Search (28 results, page 1 of 2)

  • × author_ss:"Chen, C."
  1. Chen, C.: Top Ten Problems in Visual Interfaces to Digital Libraries (2002) 0.07
    0.06858143 = product of:
      0.3017583 = sum of:
        0.11417909 = weight(_text_:lecture in 4840) [ClassicSimilarity], result of:
          0.11417909 = score(doc=4840,freq=2.0), product of:
            0.13308205 = queryWeight, product of:
              6.4711404 = idf(docFreq=185, maxDocs=44218)
              0.02056547 = queryNorm
            0.8579601 = fieldWeight in 4840, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.4711404 = idf(docFreq=185, maxDocs=44218)
              0.09375 = fieldNorm(doc=4840)
        0.077824585 = weight(_text_:notes in 4840) [ClassicSimilarity], result of:
          0.077824585 = score(doc=4840,freq=2.0), product of:
            0.10987139 = queryWeight, product of:
              5.3425174 = idf(docFreq=574, maxDocs=44218)
              0.02056547 = queryNorm
            0.70832443 = fieldWeight in 4840, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.3425174 = idf(docFreq=574, maxDocs=44218)
              0.09375 = fieldNorm(doc=4840)
        0.007134775 = weight(_text_:in in 4840) [ClassicSimilarity], result of:
          0.007134775 = score(doc=4840,freq=4.0), product of:
            0.027974274 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.02056547 = queryNorm
            0.25504774 = fieldWeight in 4840, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.09375 = fieldNorm(doc=4840)
        0.03641523 = weight(_text_:computer in 4840) [ClassicSimilarity], result of:
          0.03641523 = score(doc=4840,freq=2.0), product of:
            0.0751567 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.02056547 = queryNorm
            0.48452407 = fieldWeight in 4840, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.09375 = fieldNorm(doc=4840)
        0.06620461 = sum of:
          0.018918894 = weight(_text_:science in 4840) [ClassicSimilarity], result of:
            0.018918894 = score(doc=4840,freq=2.0), product of:
              0.0541719 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.02056547 = queryNorm
              0.34923816 = fieldWeight in 4840, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.09375 = fieldNorm(doc=4840)
          0.047285717 = weight(_text_:22 in 4840) [ClassicSimilarity], result of:
            0.047285717 = score(doc=4840,freq=4.0), product of:
              0.072016776 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.02056547 = queryNorm
              0.6565931 = fieldWeight in 4840, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.09375 = fieldNorm(doc=4840)
      0.22727273 = coord(5/22)
    
    Date
    22. 2.2003 17:25:39
    22. 2.2003 18:13:11
    Series
    Lecture notes in computer science; 2539
  2. Börner, K.; Chen, C.: Visual Interfaces to Digital Libraries : Motivation, Utilization, and Socio-technical Challenges (2002) 0.07
    0.06810649 = product of:
      0.29966855 = sum of:
        0.11417909 = weight(_text_:lecture in 1359) [ClassicSimilarity], result of:
          0.11417909 = score(doc=1359,freq=2.0), product of:
            0.13308205 = queryWeight, product of:
              6.4711404 = idf(docFreq=185, maxDocs=44218)
              0.02056547 = queryNorm
            0.8579601 = fieldWeight in 1359, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.4711404 = idf(docFreq=185, maxDocs=44218)
              0.09375 = fieldNorm(doc=1359)
        0.077824585 = weight(_text_:notes in 1359) [ClassicSimilarity], result of:
          0.077824585 = score(doc=1359,freq=2.0), product of:
            0.10987139 = queryWeight, product of:
              5.3425174 = idf(docFreq=574, maxDocs=44218)
              0.02056547 = queryNorm
            0.70832443 = fieldWeight in 1359, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.3425174 = idf(docFreq=574, maxDocs=44218)
              0.09375 = fieldNorm(doc=1359)
        0.0050450475 = weight(_text_:in in 1359) [ClassicSimilarity], result of:
          0.0050450475 = score(doc=1359,freq=2.0), product of:
            0.027974274 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.02056547 = queryNorm
            0.18034597 = fieldWeight in 1359, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.09375 = fieldNorm(doc=1359)
        0.03641523 = weight(_text_:computer in 1359) [ClassicSimilarity], result of:
          0.03641523 = score(doc=1359,freq=2.0), product of:
            0.0751567 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.02056547 = queryNorm
            0.48452407 = fieldWeight in 1359, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.09375 = fieldNorm(doc=1359)
        0.06620461 = sum of:
          0.018918894 = weight(_text_:science in 1359) [ClassicSimilarity], result of:
            0.018918894 = score(doc=1359,freq=2.0), product of:
              0.0541719 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.02056547 = queryNorm
              0.34923816 = fieldWeight in 1359, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.09375 = fieldNorm(doc=1359)
          0.047285717 = weight(_text_:22 in 1359) [ClassicSimilarity], result of:
            0.047285717 = score(doc=1359,freq=4.0), product of:
              0.072016776 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.02056547 = queryNorm
              0.6565931 = fieldWeight in 1359, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.09375 = fieldNorm(doc=1359)
      0.22727273 = coord(5/22)
    
