Search (34 results, page 1 of 2)

  • × theme_ss:"Semantische Interoperabilität"
  • × theme_ss:"Semantic Web"
  1. Siwecka, D.: Knowledge organization systems used in European national libraries towards interoperability of the semantic Web (2018) 0.00
    0.0041259546 = product of:
      0.041259546 = sum of:
        0.0098013915 = product of:
          0.019602783 = sum of:
            0.019602783 = weight(_text_:29 in 4815) [ClassicSimilarity], result of:
              0.019602783 = score(doc=4815,freq=2.0), product of:
                0.063047156 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.017922899 = queryNorm
                0.31092256 = fieldWeight in 4815, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4815)
          0.5 = coord(1/2)
        0.016985506 = weight(_text_:u in 4815) [ClassicSimilarity], result of:
          0.016985506 = score(doc=4815,freq=2.0), product of:
            0.058687534 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.017922899 = queryNorm
            0.28942272 = fieldWeight in 4815, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.0625 = fieldNorm(doc=4815)
        0.014472648 = product of:
          0.02170897 = sum of:
            0.0021061886 = weight(_text_:a in 4815) [ClassicSimilarity], result of:
              0.0021061886 = score(doc=4815,freq=2.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.10191591 = fieldWeight in 4815, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4815)
            0.019602783 = weight(_text_:29 in 4815) [ClassicSimilarity], result of:
              0.019602783 = score(doc=4815,freq=2.0), product of:
                0.063047156 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.017922899 = queryNorm
                0.31092256 = fieldWeight in 4815, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4815)
          0.6666667 = coord(2/3)
      0.1 = coord(3/30)
    
    Date
    18. 1.2019 18:46:29
    Source
    Challenges and opportunities for knowledge organization in the digital age: proceedings of the Fifteenth International ISKO Conference, 9-11 July 2018, Porto, Portugal / organized by: International Society for Knowledge Organization (ISKO), ISKO Spain and Portugal Chapter, University of Porto - Faculty of Arts and Humanities, Research Centre in Communication, Information and Digital Culture (CIC.digital) - Porto. Eds.: F. Ribeiro u. M.E. Cerveira
    Type
    a
  2. Linked data and user interaction : the road ahead (2015) 0.00
    0.0017684965 = product of:
      0.017684964 = sum of:
        0.0064484817 = product of:
          0.012896963 = sum of:
            0.012896963 = weight(_text_:online in 2552) [ClassicSimilarity], result of:
              0.012896963 = score(doc=2552,freq=4.0), product of:
                0.05439423 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.017922899 = queryNorm
                0.23710167 = fieldWeight in 2552, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2552)
          0.5 = coord(1/2)
        0.010615941 = weight(_text_:u in 2552) [ClassicSimilarity], result of:
          0.010615941 = score(doc=2552,freq=2.0), product of:
            0.058687534 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.017922899 = queryNorm
            0.1808892 = fieldWeight in 2552, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2552)
        6.205418E-4 = product of:
          0.0018616254 = sum of:
            0.0018616254 = weight(_text_:a in 2552) [ClassicSimilarity], result of:
              0.0018616254 = score(doc=2552,freq=4.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.090081796 = fieldWeight in 2552, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2552)
          0.33333334 = coord(1/3)
      0.1 = coord(3/30)
    
    Abstract
    This collection of research papers provides extensive information on deploying services, concepts, and approaches for using open linked data from libraries and other cultural heritage institutions. With a special emphasis on how libraries and other cultural heritage institutions can create effective end user interfaces using open, linked data or other datasets. These papers are essential reading for any one interesting in user interface design or the semantic web.
    Content
    H. Frank Cervone: Linked data and user interaction : an introduction -- Paola Di Maio: Linked Data Beyond Libraries Towards Universal Interfaces and Knowledge Unification -- Emmanuelle Bermes: Following the user's flow in the Digital Pompidou -- Patrick Le Bceuf: Customized OPACs on the Semantic Web : the OpenCat prototype -- Ryan Shaw, Patrick Golden and Michael Buckland: Using linked library data in working research notes -- Timm Heuss, Bernhard Humm.Tilman Deuschel, Torsten Frohlich, Thomas Herth and Oliver Mitesser: Semantically guided, situation-aware literature research -- Niklas Lindstrom and Martin Malmsten: Building interfaces on a networked graph -- Natasha Simons, Arve Solland and Jan Hettenhausen: Griffith Research Hub. Vgl.: http://d-nb.info/1032799889.
    Editor
    Cervone, H.F. u. L.G. Svensson
    RSWK
    Linked Data / Online-Katalog / Semantic Web / Benutzeroberfläche / Kongress / Singapur <2013>
    Subject
    Linked Data / Online-Katalog / Semantic Web / Benutzeroberfläche / Kongress / Singapur <2013>
  3. Stamou, G.; Chortaras, A.: Ontological query answering over semantic data (2017) 0.00
    0.0016570432 = product of:
      0.024855647 = sum of:
        0.0098013915 = product of:
          0.019602783 = sum of:
            0.019602783 = weight(_text_:29 in 3926) [ClassicSimilarity], result of:
              0.019602783 = score(doc=3926,freq=2.0), product of:
                0.063047156 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.017922899 = queryNorm
                0.31092256 = fieldWeight in 3926, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3926)
          0.5 = coord(1/2)
        0.015054256 = product of:
          0.022581384 = sum of:
            0.0029786006 = weight(_text_:a in 3926) [ClassicSimilarity], result of:
              0.0029786006 = score(doc=3926,freq=4.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.14413087 = fieldWeight in 3926, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3926)
            0.019602783 = weight(_text_:29 in 3926) [ClassicSimilarity], result of:
              0.019602783 = score(doc=3926,freq=2.0), product of:
                0.063047156 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.017922899 = queryNorm
                0.31092256 = fieldWeight in 3926, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3926)
          0.6666667 = coord(2/3)
      0.06666667 = coord(2/30)
    
