.; Schloss. B.; Lassila, O.; Swick, R.R.: Resource Description Framework (RDF) : model and syntax (1997) 0.00
    1.6278966E-4 = product of:
      0.0024418447 = sum of:
        0.0024418447 = product of:
          0.0048836893 = sum of:
            0.0048836893 = weight(_text_:information in 5903) [ClassicSimilarity], result of:
              0.0048836893 = score(doc=5903,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.0960027 = fieldWeight in 5903, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=5903)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    RDF - the Resource Description Framework - is a foundation for processing metadata; it provides interoperability between applications that exchange machine-understandable information on the Web. RDF emphasizes facilities to enable automated processing of Web resources. RDF metadata can be used in a variety of application areas; for example: in resource discovery to provide better search engine capabilities; in cataloging for describing the content and content relationships available at a particular Web site, page, or digital library; by intelligent software agents to facilitate knowledge sharing and exchange; in content rating; in describing collections of pages that represent a single logical "document"; for describing intellectual property rights of Web pages, and in many others. RDF with digital signatures will be key to building the "Web of Trust" for electronic commerce, collaboration, and other applications. Metadata is "data about data" or specifically in the context of RDF "data describing web resources." The distinction between "data" and "metadata" is not an absolute one; it is a distinction created primarily by a particular application. Many times the same resource will be interpreted in both ways simultaneously. RDF encourages this view by using XML as the encoding syntax for the metadata. The resources being described by RDF are, in general, anything that can be named via a URI. The broad goal of RDF is to define a mechanism for describing resources that makes no assumptions about a particular application domain, nor defines the semantics of any application domain. The definition of the mechanism should be domain neutral, yet the mechanism should be suitable for describing information about any domain. This document introduces a model for representing RDF metadata and one syntax for expressing and transporting this metadata in a manner that maximizes the interoperability of independently developed web servers and clients. The syntax described in this document is best considered as a "serialization syntax" for the underlying RDF representation model. The serialization syntax is XML, XML being the W3C's work-in-progress to define a richer Web syntax for a variety of applications. RDF and XML are complementary; there will be alternate ways to represent the same RDF data model, some more suitable for direct human authoring. Future work may lead to including such alternatives in this document.