    Date
    22. 2.2003 17:25:39
    22. 2.2003 18:20:07
    Series
    Lecture notes in computer science; 2539
  3. Chen, C.; Paul, R.J.; O'Keefe, B.: Fitting the Jigsaw of citation : information visualization in domain analysis (2001) 0.01
    0.00904476 = product of:
      0.049746178 = sum of:
        0.008434889 = product of:
          0.016869778 = sum of:
            0.016869778 = weight(_text_:29 in 5766) [ClassicSimilarity], result of:
              0.016869778 = score(doc=5766,freq=2.0), product of:
                0.072342895 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.02056547 = queryNorm
                0.23319192 = fieldWeight in 5766, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5766)
          0.5 = coord(1/2)
        0.0050450475 = weight(_text_:in in 5766) [ClassicSimilarity], result of:
          0.0050450475 = score(doc=5766,freq=8.0), product of:
            0.027974274 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.02056547 = queryNorm
            0.18034597 = fieldWeight in 5766, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=5766)
        0.031536516 = weight(_text_:computer in 5766) [ClassicSimilarity], result of:
          0.031536516 = score(doc=5766,freq=6.0), product of:
            0.0751567 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.02056547 = queryNorm
            0.41961014 = fieldWeight in 5766, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.046875 = fieldNorm(doc=5766)
        0.0047297236 = product of:
          0.009459447 = sum of:
            0.009459447 = weight(_text_:science in 5766) [ClassicSimilarity], result of:
              0.009459447 = score(doc=5766,freq=2.0), product of:
                0.0541719 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.02056547 = queryNorm
                0.17461908 = fieldWeight in 5766, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5766)
          0.5 = coord(1/2)
      0.18181819 = coord(4/22)
    
    Abstract
    Domain visualization is one of the new research fronts resulted from the proliferation of information visualization, aiming to reveal the essence of a knowledge domain. Information visualization plays an integral role in modeling and representing intellectual structures associated with scientific disciplines. In this article, the domain of computer graphics is visualized based on author cocitation patterns derived from an 18-year span of the prestigious IEEE Computer Graphics and Applications (1982-1999). This domain visualization utilizes a series of visualization and animation techniques, including author cocitation maps, citation time lines, animation of a highdimensional specialty space, and institutional profiles. This approach not only augments traditional domain analysis and the understanding of scientific disciplines, but also produces a persistent and shared knowledge space for researchers to keep track the development of knowledge more effectively. The results of the domain visualization are discussed and triangulated in a broader context of the computer graphics field
    Date
    29. 9.2001 14:00:53
    Source
    Journal of the American Society for Information Science and technology. 52(2001) no.4, S.315-330
  4. Chen, C.: Encarta und The Grolier Multimedia Encyclopedia : additional comments from the journal editor (1995) 0.00
    0.0028939021 = product of:
      0.021221949 = sum of:
        0.008929292 = weight(_text_:und in 4504) [ClassicSimilarity], result of:
          0.008929292 = score(doc=4504,freq=2.0), product of:
            0.04558063 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.02056547 = queryNorm
            0.19590102 = fieldWeight in 4504, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0625 = fieldNorm(doc=4504)
        0.008929292 = weight(_text_:und in 4504) [ClassicSimilarity], result of:
          0.008929292 = score(doc=4504,freq=2.0), product of:
            0.04558063 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.02056547 = queryNorm
            0.19590102 = fieldWeight in 4504, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0625 = fieldNorm(doc=4504)
        0.003363365 = weight(_text_:in in 4504) [ClassicSimilarity], result of:
          0.003363365 = score(doc=4504,freq=2.0), product of:
            0.027974274 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.02056547 = queryNorm
            0.120230645 = fieldWeight in 4504, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=4504)
      0.13636364 = coord(3/22)
    
    Abstract
    Presents results of the empirical study of whether skills and knowledge might be transferable between hypermedia systems as is the case with conventional paper based materials. In order to facilitate better understanding of the study, provides comments and information on the 2 multimedia encyclopedias studied: Microsoft's 'Encarta'; and 'The Grolier Multimedia Encyclopedia'
  5. Chen, C.: CiteSpace II : detecting and visualizing emerging trends and transient patterns in scientific literature (2006) 0.00
    0.0028204909 = product of:
      0.031025399 = sum of:
        0.0059456457 = weight(_text_:in in 5272) [ClassicSimilarity], result of:
          0.0059456457 = score(doc=5272,freq=16.0), product of:
            0.027974274 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.02056547 = queryNorm
            0.21253976 = fieldWeight in 5272, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5272)
        0.025079753 = sum of:
          0.011148066 = weight(_text_:science in 5272) [ClassicSimilarity], result of:
            0.011148066 = score(doc=5272,freq=4.0), product of:
              0.0541719 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.02056547 = queryNorm
              0.20579056 = fieldWeight in 5272, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5272)
          0.013931687 = weight(_text_:22 in 5272) [ClassicSimilarity], result of:
            0.013931687 = score(doc=5272,freq=2.0), product of:
              0.072016776 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.02056547 = queryNorm
              0.19345059 = fieldWeight in 5272, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5272)
      0.09090909 = coord(2/22)
    