    Pages
    S.29-63
    Type
    a
  4. Panzer, M.: Relationships, spaces, and the two faces of Dewey (2008) 0.00
    0.001416405 = product of:
      0.021246074 = sum of:
        0.020039603 = weight(_text_:post in 2127) [ClassicSimilarity], result of:
          0.020039603 = score(doc=2127,freq=2.0), product of:
            0.10409636 = queryWeight, product of:
              5.808009 = idf(docFreq=360, maxDocs=44218)
              0.017922899 = queryNorm
            0.19251013 = fieldWeight in 2127, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.808009 = idf(docFreq=360, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2127)
        0.001206471 = product of:
          0.003619413 = sum of:
            0.003619413 = weight(_text_:a in 2127) [ClassicSimilarity], result of:
              0.003619413 = score(doc=2127,freq=42.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.17513901 = fieldWeight in 2127, product of:
                  6.4807405 = tf(freq=42.0), with freq of:
                    42.0 = termFreq=42.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=2127)
          0.33333334 = coord(1/3)
      0.06666667 = coord(2/30)
    
    Content
    "When dealing with a large-scale and widely-used knowledge organization system like the Dewey Decimal Classification, we often tend to focus solely on the organization aspect, which is closely intertwined with editorial work. This is perfectly understandable, since developing and updating the DDC, keeping up with current scientific developments, spotting new trends in both scholarly communication and popular publishing, and figuring out how to fit those patterns into the structure of the scheme are as intriguing as they are challenging. From the organization perspective, the intended user of the scheme is mainly the classifier. Dewey acts very much as a number-building engine, providing richly documented concepts to help with classification decisions. Since the Middle Ages, quasi-religious battles have been fought over the "valid" arrangement of places according to specific views of the world, as parodied by Jorge Luis Borges and others. Organizing knowledge has always been primarily an ontological activity; it is about putting the world into the classification. However, there is another side to this coin--the discovery side. While the hierarchical organization of the DDC establishes a default set of places and neighborhoods that is also visible in the physical manifestation of library shelves, this is just one set of relationships in the DDC. A KOS (Knowledge Organization System) becomes powerful by expressing those other relationships in a manner that not only collocates items in a physical place but in a knowledge space, and exposes those other relationships in ways beneficial and congenial to the unique perspective of an information seeker.
    What are those "other" relationships that Dewey possesses and that seem so important to surface? Firstly, there is the relationship of concepts to resources. Dewey has been used for a long time, and over 200,000 numbers are assigned to information resources each year and added to WorldCat by the Library of Congress and the German National Library alone. Secondly, we have relationships between concepts in the scheme itself. Dewey provides a rich set of non-hierarchical relations, indicating other relevant and related subjects across disciplinary boundaries. Thirdly, perhaps most importantly, there is the relationship between the same concepts across different languages. Dewey has been translated extensively, and current versions are available in French, German, Hebrew, Italian, Spanish, and Vietnamese. Briefer representations of the top-three levels (the DDC Summaries) are available in several languages in the DeweyBrowser. This multilingual nature of the scheme allows searchers to access a broader range of resources or to switch the language of--and thus localize--subject metadata seamlessly. MelvilClass, a Dewey front-end developed by the German National Library for the German translation, could be used as a common interface to the DDC in any language, as it is built upon the standard DDC data format. It is not hard to give an example of the basic terminology of a class pulled together in a multilingual way: <class/794.8> a skos:Concept ; skos:notation "794.8"^^ddc:notation ; skos:prefLabel "Computer games"@en ; skos:prefLabel "Computerspiele"@de ; skos:prefLabel "Jeux sur ordinateur"@fr ; skos:prefLabel "Juegos por computador"@es .
    Expressed in such manner, the Dewey number provides a language-independent representation of a Dewey concept, accompanied by language-dependent assertions about the concept. This information, identified by a URI, can be easily consumed by semantic web agents and used in various metadata scenarios. Fourthly, as we have seen, it is important to play well with others, i.e., establishing and maintaining relationships to other KOS and making the scheme available in different formats. As noted in the Dewey blog post "Tags and Dewey," since no single scheme is ever going to be the be-all, end-all solution for knowledge discovery, DDC concepts have been extensively mapped to other vocabularies and taxonomies, sometimes bridging them and acting as a backbone, sometimes using them as additional access vocabulary to be able to do more work "behind the scenes." To enable other applications and schemes to make use of those relationships, the full Dewey database is available in XML format; RDF-based formats and a web service are forthcoming. Pulling those relationships together under a common surface will be the next challenge going forward. In the semantic web community the concept of Linked Data (http://en.wikipedia.org/wiki/Linked_Data) currently receives some attention, with its emphasis on exposing and connecting data using technologies like URIs, HTTP and RDF to improve information discovery on the web. With its focus on relationships and discovery, it seems that Dewey will be well prepared to become part of this big linked data set. Now it is about putting the classification back into the world!"
  5. Schneider, R.: Web 3.0 ante portas? : Integration von Social Web und Semantic Web (2008) 0.00
    0.0012968854 = product of:
      0.01945328 = sum of:
        0.0063836705 = product of:
          0.012767341 = sum of:
            0.012767341 = weight(_text_:online in 4184) [ClassicSimilarity], result of:
              0.012767341 = score(doc=4184,freq=2.0), product of:
                0.05439423 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.017922899 = queryNorm
                0.23471867 = fieldWeight in 4184, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4184)
          0.5 = coord(1/2)
        0.01306961 = product of:
          0.019604415 = sum of:
            0.0026062755 = weight(_text_:a in 4184) [ClassicSimilarity], result of:
              0.0026062755 = score(doc=4184,freq=4.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.12611452 = fieldWeight in 4184, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4184)
            0.016998138 = weight(_text_:22 in 4184) [ClassicSimilarity], result of:
              0.016998138 = score(doc=4184,freq=2.0), product of:
                0.06276294 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.017922899 = queryNorm
                0.2708308 = fieldWeight in 4184, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4184)
          0.6666667 = coord(2/3)
      0.06666667 = coord(2/30)
    
