Search (44 results, page 2 of 3)

  • × author_ss:"Thelwall, M."
  1. Thelwall, M.; Buckley, K.: Topic-based sentiment analysis for the social web : the role of mood and issue-related words (2013) 0.00
    0.0015690941 = product of:
      0.01882913 = sum of:
        0.01882913 = weight(_text_:internet in 1004) [ClassicSimilarity], result of:
          0.01882913 = score(doc=1004,freq=2.0), product of:
            0.09621047 = queryWeight, product of:
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.032588977 = queryNorm
            0.1957077 = fieldWeight in 1004, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.046875 = fieldNorm(doc=1004)
      0.083333336 = coord(1/12)
    
    Theme
    Internet
  2. Orduna-Malea, E.; Thelwall, M.; Kousha, K.: Web citations in patents : evidence of technological impact? (2017) 0.00
    0.0015690941 = product of:
      0.01882913 = sum of:
        0.01882913 = weight(_text_:internet in 3764) [ClassicSimilarity], result of:
          0.01882913 = score(doc=3764,freq=2.0), product of:
            0.09621047 = queryWeight, product of:
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.032588977 = queryNorm
            0.1957077 = fieldWeight in 3764, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.046875 = fieldNorm(doc=3764)
      0.083333336 = coord(1/12)
    
    Abstract
    Patents sometimes cite webpages either as general background to the problem being addressed or to identify prior publications that limit the scope of the patent granted. Counts of the number of patents citing an organization's website may therefore provide an indicator of its technological capacity or relevance. This article introduces methods to extract URL citations from patents and evaluates the usefulness of counts of patent web citations as a technology indicator. An analysis of patents citing 200 US universities or 177 UK universities found computer science and engineering departments to be frequently cited, as well as research-related webpages, such as Wikipedia, YouTube, or the Internet Archive. Overall, however, patent URL citations seem to be frequent enough to be useful for ranking major US and the top few UK universities if popular hosted subdomains are filtered out, but the hit count estimates on the first search engine results page should not be relied upon for accuracy.
  3. Thelwall, M.: Conceptualizing documentation on the Web : an evaluation of different heuristic-based models for counting links between university Web sites (2002) 0.00
    0.0013075785 = product of:
      0.015690941 = sum of:
        0.015690941 = weight(_text_:internet in 978) [ClassicSimilarity], result of:
          0.015690941 = score(doc=978,freq=2.0), product of:
            0.09621047 = queryWeight, product of:
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.032588977 = queryNorm
            0.16308975 = fieldWeight in 978, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.0390625 = fieldNorm(doc=978)
      0.083333336 = coord(1/12)
    
    Theme
    Internet
  4. Thelwall, M.; Vaughan, L.; Björneborn, L.: Webometrics (2004) 0.00
    0.0013075785 = product of:
      0.015690941 = sum of:
        0.015690941 = weight(_text_:internet in 4279) [ClassicSimilarity], result of:
          0.015690941 = score(doc=4279,freq=2.0), product of:
            0.09621047 = queryWeight, product of:
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.032588977 = queryNorm
            0.16308975 = fieldWeight in 4279, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4279)
      0.083333336 = coord(1/12)
    
    Theme
    Internet
  5. Thelwall, M.; Prabowo, R.; Fairclough, R.: Are raw RSS feeds suitable for broad issue scanning? : a science concern case study (2006) 0.00
    0.0013075785 = product of:
      0.015690941 = sum of:
        0.015690941 = weight(_text_:internet in 6116) [ClassicSimilarity], result of:
          0.015690941 = score(doc=6116,freq=2.0), product of:
            0.09621047 = queryWeight, product of:
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.032588977 = queryNorm
            0.16308975 = fieldWeight in 6116, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6116)
      0.083333336 = coord(1/12)
    
    Abstract
    Broad issue scanning is the task of identifying important public debates arising in a given broad issue; really simple syndication (RSS) feeds are a natural information source for investigating broad issues. RSS, as originally conceived, is a method for publishing timely and concise information on the Internet, for example, about the main stories in a news site or the latest postings in a blog. RSS feeds are potentially a nonintrusive source of high-quality data about public opinion: Monitoring a large number may allow quantitative methods to extract information relevant to a given need. In this article we describe an RSS feed-based coword frequency method to identify bursts of discussion relevant to a given broad issue. A case study of public science concerns is used to demonstrate the method and assess the suitability of raw RSS feeds for broad issue scanning (i.e., without data cleansing). An attempt to identify genuine science concern debates from the corpus through investigating the top 1,000 "burst" words found only two genuine debates, however. The low success rate was mainly caused by a few pathological feeds that dominated the results and obscured any significant debates. The results point to the need to develop effective data cleansing procedures for RSS feeds, particularly if there is not a large quantity of discussion about the broad issue, and a range of potential techniques is suggested. Finally, the analysis confirmed that the time series information generated by real-time monitoring of RSS feeds could usefully illustrate the evolution of new debates relevant to a broad issue.
  6. Thelwall, M.; Binns, R.; Harries, G.; Page-Kennedy, T.; Price, L.; Wilkinson, D.: Custom interfaces for advanced queries in search engines (2001) 0.00
    0.0013075785 = product of:
      0.015690941 = sum of:
        0.015690941 = weight(_text_:internet in 697) [ClassicSimilarity], result of:
          0.015690941 = score(doc=697,freq=2.0), product of:
            0.09621047 = queryWeight, product of:
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.032588977 = queryNorm
            0.16308975 = fieldWeight in 697, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.0390625 = fieldNorm(doc=697)
      0.083333336 = coord(1/12)
    