    Abstract
    This article describes the latest development of a generic approach to detecting and visualizing emerging trends and transient patterns in scientific literature. The work makes substantial theoretical and methodological contributions to progressive knowledge domain visualization. A specialty is conceptualized and visualized as a time-variant duality between two fundamental concepts in information science: research fronts and intellectual bases. A research front is defined as an emergent and transient grouping of concepts and underlying research issues. The intellectual base of a research front is its citation and co-citation footprint in scientific literature - an evolving network of scientific publications cited by research-front concepts. Kleinberg's (2002) burst-detection algorithm is adapted to identify emergent research-front concepts. Freeman's (1979) betweenness centrality metric is used to highlight potential pivotal points of paradigm shift over time. Two complementary visualization views are designed and implemented: cluster views and time-zone views. The contributions of the approach are that (a) the nature of an intellectual base is algorithmically and temporally identified by emergent research-front terms, (b) the value of a co-citation cluster is explicitly interpreted in terms of research-front concepts, and (c) visually prominent and algorithmically detected pivotal points substantially reduce the complexity of a visualized network. The modeling and visualization process is implemented in CiteSpace II, a Java application, and applied to the analysis of two research fields: mass extinction (1981-2004) and terrorism (1990-2003). Prominent trends and pivotal points in visualized networks were verified in collaboration with domain experts, who are the authors of pivotal-point articles. Practical implications of the work are discussed. A number of challenges and opportunities for future studies are identified.
    Date
    22. 7.2006 16:11:05
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.3, S.359-377
  6. Chen, C.: Visualizing scientific paradigms : an introduction (2003) 0.00
    0.0026619092 = product of:
      0.019520666 = sum of:
        0.009840704 = product of:
          0.019681407 = sum of:
            0.019681407 = weight(_text_:29 in 1455) [ClassicSimilarity], result of:
              0.019681407 = score(doc=1455,freq=2.0), product of:
                0.072342895 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.02056547 = queryNorm
                0.27205724 = fieldWeight in 1455, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1455)
          0.5 = coord(1/2)
        0.004161952 = weight(_text_:in in 1455) [ClassicSimilarity], result of:
          0.004161952 = score(doc=1455,freq=4.0), product of:
            0.027974274 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.02056547 = queryNorm
            0.14877784 = fieldWeight in 1455, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1455)
        0.0055180113 = product of:
          0.011036023 = sum of:
            0.011036023 = weight(_text_:science in 1455) [ClassicSimilarity], result of:
              0.011036023 = score(doc=1455,freq=2.0), product of:
                0.0541719 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.02056547 = queryNorm
                0.20372227 = fieldWeight in 1455, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1455)
          0.5 = coord(1/2)
      0.13636364 = coord(3/22)
    
    Abstract
    This special topic issue includes a collection of seven articles an visualizing scientific paradigms. All articles in this special issue reflect the influence of Thomas Kuhn's structure of scientific revolutions an our understanding of the growth of scientific knowledge. On the other hand, each article represents a unique perspective of how one may pursue the quest for transforming something as intangible and empirically evasive as invisible colleges and competing paradigms into something that is more accessible and traceable to scholars and professions of various disciplines, ranging from historians, philosophers, and educators to scientists and engineers.
    Date
    29. 3.2003 19:31:07
    Footnote
    Einführung in einen Themenschwerpunkt: Visualizing scientific paradigms
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.5, S.392-393
  7. Liu, S.; Chen, C.: ¬The differences between latent topics in abstracts and citation contexts of citing papers (2013) 0.00
    0.0025874542 = product of:
      0.028461995 = sum of:
        0.0066474346 = weight(_text_:in in 671) [ClassicSimilarity], result of:
          0.0066474346 = score(doc=671,freq=20.0), product of:
            0.027974274 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.02056547 = queryNorm
            0.2376267 = fieldWeight in 671, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=671)
        0.02181456 = sum of:
          0.0078828735 = weight(_text_:science in 671) [ClassicSimilarity], result of:
            0.0078828735 = score(doc=671,freq=2.0), product of:
              0.0541719 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.02056547 = queryNorm
              0.1455159 = fieldWeight in 671, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.0390625 = fieldNorm(doc=671)
          0.013931687 = weight(_text_:22 in 671) [ClassicSimilarity], result of:
            0.013931687 = score(doc=671,freq=2.0), product of:
              0.072016776 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.02056547 = queryNorm
              0.19345059 = fieldWeight in 671, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=671)
      0.09090909 = coord(2/22)
    