    Abstract
    Das Medium Internet ist im Wandel, und mit ihm ändern sich seine Publikations- und Rezeptionsbedingungen. Welche Chancen bieten die momentan parallel diskutierten Zukunftsentwürfe von Social Web und Semantic Web? Zur Beantwortung dieser Frage beschäftigt sich der Beitrag mit den Grundlagen beider Modelle unter den Aspekten Anwendungsbezug und Technologie, beleuchtet darüber hinaus jedoch auch deren Unzulänglichkeiten sowie den Mehrwert einer mediengerechten Kombination. Am Beispiel des grammatischen Online-Informationssystems grammis wird eine Strategie zur integrativen Nutzung der jeweiligen Stärken skizziert.
    Date
    22. 1.2011 10:38:28
    Source
    Kommunikation, Partizipation und Wirkungen im Social Web, Band 1. Hrsg.: A. Zerfaß u.a
    Type
    a
  6. Metadata and semantics research : 8th Research Conference, MTSR 2014, Karlsruhe, Germany, November 27-29, 2014, Proceedings (2014) 0.00
    6.806523E-4 = product of:
      0.010209784 = sum of:
        0.00612587 = product of:
          0.01225174 = sum of:
            0.01225174 = weight(_text_:29 in 2192) [ClassicSimilarity], result of:
              0.01225174 = score(doc=2192,freq=2.0), product of:
                0.063047156 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.017922899 = queryNorm
                0.19432661 = fieldWeight in 2192, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2192)
          0.5 = coord(1/2)
        0.0040839138 = product of:
          0.01225174 = sum of:
            0.01225174 = weight(_text_:29 in 2192) [ClassicSimilarity], result of:
              0.01225174 = score(doc=2192,freq=2.0), product of:
                0.063047156 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.017922899 = queryNorm
                0.19432661 = fieldWeight in 2192, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2192)
          0.33333334 = coord(1/3)
      0.06666667 = coord(2/30)
    
  7. Semantic search over the Web (2012) 0.00
    6.067172E-4 = product of:
      0.009100758 = sum of:
        0.008492753 = weight(_text_:u in 411) [ClassicSimilarity], result of:
          0.008492753 = score(doc=411,freq=2.0), product of:
            0.058687534 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.017922899 = queryNorm
            0.14471136 = fieldWeight in 411, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.03125 = fieldNorm(doc=411)
        6.080043E-4 = product of:
          0.0018240128 = sum of:
            0.0018240128 = weight(_text_:a in 411) [ClassicSimilarity], result of:
              0.0018240128 = score(doc=411,freq=6.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.088261776 = fieldWeight in 411, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=411)
          0.33333334 = coord(1/3)
      0.06666667 = coord(2/30)
    