    Abstract
    Although it is commonly expected that the citation context of a reference is likely to provide more detailed and direct information about the nature of a citation, few studies in the literature have specifically addressed the extent to which the information in different parts of a scientific publication differs. Do abstracts tend to use conceptually broader terms than sentences in a citation context in the body of a publication? In this article, we propose a method to analyze and compare latent topics in scientific publications, in particular, from abstracts of papers that cited a target reference and from sentences that cited the target reference. We conducted an experiment and applied topical modeling techniques to full-text papers in eight biomedicine journals. Topics derived from the two sources are compared in terms of their similarities and broad-narrow relationships defined based on information entropy. The results show that abstracts and citation contexts are characterized by distinct sets of topics with moderate overlaps. Furthermore, the results confirm that topics from abstracts of citing papers have broader terms than topics from citation contexts formed by citing sentences. The method and the findings could be used to enhance and extend the current methodologies for research evaluation and citation evaluation.
    Date
    22. 3.2013 19:50:00
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.3, S.627-639
  8. Chen, C.; Leydesdorff, L.: Patterns of connections and movements in dual-map overlays : a new method of publication portfolio analysis (2014) 0.00
    0.0024627342 = product of:
      0.01806005 = sum of:
        0.0070290747 = product of:
          0.014058149 = sum of:
            0.014058149 = weight(_text_:29 in 1200) [ClassicSimilarity], result of:
              0.014058149 = score(doc=1200,freq=2.0), product of:
                0.072342895 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.02056547 = queryNorm
                0.19432661 = fieldWeight in 1200, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1200)
          0.5 = coord(1/2)
        0.0042042066 = weight(_text_:in in 1200) [ClassicSimilarity], result of:
          0.0042042066 = score(doc=1200,freq=8.0), product of:
            0.027974274 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.02056547 = queryNorm
            0.15028831 = fieldWeight in 1200, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1200)
        0.0068267686 = product of:
          0.013653537 = sum of:
            0.013653537 = weight(_text_:science in 1200) [ClassicSimilarity], result of:
              0.013653537 = score(doc=1200,freq=6.0), product of:
                0.0541719 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.02056547 = queryNorm
                0.25204095 = fieldWeight in 1200, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1200)
          0.5 = coord(1/2)
      0.13636364 = coord(3/22)
    
    Abstract
    Portfolio analysis of the publication profile of a unit of interest, ranging from individuals and organizations to a scientific field or interdisciplinary programs, aims to inform analysts and decision makers about the position of the unit, where it has been, and where it may go in a complex adaptive environment. A portfolio analysis may aim to identify the gap between the current position of an organization and a goal that it intends to achieve or identify competencies of multiple institutions. We introduce a new visual analytic method for analyzing, comparing, and contrasting characteristics of publication portfolios. The new method introduces a novel design of dual-map thematic overlays on global maps of science. Each publication portfolio can be added as one layer of dual-map overlays over 2 related, but distinct, global maps of science: one for citing journals and the other for cited journals. We demonstrate how the new design facilitates a portfolio analysis in terms of patterns emerging from the distributions of citation threads and the dynamics of trajectories as a function of space and time. We first demonstrate the analysis of portfolios defined on a single source article. Then we contrast publication portfolios of multiple comparable units of interest; namely, colleges in universities and corporate research organizations. We also include examples of overlays of scientific fields. We expect that our method will provide new insights to portfolio analysis.
    Date
    29. 1.2014 16:38:28
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.2, S.334-351
  9. Chen, C.; Czerwinski, M.; Macredie, R.: Individual differences in virtual environments : introduction and overview (2000) 0.00
    0.0024024474 = product of:
      0.017617946 = sum of:
        0.0070290747 = product of:
          0.014058149 = sum of:
            0.014058149 = weight(_text_:29 in 4600) [ClassicSimilarity], result of:
              0.014058149 = score(doc=4600,freq=2.0), product of:
                0.072342895 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.02056547 = queryNorm
                0.19432661 = fieldWeight in 4600, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4600)
          0.5 = coord(1/2)
        0.0066474346 = weight(_text_:in in 4600) [ClassicSimilarity], result of:
          0.0066474346 = score(doc=4600,freq=20.0), product of:
            0.027974274 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.02056547 = queryNorm
            0.2376267 = fieldWeight in 4600, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4600)
        0.0039414368 = product of:
          0.0078828735 = sum of:
            0.0078828735 = weight(_text_:science in 4600) [ClassicSimilarity], result of:
              0.0078828735 = score(doc=4600,freq=2.0), product of:
                0.0541719 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.02056547 = queryNorm
                0.1455159 = fieldWeight in 4600, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4600)
          0.5 = coord(1/2)
      0.13636364 = coord(3/22)
    
    Abstract
    The practical significances of identifying and accomodating individual differences has been established across a number of fields of research. There is a renewed interest in individual differences due to the advances in virtual environments, especially through far-reaching technologies such as information visualization and 3D graphical user interfaces on the WWW. The effects of individual differences on the use of these new technologies are yet to be found out. More fundamentally, theories and methods developed for the earlier generations of information systems are subject to a close examination of their applicability, efficiency, and effectiveness. In this article, we present a brief historical overview of research in in individual differences in the context of virtual environments. In particular, we highlight the notion of structure in the perception of individual users of an information system and the role of individuals' abilities to recognize and use such structures to perform various information-intensive tasks. Striking the balance between individuals' abilities and the demanding task for detecting, understanding, and utilizing such structures is an emerging theme across the 5 articles in this special issue. We outline the approaches and the major findings of these articles with reference to this central theme
    Date
    5. 4.2000 12:29:00
    Source
    Journal of the American Society for Information Science. 51(2000) no.6, S.499-507
  10. Chen, C.; Rada, R.; Zeb, A.: ¬An extended fisheye view browser for collaborative writing (1994) 0.00
    0.0023945044 = product of:
      0.026339548 = sum of:
        0.0050973296 = weight(_text_:in in 604) [ClassicSimilarity], result of:
          0.0050973296 = score(doc=604,freq=6.0), product of:
            0.027974274 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.02056547 = queryNorm
            0.1822149 = fieldWeight in 604, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=604)
        0.021242218 = weight(_text_:computer in 604) [ClassicSimilarity], result of:
          0.021242218 = score(doc=604,freq=2.0), product of:
            0.0751567 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.02056547 = queryNorm
            0.28263903 = fieldWeight in 604, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0546875 = fieldNorm(doc=604)
      0.09090909 = coord(2/22)
    
    Abstract
    Investigates information-seeking tasks and associated cognitve issues in the context of interacting with an evolving collaborative hypertext. Fishexe view browsers were used to facilitate exploring in a large information space. The fishexe view browser was extended to incorporate word frequencies. The effects of the fisheye view browser and the changing document were tested with 2x2 factorial experiment. Multivariate tests founs a significant interaction between the 2 factors and a significant main effect of the fisheye view browser. The users who had access to the word frequency information performed their tasks more effectively than the users without access to word frequencies. This work implies that several aspects of an evolving hypertext might als be useful incorporated in an associated fishexe view browser
    Source
    International journal of human-computer studies. 40(1994) no.5, S.859-878
  11. Chen, C.: Generalised similarity analysis and pathfinder network scaling (1998) 0.00
    0.0020524324 = product of:
      0.022576755 = sum of:
        0.0043691397 = weight(_text_:in in 3764) [ClassicSimilarity], result of:
          0.0043691397 = score(doc=3764,freq=6.0), product of:
            0.027974274 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.02056547 = queryNorm
            0.1561842 = fieldWeight in 3764, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=3764)
        0.018207615 = weight(_text_:computer in 3764) [ClassicSimilarity], result of:
          0.018207615 = score(doc=3764,freq=2.0), product of:
            0.0751567 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.02056547 = queryNorm
            0.24226204 = fieldWeight in 3764, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.046875 = fieldNorm(doc=3764)
      0.09090909 = coord(2/22)
    
    Abstract
    Introduces a generic approach to the development of hypermedia information systems. Emphasises the role of intrinsic inter-document relationships in structuring and visualising a large hypermedia information space. Illustrates the use of this approach based on 3 types of similarity measurements: hypertext linkage, content similarity and usage patterns. Salient patterns in these relationships are extracted and visualised in a simle and intuitive associated network. The spatial layout of a visualisation is optimised such that closely related documents are placed near to each other and only those intrinsic connections among them are shown to users as automatically generated virtual links. Supports self-organized information space transformation based on usage patterns and othe feedback such that the visual strucutre of the information space is incrementally tailored to users' search and browsing styles
    Footnote
    Contribution to a special section devoted to human-computer interaction and information retrieval
  12. Liu, M.; Bu, Y.; Chen, C.; Xu, J.; Li, D.; Leng, Y.; Freeman, R.B.; Meyer, E.T.; Yoon, W.; Sung, M.; Jeong, M.; Lee, J.; Kang, J.; Min, C.; Zhai, Y.; Song, M.; Ding, Y.: Pandemics are catalysts of scientific novelty : evidence from COVID-19 (2022) 0.00
    0.0017826294 = product of:
      0.0130726155 = sum of:
        0.0070290747 = product of:
          0.014058149 = sum of:
            0.014058149 = weight(_text_:29 in 633) [ClassicSimilarity], result of:
              0.014058149 = score(doc=633,freq=2.0), product of:
                0.072342895 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.02056547 = queryNorm
                0.19432661 = fieldWeight in 633, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=633)
          0.5 = coord(1/2)
        0.0021021033 = weight(_text_:in in 633) [ClassicSimilarity], result of:
          0.0021021033 = score(doc=633,freq=2.0), product of:
            0.027974274 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.02056547 = queryNorm
            0.07514416 = fieldWeight in 633, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=633)
        0.0039414368 = product of:
          0.0078828735 = sum of:
            0.0078828735 = weight(_text_:science in 633) [ClassicSimilarity], result of:
              0.0078828735 = score(doc=633,freq=2.0), product of:
                0.0541719 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.02056547 = queryNorm
                0.1455159 = fieldWeight in 633, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=633)
          0.5 = coord(1/2)
      0.13636364 = coord(3/22)
    