    Abstract
    The Web has become the world's largest database, with search being the main tool that allows organizations and individuals to exploit its huge amount of information. Search on the Web has been traditionally based on textual and structural similarities, ignoring to a large degree the semantic dimension, i.e., understanding the meaning of the query and of the document content. Combining search and semantics gives birth to the idea of semantic search. Traditional search engines have already advertised some semantic dimensions. Some of them, for instance, can enhance their generated result sets with documents that are semantically related to the query terms even though they may not include these terms. Nevertheless, the exploitation of the semantic search has not yet reached its full potential. In this book, Roberto De Virgilio, Francesco Guerra and Yannis Velegrakis present an extensive overview of the work done in Semantic Search and other related areas. They explore different technologies and solutions in depth, making their collection a valuable and stimulating reading for both academic and industrial researchers. The book is divided into three parts. The first introduces the readers to the basic notions of the Web of Data. It describes the different kinds of data that exist, their topology, and their storing and indexing techniques. The second part is dedicated to Web Search. It presents different types of search, like the exploratory or the path-oriented, alongside methods for their efficient and effective implementation. Other related topics included in this part are the use of uncertainty in query answering, the exploitation of ontologies, and the use of semantics in mashup design and operation. The focus of the third part is on linked data, and more specifically, on applying ideas originating in recommender systems on linked data management, and on techniques for the efficiently querying answering on linked data.
    Content
    Inhalt: Introduction.- Part I Introduction to Web of Data.- Topology of the Web of Data.- Storing and Indexing Massive RDF Data Sets.- Designing Exploratory Search Applications upon Web Data Sources.- Part II Search over the Web.- Path-oriented Keyword Search query over RDF.- Interactive Query Construction for Keyword Search on the SemanticWeb.- Understanding the Semantics of Keyword Queries on Relational DataWithout Accessing the Instance.- Keyword-Based Search over Semantic Data.- Semantic Link Discovery over Relational Data.- Embracing Uncertainty in Entity Linking.- The Return of the Entity-Relationship Model: Ontological Query Answering.- Linked Data Services and Semantics-enabled Mashup.- Part III Linked Data Search engines.- A Recommender System for Linked Data.- Flint: from Web Pages to Probabilistic Semantic Data.- Searching and Browsing Linked Data with SWSE.
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  8. Heflin, J.; Hendler, J.: Semantic interoperability on the Web (2000) 0.00
    4.5964378E-4 = product of:
      0.013789313 = sum of:
        0.013789313 = product of:
          0.020683968 = sum of:
            0.00368583 = weight(_text_:a in 759) [ClassicSimilarity], result of:
              0.00368583 = score(doc=759,freq=8.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.17835285 = fieldWeight in 759, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=759)
            0.016998138 = weight(_text_:22 in 759) [ClassicSimilarity], result of:
              0.016998138 = score(doc=759,freq=2.0), product of:
                0.06276294 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.017922899 = queryNorm
                0.2708308 = fieldWeight in 759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=759)
          0.6666667 = coord(2/3)
      0.033333335 = coord(1/30)
    
    Abstract
    XML will have a profound impact on the way data is exchanged on the Internet. An important feature of this language is the separation of content from presentation, which makes it easier to select and/or reformat the data. However, due to the likelihood of numerous industry and domain specific DTDs, those who wish to integrate information will still be faced with the problem of semantic interoperability. In this paper we discuss why this problem is not solved by XML, and then discuss why the Resource Description Framework is only a partial solution. We then present the SHOE language, which we feel has many of the features necessary to enable a semantic web, and describe an existing set of tools that make it easy to use the language.
    Date
    11. 5.2013 19:22:18
    Type
    a
  9. Svensson, L.G.: Unified access : a semantic Web based model for multilingual navigation in heterogeneous data sources (2008) 0.00
    4.5076598E-4 = product of:
      0.0067614894 = sum of:
        0.0054717176 = product of:
          0.010943435 = sum of:
            0.010943435 = weight(_text_:online in 2191) [ClassicSimilarity], result of:
              0.010943435 = score(doc=2191,freq=2.0), product of:
                0.05439423 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.017922899 = queryNorm
                0.20118743 = fieldWeight in 2191, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2191)
          0.5 = coord(1/2)
        0.0012897718 = product of:
          0.0038693151 = sum of:
            0.0038693151 = weight(_text_:a in 2191) [ClassicSimilarity], result of:
              0.0038693151 = score(doc=2191,freq=12.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.18723148 = fieldWeight in 2191, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2191)
          0.33333334 = coord(1/3)
      0.06666667 = coord(2/30)
    
    Abstract
    Most online library catalogues are not well equipped for subject search. On the one hand it is difficult to navigate the structures of the thesauri and classification systems used for indexing. Further, there is little or no support for the integration of crosswalks between different controlled vocabularies, so that a subject search query formulated using one controlled vocabulary will not find resources indexed with another knowledge organisation system even if there exists a crosswalk between them. In this paper we will look at SemanticWeb technologies and a prototype system leveraging those technologies in order to enhance the subject search possibilities in heterogeneously indexed repositories. Finally, we will have a brief look at different initiatives aimed at integrating library data into the SemanticWeb.
    Type
    a
  10. Metadata and semantics research : 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings (2016) 0.00
    1.8886822E-4 = product of:
      0.0056660464 = sum of:
        0.0056660464 = product of:
          0.016998138 = sum of:
            0.016998138 = weight(_text_:22 in 3283) [ClassicSimilarity], result of:
              0.016998138 = score(doc=3283,freq=2.0), product of:
                0.06276294 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.017922899 = queryNorm
                0.2708308 = fieldWeight in 3283, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3283)
          0.33333334 = coord(1/3)
      0.033333335 = coord(1/30)
    
  11. Veltman, K.H.: Syntactic and semantic interoperability : new approaches to knowledge and the Semantic Web (2001) 0.00
    4.6804194E-5 = product of:
      0.0014041257 = sum of:
        0.0014041257 = product of:
          0.004212377 = sum of:
            0.004212377 = weight(_text_:a in 3883) [ClassicSimilarity], result of:
              0.004212377 = score(doc=3883,freq=32.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.20383182 = fieldWeight in 3883, product of:
                  5.656854 = tf(freq=32.0), with freq of:
                    32.0 = termFreq=32.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3883)
          0.33333334 = coord(1/3)
      0.033333335 = coord(1/30)
    
    Abstract
    At VVWW-7 (Brisbane, 1997), Tim Berners-Lee outlined his vision of a global reasoning web. At VVWW- 8 (Toronto, May 1998), he developed this into a vision of a semantic web, where one Gould search not just for isolated words, but for meaning in the form of logically provable claims. In the past four years this vision has spread with amazing speed. The semantic web has been adopted by the European Commission as one of the important goals of the Sixth Framework Programme. In the United States it has become linked with the Defense Advanced Research Projects Agency (DARPA). While this quest to achieve a semantic web is new, the quest for meaning in language has a history that is almost as old as language itself. Accordingly this paper opens with a survey of the historical background. The contributions of the Dublin Core are reviewed briefly. To achieve a semantic web requires both syntactic and semantic interoperability. These challenges are outlined. A basic contention of this paper is that semantic interoperability requires much more than a simple agreement concerning the static meaning of a term. Different levels of agreement (local, regional, national and international) are involved and these levels have their own history. Hence, one of the larger challenges is to create new systems of knowledge organization, which identify and connect these different levels. With respect to meaning or semantics, early twentieth century pioneers such as Wüster were hopeful that it might be sufficient to limit oneself to isolated terms and words without reference to the larger grammatical context: to concept systems rather than to propositional logic. While a fascination with concept systems implicitly dominates many contemporary discussions, this paper suggests why this approach is not sufficient. The final section of this paper explores how an approach using propositional logic could lead to a new approach to universals and particulars. This points to a re-organization of knowledge, and opens the way for a vision of a semantic web with all the historical and cultural richness and complexity of language itself.
    Type
    a
  12. Liang, A.; Salokhe, G.; Sini, M.; Keizer, J.: Towards an infrastructure for semantic applications : methodologies for semantic integration of heterogeneous resources (2006) 0.00
    4.6437097E-5 = product of:
      0.0013931128 = sum of:
        0.0013931128 = product of:
          0.0041793385 = sum of:
            0.0041793385 = weight(_text_:a in 241) [ClassicSimilarity], result of:
              0.0041793385 = score(doc=241,freq=14.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.20223314 = fieldWeight in 241, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=241)
          0.33333334 = coord(1/3)
      0.033333335 = coord(1/30)
    
    Abstract
    The semantic heterogeneity presented by Web information in the Agricultural domain presents tremendous information retrieval challenges. This article presents work taking place at the Food and Agriculture Organizations (FAO) which addresses this challenge. Based on the analysis of resources in the domain of agriculture, this paper proposes (a) an application profile (AP) for dealing with the problem of heterogeneity originating from differences in terminologies, domain coverage, and domain modelling, and (b) a root application ontology (AAO) based on the application profile which can serve as a basis for extending knowledge of the domain. The paper explains how even a small investment in the enhancement of relations between vocabularies, both metadata and domain-specific, yields a relatively large return on investment.
    Type
    a
  13. Carbonaro, A.; Santandrea, L.: ¬A general Semantic Web approach for data analysis on graduates statistics 0.00
    4.6252455E-5 = product of:
      0.0013875735 = sum of:
        0.0013875735 = product of:
          0.0041627204 = sum of:
            0.0041627204 = weight(_text_:a in 5309) [ClassicSimilarity], result of:
              0.0041627204 = score(doc=5309,freq=20.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.20142901 = fieldWeight in 5309, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5309)
          0.33333334 = coord(1/3)
      0.033333335 = coord(1/30)
    