    Abstract
    Scientific novelty drives the efforts to invent new vaccines and solutions during the pandemic. First-time collaboration and international collaboration are two pivotal channels to expand teams' search activities for a broader scope of resources required to address the global challenge, which might facilitate the generation of novel ideas. Our analysis of 98,981 coronavirus papers suggests that scientific novelty measured by the BioBERT model that is pretrained on 29 million PubMed articles, and first-time collaboration increased after the outbreak of COVID-19, and international collaboration witnessed a sudden decrease. During COVID-19, papers with more first-time collaboration were found to be more novel and international collaboration did not hamper novelty as it had done in the normal periods. The findings suggest the necessity of reaching out for distant resources and the importance of maintaining a collaborative scientific community beyond nationalism during a pandemic.
    Source
    Journal of the Association for Information Science and Technology. 73(2022) no.8, S.1065-1078
  13. Chen, C.: Mapping scientific frontiers : the quest for knowledge visualization (2003) 0.00
    0.0012809454 = product of:
      0.014090398 = sum of:
        0.0041192644 = weight(_text_:in in 2213) [ClassicSimilarity], result of:
          0.0041192644 = score(doc=2213,freq=12.0), product of:
            0.027974274 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.02056547 = queryNorm
            0.14725187 = fieldWeight in 2213, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=2213)
        0.009971134 = product of:
          0.019942269 = sum of:
            0.019942269 = weight(_text_:science in 2213) [ClassicSimilarity], result of:
              0.019942269 = score(doc=2213,freq=20.0), product of:
                0.0541719 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.02056547 = queryNorm
                0.36812937 = fieldWeight in 2213, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2213)
          0.5 = coord(1/2)
      0.09090909 = coord(2/22)
    
    Footnote
    Rez. in: JASIST 55(2004) no.4, S.363-365 (J.W. Schneider): "Theories and methods for mapping scientific frontiers have existed for decades-especially within quantitative studies of science. This book investigates mapping scientific frontiers from the perspective of visual thinking and visual exploration (visual communication). The central theme is construction of visual-spatial representations that may convey insights into the dynamic structure of scientific frontiers. The author's previous book, Information Visualisation and Virtual Environments (1999), also concerns some of the ideas behind and possible benefits of visual communication. This new book takes a special focus an knowledge visualization, particularly in relation to science literature. The book is not a technical tutorial as the focus is an principles of visual communication and ways that may reveal the dynamics of scientific frontiers. The new approach to science mapping presented is the culmination of different approaches from several disciplines, such as philosophy of science, information retrieval, scientometrics, domain analysis, and information visualization. The book therefore addresses an audience with different disciplinary backgrounds and tries to stimulate interdisciplinary research. Chapter 1, The Growth of Scientific Knowledge, introduces a range of examples that illustrate fundamental issues concerning visual communication in general and science mapping in particular. Chapter 2, Mapping the Universe, focuses an the basic principles of cartography for visual communication. Chapter 3, Mapping the Mind, turns the attention inward and explores the design of mind maps, maps that represent our thoughts, experience, and knowledge. Chapter 4, Enabling Techniques for Science Mapping, essentially outlines the author's basic approach to science mapping.
    The title of Chapter 5, On the Shoulders of Giants, implies that knowledge of the structure of scientific frontiers in the immediate past holds the key to a fruitful exploration of people's intellectual assets. Chapter 6, Tracing Competing Paradigms explains how information visualization can draw upon the philosophical framework of paradigm shifts and thereby enable scientists to track the development of Competing paradigms. The final chapter, Tracking Latent Domain Knowledge, turns citation analysis upside down by looking at techniques that may reveal latent domain knowledge. Mapping Scientific Frontiers: The Quest for Knowledge Visualization is an excellent book and is highly recommended. The book convincingly outlines general theories conceming cartography, visual communication, and science mapping-especially how metaphors can make a "big picture"simple and useful. The author likewise Shows how the GSA framework is based not only an technical possibilities but indeed also an the visualization principles presented in the beginning chapters. Also, the author does a fine job of explaining why the mapping of scientific frontiers needs a combined effort from a diverse range of underlying disciplines, such as philosophy of science, sociology of science, scientometrics, domain analyses, information visualization, knowledge discovery, and data mining.
  14. Leydesdorff, L.; Rafols, I.; Chen, C.: Interactive overlays of journals and the measurement of interdisciplinarity on the basis of aggregated journal-journal citations (2013) 0.00
    0.0011439382 = product of:
      0.012583319 = sum of:
        0.004700446 = weight(_text_:in in 1131) [ClassicSimilarity], result of:
          0.004700446 = score(doc=1131,freq=10.0), product of:
            0.027974274 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.02056547 = queryNorm
            0.16802745 = fieldWeight in 1131, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1131)
        0.0078828735 = product of:
          0.015765747 = sum of:
            0.015765747 = weight(_text_:science in 1131) [ClassicSimilarity], result of:
              0.015765747 = score(doc=1131,freq=8.0), product of:
                0.0541719 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.02056547 = queryNorm
                0.2910318 = fieldWeight in 1131, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1131)
          0.5 = coord(1/2)
      0.09090909 = coord(2/22)
    