    Abstract
    Currently, several datasets released in a Linked Open Data format are available at a national and international level, but the lack of shared strategies concerning the definition of concepts related to the statistical publishing community makes difficult a comparison among given facts starting from different data sources. In order to guarantee a shared representation framework for what concerns the dissemination of statistical concepts about graduates, we developed SW4AL, an ontology-based system for graduate's surveys domain. The developed system transforms low-level data into an enriched information model and is based on the AlmaLaurea surveys covering more than 90% of Italian graduates. SW4AL: i) semantically describes the different peculiarities of the graduates; ii) promotes the structured definition of the AlmaLaurea data and the following publication in the Linked Open Data context; iii) provides their reuse in the open data scope; iv) enables logical reasoning about knowledge representation. SW4AL establishes a common semantic for addressing the concept of graduate's surveys domain by proposing the creation of a SPARQL endpoint and a Web based interface for the query and the visualization of the structured data.
    Type
    a
  14. Miller, E.; Schloss. B.; Lassila, O.; Swick, R.R.: Resource Description Framework (RDF) : model and syntax (1997) 0.00
    4.462823E-5 = product of:
      0.0013388467 = sum of:
        0.0013388467 = product of:
          0.00401654 = sum of:
            0.00401654 = weight(_text_:a in 5903) [ClassicSimilarity], result of:
              0.00401654 = score(doc=5903,freq=38.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.19435552 = fieldWeight in 5903, product of:
                  6.164414 = tf(freq=38.0), with freq of:
                    38.0 = termFreq=38.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=5903)
          0.33333334 = coord(1/3)
      0.033333335 = coord(1/30)
    
    Abstract
    RDF - the Resource Description Framework - is a foundation for processing metadata; it provides interoperability between applications that exchange machine-understandable information on the Web. RDF emphasizes facilities to enable automated processing of Web resources. RDF metadata can be used in a variety of application areas; for example: in resource discovery to provide better search engine capabilities; in cataloging for describing the content and content relationships available at a particular Web site, page, or digital library; by intelligent software agents to facilitate knowledge sharing and exchange; in content rating; in describing collections of pages that represent a single logical "document"; for describing intellectual property rights of Web pages, and in many others. RDF with digital signatures will be key to building the "Web of Trust" for electronic commerce, collaboration, and other applications. Metadata is "data about data" or specifically in the context of RDF "data describing web resources." The distinction between "data" and "metadata" is not an absolute one; it is a distinction created primarily by a particular application. Many times the same resource will be interpreted in both ways simultaneously. RDF encourages this view by using XML as the encoding syntax for the metadata. The resources being described by RDF are, in general, anything that can be named via a URI. The broad goal of RDF is to define a mechanism for describing resources that makes no assumptions about a particular application domain, nor defines the semantics of any application domain. The definition of the mechanism should be domain neutral, yet the mechanism should be suitable for describing information about any domain. This document introduces a model for representing RDF metadata and one syntax for expressing and transporting this metadata in a manner that maximizes the interoperability of independently developed web servers and clients. The syntax described in this document is best considered as a "serialization syntax" for the underlying RDF representation model. The serialization syntax is XML, XML being the W3C's work-in-progress to define a richer Web syntax for a variety of applications. RDF and XML are complementary; there will be alternate ways to represent the same RDF data model, some more suitable for direct human authoring. Future work may lead to including such alternatives in this document.
    Content
    RDF Data Model At the core of RDF is a model for representing named properties and their values. These properties serve both to represent attributes of resources (and in this sense correspond to usual attribute-value-pairs) and to represent relationships between resources. The RDF data model is a syntax-independent way of representing RDF statements. RDF statements that are syntactically very different could mean the same thing. This concept of equivalence in meaning is very important when performing queries, aggregation and a number of other tasks at which RDF is aimed. The equivalence is defined in a clean machine understandable way. Two pieces of RDF are equivalent if and only if their corresponding data model representations are the same. Table of contents 1. Introduction 2. RDF Data Model 3. RDF Grammar 4. Signed RDF 5. Examples 6. Appendix A: Brief Explanation of XML Namespaces
  15. Baker, T.; Sutton, S.A.: Linked data and the charm of weak semantics : Introduction: the strengths of weak semantics (2015) 0.00
    4.3878932E-5 = product of:
      0.0013163679 = sum of:
        0.0013163679 = product of:
          0.0039491034 = sum of:
            0.0039491034 = weight(_text_:a in 2022) [ClassicSimilarity], result of:
              0.0039491034 = score(doc=2022,freq=18.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.19109234 = fieldWeight in 2022, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2022)
          0.33333334 = coord(1/3)
      0.033333335 = coord(1/30)
    
    Abstract
    Logic and precision are fundamental to ontologies underlying the semantic web and, by extension, to linked data. This special section focuses on the interaction of semantics, ontologies and linked data. The discussion presents the Simple Knowledge Organization Scheme (SKOS) as a less formal strategy for expressing concept hierarchies and associations and questions the value of deep domain ontologies in favor of simpler vocabularies that are more open to reuse, albeit risking illogical outcomes. RDF ontologies harbor another unexpected drawback. While structurally sound, they leave validation gaps permitting illogical uses, a problem being addressed by a W3C Working Group. Data models based on RDF graphs and properties may replace traditional library catalog models geared to predefined entities, with relationships between RDF classes providing the semantic connections. The BIBFRAME Initiative takes a different and streamlined approach to linking data, building rich networks of information resources rather than relying on a strict underlying structure and vocabulary. Taken together, the articles illustrate the trend toward a pragmatic approach to a Semantic Web, sacrificing some specificity for greater flexibility and partial interoperability.
    Footnote
    Introduction to a special section "Linked data and the charm of weak semantics".
    Type
    a
  16. Isaac, A.: Aligning thesauri for an integrated access to Cultural Heritage Resources (2007) 0.00
    4.343792E-5 = product of:
      0.0013031376 = sum of:
        0.0013031376 = product of:
          0.003909413 = sum of:
            0.003909413 = weight(_text_:a in 553) [ClassicSimilarity], result of:
              0.003909413 = score(doc=553,freq=36.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.18917176 = fieldWeight in 553, product of:
                  6.0 = tf(freq=36.0), with freq of:
                    36.0 = termFreq=36.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=553)
          0.33333334 = coord(1/3)
      0.033333335 = coord(1/30)
    
    Abstract
    Currently, a number of efforts are being carried out to integrate collections from different institutions and containing heterogeneous material. Examples of such projects are The European Library [1] and the Memory of the Netherlands [2]. A crucial point for the success of these is the availability to provide a unified access on top of the different collections, e.g. using one single vocabulary for querying or browsing the objects they contain. This is made difficult by the fact that the objects from different collections are often described using different vocabularies - thesauri, classification schemes - and are therefore not interoperable at the semantic level. To solve this problem, one can turn to semantic links - mappings - between the elements of the different vocabularies. If one knows that a concept C from a vocabulary V is semantically equivalent to a concept to a concept D from vocabulary W, then an appropriate search engine can return all the objects that were indexed against D for a query for objects described using C. We thus have an access to other collections, using a single one vocabulary. This is however an ideal situation, and hard alignment work is required to reach it. Several projects in the past have tried to implement such a solution, like MACS [3] and Renardus [4]. They have demonstrated very interesting results, but also highlighted the difficulty of aligning manually all the different vocabularies involved in practical cases, which sometimes contain hundreds of thousands of concepts. To alleviate this problem, a number of tools have been proposed in order to provide with candidate mappings between two input vocabularies, making alignment a (semi-) automatic task. Recently, the Semantic Web community has produced a lot of these alignment tools'. Several techniques are found, depending on the material they exploit: labels of concepts, structure of vocabularies, collection objects and external knowledge sources. Throughout our presentation, we will present a concrete heterogeneity case where alignment techniques have been applied to build a (pilot) browser, developed in the context of the STITCH project [5]. This browser enables a unified access to two collections of illuminated manuscripts, using the description vocabulary used in the first collection, Mandragore [6], or the one used by the second, Iconclass [7]. In our talk, we will also make the point for using unified representations the vocabulary semantic and lexical information. Additionally to ease the use of the alignment tools that have these vocabularies as input, turning to a standard representation format helps designing applications that are more generic, like the browser we demonstrate. We give pointers to SKOS [8], an open and web-enabled format currently developed by the Semantic Web community.
  17. Sartini, B.; Erp, M. van; Gangemi, A.: Marriage is a peach and a chalice : modelling cultural symbolism on the Semantic Web (2021) 0.00
    4.2992393E-5 = product of:
      0.0012897718 = sum of:
        0.0012897718 = product of:
          0.0038693151 = sum of:
            0.0038693151 = weight(_text_:a in 557) [ClassicSimilarity], result of:
              0.0038693151 = score(doc=557,freq=12.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.18723148 = fieldWeight in 557, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=557)
          0.33333334 = coord(1/3)
      0.033333335 = coord(1/30)
    
    Abstract
    In this work, we fill the gap in the Semantic Web in the context of Cultural Symbolism. Building upon earlier work in \citesartini_towards_2021, we introduce the Simulation Ontology, an ontology that models the background knowledge of symbolic meanings, developed by combining the concepts taken from the authoritative theory of Simulacra and Simulations of Jean Baudrillard with symbolic structures and content taken from "Symbolism: a Comprehensive Dictionary'' by Steven Olderr. We re-engineered the symbolic knowledge already present in heterogeneous resources by converting it into our ontology schema to create HyperReal, the first knowledge graph completely dedicated to cultural symbolism. A first experiment run on the knowledge graph is presented to show the potential of quantitative research on symbolism.
    Type
    a
  18. Ioannou, E.; Nejdl, W.; Niederée, C.; Velegrakis, Y.: Embracing uncertainty in entity linking (2012) 0.00
    3.5827E-5 = product of:
      0.0010748099 = sum of:
        0.0010748099 = product of:
          0.0032244297 = sum of:
            0.0032244297 = weight(_text_:a in 433) [ClassicSimilarity], result of:
              0.0032244297 = score(doc=433,freq=12.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.15602624 = fieldWeight in 433, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=433)
          0.33333334 = coord(1/3)
      0.033333335 = coord(1/30)
    