    Abstract
    Using the option Analyze Results with the Web of Science, one can directly generate overlays onto global journal maps of science. The maps are based on the 10,000+ journals contained in the Journal Citation Reports (JCR) of the Science and Social Sciences Citation Indices (2011). The disciplinary diversity of the retrieval is measured in terms of Rao-Stirling's "quadratic entropy" (Izsák & Papp, 1995). Since this indicator of interdisciplinarity is normalized between 0 and 1, interdisciplinarity can be compared among document sets and across years, cited or citing. The colors used for the overlays are based on Blondel, Guillaume, Lambiotte, and Lefebvre's (2008) community-finding algorithms operating on the relations among journals included in the JCR. The results can be exported from VOSViewer with different options such as proportional labels, heat maps, or cluster density maps. The maps can also be web-started or animated (e.g., using PowerPoint). The "citing" dimension of the aggregated journal-journal citation matrix was found to provide a more comprehensive description than the matrix based on the cited archive. The relations between local and global maps and their different functions in studying the sciences in terms of journal literatures are further discussed: Local and global maps are based on different assumptions and can be expected to serve different purposes for the explanation.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.12, S.2573-2586
  15. Chen, C.; Rada, R.: Interacting with hypertext : a meta-analysis of experimental studies (1996) 0.00
    0.0011034919 = product of:
      0.024276821 = sum of:
        0.024276821 = weight(_text_:computer in 5793) [ClassicSimilarity], result of:
          0.024276821 = score(doc=5793,freq=2.0), product of:
            0.0751567 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.02056547 = queryNorm
            0.32301605 = fieldWeight in 5793, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0625 = fieldNorm(doc=5793)
      0.045454547 = coord(1/22)
    
    Source
    Human-computer interaction. 11(1996) no.2, S.125-156
  16. Ding, W.; Chen, C.: Dynamic topic detection and tracking : a comparison of HDP, C-word, and cocitation methods (2014) 0.00
    9.916928E-4 = product of:
      0.01090862 = sum of:
        0.0061788964 = weight(_text_:in in 1502) [ClassicSimilarity], result of:
          0.0061788964 = score(doc=1502,freq=12.0), product of:
            0.027974274 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.02056547 = queryNorm
            0.22087781 = fieldWeight in 1502, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1502)
        0.0047297236 = product of:
          0.009459447 = sum of:
            0.009459447 = weight(_text_:science in 1502) [ClassicSimilarity], result of:
              0.009459447 = score(doc=1502,freq=2.0), product of:
                0.0541719 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.02056547 = queryNorm
                0.17461908 = fieldWeight in 1502, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1502)
          0.5 = coord(1/2)
      0.09090909 = coord(2/22)
    
    Abstract
    Cocitation and co-word methods have long been used to detect and track emerging topics in scientific literature, but both have weaknesses. Recently, while many researchers have adopted generative probabilistic models for topic detection and tracking, few have compared generative probabilistic models with traditional cocitation and co-word methods in terms of their overall performance. In this article, we compare the performance of hierarchical Dirichlet process (HDP), a promising generative probabilistic model, with that of the 2 traditional topic detecting and tracking methods-cocitation analysis and co-word analysis. We visualize and explore the relationships between topics identified by the 3 methods in hierarchical edge bundling graphs and time flow graphs. Our result shows that HDP is more sensitive and reliable than the other 2 methods in both detecting and tracking emerging topics. Furthermore, we demonstrate the important topics and topic evolution trends in the literature of terrorism research with the HDP method.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.10, S.2084-2097
  17. Chen, C.; Kuljis, J.: ¬The rising landscape : a visual exploration of superstring revolutions in physics (2003) 0.00
    9.6503104E-4 = product of:
      0.010615341 = sum of:
        0.0050973296 = weight(_text_:in in 1469) [ClassicSimilarity], result of:
          0.0050973296 = score(doc=1469,freq=6.0), product of:
            0.027974274 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.02056547 = queryNorm
            0.1822149 = fieldWeight in 1469, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1469)
        0.0055180113 = product of:
          0.011036023 = sum of:
            0.011036023 = weight(_text_:science in 1469) [ClassicSimilarity], result of:
              0.011036023 = score(doc=1469,freq=2.0), product of:
                0.0541719 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.02056547 = queryNorm
                0.20372227 = fieldWeight in 1469, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1469)
          0.5 = coord(1/2)
      0.09090909 = coord(2/22)
    
    Abstract
    Knowledge domain visualization is a visual exploratory approach to the study of the development of a knowledge domain. In this study, we focus an the practical issues concerning modeling and visualizing scientific revolutions. We study the growth patterns of specialties derived from citation and cocitation data an string theory in physics. Special attention is given to the two superstring revolutions since the 1980s. The superstring revolutions are visualized, animated, and analyzed using the general framework of Thomas Kuhn's structure of scientific revolutions. The implications of taking this approach are discussed.
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.5, S.435-446
  18. Chen, C.; Hu, Z.; Milbank, J.; Schultz, T.: ¬A visual analytic study of retracted articles in scientific literature (2013) 0.00
    9.340436E-4 = product of:
      0.010274479 = sum of:
        0.004700446 = weight(_text_:in in 610) [ClassicSimilarity], result of:
          0.004700446 = score(doc=610,freq=10.0), product of:
            0.027974274 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.02056547 = queryNorm
            0.16802745 = fieldWeight in 610, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=610)
        0.005574033 = product of:
          0.011148066 = sum of:
            0.011148066 = weight(_text_:science in 610) [ClassicSimilarity], result of:
              0.011148066 = score(doc=610,freq=4.0), product of:
                0.0541719 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.02056547 = queryNorm
                0.20579056 = fieldWeight in 610, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=610)
          0.5 = coord(1/2)
      0.09090909 = coord(2/22)
    