    Abstract
    The modern Web has grown from a publishing place of well-structured data and HTML pages for companies and experienced users into a vivid publishing and data exchange community in which everyone can participate, both as a data consumer and as a data producer. Unavoidably, the data available on the Web became highly heterogeneous, ranging from highly structured and semistructured to highly unstructured user-generated content, reflecting different perspectives and structuring principles. The full potential of such data can only be realized by combining information from multiple sources. For instance, the knowledge that is typically embedded in monolithic applications can be outsourced and, thus, used also in other applications. Numerous systems nowadays are already actively utilizing existing content from various sources such as WordNet or Wikipedia. Some well-known examples of such systems include DBpedia, Freebase, Spock, and DBLife. A major challenge during combining and querying information from multiple heterogeneous sources is entity linkage, i.e., the ability to detect whether two pieces of information correspond to the same real-world object. This chapter introduces a novel approach for addressing the entity linkage problem for heterogeneous, uncertain, and volatile data.
  19. Isaac, A.; Baker, T.: Linked data practice at different levels of semantic precision : the perspective of libraries, archives and museums (2015) 0.00
    3.5827E-5 = product of:
      0.0010748099 = sum of:
        0.0010748099 = product of:
          0.0032244297 = sum of:
            0.0032244297 = weight(_text_:a in 2026) [ClassicSimilarity], result of:
              0.0032244297 = score(doc=2026,freq=12.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.15602624 = fieldWeight in 2026, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2026)
          0.33333334 = coord(1/3)
      0.033333335 = coord(1/30)
    
    Abstract
    Libraries, archives and museums rely on structured schemas and vocabularies to indicate classes in which a resource may belong. In the context of linked data, key organizational components are the RDF data model, element schemas and value vocabularies, with simple ontologies having minimally defined classes and properties in order to facilitate reuse and interoperability. Simplicity over formal semantics is a tenet of the open-world assumption underlying ontology languages central to the Semantic Web, but the result is a lack of constraints, data quality checks and validation capacity. Inconsistent use of vocabularies and ontologies that do not follow formal semantics rules and logical concept hierarchies further complicate the use of Semantic Web technologies. The Simple Knowledge Organization System (SKOS) helps make existing value vocabularies available in the linked data environment, but it exchanges precision for simplicity. Incompatibilities between simple organized vocabularies, Resource Description Framework Schemas and OWL ontologies and even basic notions of subjects and concepts prevent smooth translations and challenge the conversion of cultural institutions' unique legacy vocabularies for linked data. Adopting the linked data vision requires accepting loose semantic interpretations. To avoid semantic inconsistencies and illogical results, cultural organizations following the linked data path must be careful to choose the level of semantics that best suits their domain and needs.
    Footnote
    Contribution to a special section "Linked data and the charm of weak semantics".
    Type
    a
  20. Koutsomitropoulos, D.A.; Solomou, G.D.; Alexopoulos, A.D.; Papatheodorou, T.S.: Semantic metadata interoperability and inference-based querying in digital repositories (2009) 0.00
    3.510315E-5 = product of:
      0.0010530944 = sum of:
        0.0010530944 = product of:
          0.003159283 = sum of:
            0.003159283 = weight(_text_:a in 3731) [ClassicSimilarity], result of:
              0.003159283 = score(doc=3731,freq=8.0), product of:
                0.020665944 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.017922899 = queryNorm
                0.15287387 = fieldWeight in 3731, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3731)
          0.33333334 = coord(1/3)
      0.033333335 = coord(1/30)
    
    Abstract
    Metadata applications have evolved in time into highly structured "islands of information" about digital resources, often bearing a strong semantic interpretation. Scarcely however are these semantics being communicated in machine readable and understandable ways. At the same time, the process for transforming the implied metadata knowledge into explicit Semantic Web descriptions can be problematic and is not always evident. In this article we take upon the well-established Dublin Core metadata standard as well as other metadata schemata, which often appear in digital repositories set-ups, and suggest a proper Semantic Web OWL ontology. In this process the authors cope with discrepancies and incompatibilities, indicative of such attempts, in novel ways. Moreover, we show the potential and necessity of this approach by demonstrating inferences on the resulting ontology, instantiated with actual metadata records. The authors conclude by presenting a working prototype that provides for inference-based querying on top of digital repositories.
    Type
    a

Years

Languages

  • e 31
  • d 3

Types

  • a 21
  • el 7
  • m 7
  • s 4
  • x 2
  • n 1
  • More… Less…