    Abstract
    Retracting published scientific articles is increasingly common. Retraction is a self-correction mechanism of the scientific community to maintain and safeguard the integrity of scientific literature. However, a retracted article may pose a profound and long-lasting threat to the credibility of the literature. New articles may unknowingly build their work on false claims made in retracted articles. Such dependencies on retracted articles may become implicit and indirect. Consequently, it becomes increasingly important to detect implicit and indirect threats. In this article, our aim is to raise the awareness of the potential threats of retracted articles even after their retraction and demonstrate a visual analytic study of retracted articles with reference to the rest of the literature and how their citations are influenced by their retraction. The context of highly cited retracted articles is visualized in terms of a co-citation network as well as the distribution of articles that have high-order citation dependencies on retracted articles. Survival analyses of time to retraction and postretraction citation are included. Sentences that explicitly cite retracted articles are extracted from full-text articles. Transitions of topics over time are depicted in topic-flow visualizations. We recommend that new visual analytic and science mapping tools should take retracted articles into account and facilitate tasks specifically related to the detection and monitoring of retracted articles.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.2, S.234-253
  19. Chen, C.; Cribbin, T.; Macredie, R.; Morar, S.: Visualizing and tracking the growth of competing paradigms : two case studies (2002) 0.00
    8.8861556E-4 = product of:
      0.009774771 = sum of:
        0.0050450475 = weight(_text_:in in 602) [ClassicSimilarity], result of:
          0.0050450475 = score(doc=602,freq=8.0), product of:
            0.027974274 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.02056547 = queryNorm
            0.18034597 = fieldWeight in 602, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=602)
        0.0047297236 = product of:
          0.009459447 = sum of:
            0.009459447 = weight(_text_:science in 602) [ClassicSimilarity], result of:
              0.009459447 = score(doc=602,freq=2.0), product of:
                0.0541719 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.02056547 = queryNorm
                0.17461908 = fieldWeight in 602, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=602)
          0.5 = coord(1/2)
      0.09090909 = coord(2/22)
    
    Abstract
    In this article we demonstrate the use of an integrative approach to visualizing and tracking the development of scientific paradigms. This approach is designed to reveal the long-term process of competing scientific paradigms. We assume that a cluster of highly cited and cocited scientific publications in a cocitation network represents the core of a predominant scientific paradigm. The growth of a paradigm is depicted and animated through the rise of citation rates and the movement of its core cluster towards the center of the cocitation network. We study two cases of competing scientific paradigms in the real world: (1) the causes of mass extinctions, and (2) the connections between mad cow disease and a new variant of a brain disease in humans-vCJD. Various theoretical and practical issues concerning this approach are discussed.
    Source
    Journal of the American Society for Information Science and technology. 53(2002) no.8, S.678.689
  20. Chen, C.: Individual differences in a spatial-semantic virtual environment (2000) 0.00
    8.6391636E-4 = product of:
      0.00950308 = sum of:
        0.005561643 = weight(_text_:in in 4603) [ClassicSimilarity], result of:
          0.005561643 = score(doc=4603,freq=14.0), product of:
            0.027974274 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.02056547 = queryNorm
            0.19881277 = fieldWeight in 4603, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4603)
        0.0039414368 = product of:
          0.0078828735 = sum of:
            0.0078828735 = weight(_text_:science in 4603) [ClassicSimilarity], result of:
              0.0078828735 = score(doc=4603,freq=2.0), product of:
                0.0541719 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.02056547 = queryNorm
                0.1455159 = fieldWeight in 4603, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4603)
          0.5 = coord(1/2)
      0.09090909 = coord(2/22)
    
    Abstract
    This article presents 2 studies concerning the role of individual differences in searching through a spatial-semantic virtual environment. In the first study, 10 subjects searched for 2 topics through a spatial user interface of a semantic space. A strong positive correlation was found between associative memory (MA-1) and search performance (r=0,855, p=0,003) but no significant correlation was found between visual memory (MV-1) and search performance. In the secon study, 12 subjects participated in a within-subject experimental design. The same spatial user interface and a simple textual user interface were used. The effects of spatial ability (VZ-2), associative memory (MA-1), and on-line experience were tested on a set of interrelated search performance scores. A statistically significant main effect of on-line experience was found, F(6,4)=6,213, p=0,049, two-tailed. In particular, on-line experience has a significant effect on the recall scores with the textual interface. Individuals experienced in on-line esearch are more likely to have a higher recall score with the textual interface than less experienced individuals. No significant main effects were found for spatial ability and associative memory. Subjects' comments suggest a potentially complex interplay between individuals' mental models and the high-dimensional semantic model. Qualitative and process-oriented studies are, therefore, called for to reveal the complex interaction between individuals' cognitive abilities, doamin knowledge, and direct manipulation skills. A recommendation is made that spatial-semantic models should be adaptable to suit individuals and tasks at various levels
    Source
    Journal of the American Society for Information Science. 51(2000) no.6, S.529-542