    Abstract
    Those seeking information from the Internet often start from a search engine, using either its organised directory structure or its text query facility. In response to the difficulty in identifying the most relevant pages for some information needs, many search engines offer Boolean text matching and some, including Google, AltaVista and HotBot, offer the facility to integrate additional information into a more advanced request. Amongst web users, however, it is known that the employment of complex enquiries is far from universal, with very short queries being the norm. It is demonstrated that the gap between the provision of advanced search facilities and their use can be bridged, for specific information needs, by the construction of a simple interface in the form of a website that automatically formulates the necessary requests. It is argued that this kind of resource, perhaps employing additional knowledge domain specific information, is one that could be useful for websites or portals of common interest groups. The approach is illustrated by a website that enables a user to search the individual websites of university level institutions in European Union associated countries.
  7. Thelwall, M.: Social networks, gender, and friending : an analysis of MySpace member profiles (2008) 0.00
    0.0013075785 = product of:
      0.015690941 = sum of:
        0.015690941 = weight(_text_:internet in 1883) [ClassicSimilarity], result of:
          0.015690941 = score(doc=1883,freq=2.0), product of:
            0.09621047 = queryWeight, product of:
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.032588977 = queryNorm
            0.16308975 = fieldWeight in 1883, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1883)
      0.083333336 = coord(1/12)
    
    Theme
    Internet
  8. Kousha, K.; Thelwall, M.; Rezaie, S.: Can the impact of scholarly images be assessed online? : an exploratory study using image identification technology (2010) 0.00
    0.0013075785 = product of:
      0.015690941 = sum of:
        0.015690941 = weight(_text_:internet in 3966) [ClassicSimilarity], result of:
          0.015690941 = score(doc=3966,freq=2.0), product of:
            0.09621047 = queryWeight, product of:
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.032588977 = queryNorm
            0.16308975 = fieldWeight in 3966, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3966)
      0.083333336 = coord(1/12)
    
    Abstract
    The web contains a huge number of digital pictures. For scholars publishing such images it is important to know how well used their images are, but no method seems to have been developed for monitoring the value of academic images. In particular, can the impact of scientific or artistic images be assessed through identifying images copied or reused on the Internet? This article explores a case study of 260 NASA images to investigate whether the TinEye search engine could theoretically help to provide this information. The results show that the selected pictures had a median of 11 online copies each. However, a classification of 210 of these copies reveals that only 1.4% were explicitly used in academic publications, reflecting research impact, and the majority of the NASA pictures were used for informal scholarly (or educational) communication (37%). Additional analyses of world famous paintings and scientific images about pathology and molecular structures suggest that image contents are important for the type and extent of image use. Although it is reasonable to use statistics derived from TinEye for assessing image reuse value, the extent of its image indexing is not known.
  9. Thelwall, M.: ¬A comparison of link and URL citation counting (2011) 0.00
    0.0013075785 = product of:
      0.015690941 = sum of:
        0.015690941 = weight(_text_:internet in 4533) [ClassicSimilarity], result of:
          0.015690941 = score(doc=4533,freq=2.0), product of:
            0.09621047 = queryWeight, product of:
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.032588977 = queryNorm
            0.16308975 = fieldWeight in 4533, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4533)
      0.083333336 = coord(1/12)
    
    Theme
    Internet
  10. Thelwall, M.; Sud, P.: ¬A comparison of methods for collecting web citation data for academic organizations (2011) 0.00
    0.0013075785 = product of:
      0.015690941 = sum of:
        0.015690941 = weight(_text_:internet in 4626) [ClassicSimilarity], result of:
          0.015690941 = score(doc=4626,freq=2.0), product of:
            0.09621047 = queryWeight, product of:
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.032588977 = queryNorm
            0.16308975 = fieldWeight in 4626, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4626)
      0.083333336 = coord(1/12)
    
    Theme
    Internet
  11. Thelwall, M.; Kousha, K.: Academia.edu : Social network or Academic Network? (2014) 0.00
    0.0013075785 = product of:
      0.015690941 = sum of:
        0.015690941 = weight(_text_:internet in 1234) [ClassicSimilarity], result of:
          0.015690941 = score(doc=1234,freq=2.0), product of:
            0.09621047 = queryWeight, product of:
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.032588977 = queryNorm
            0.16308975 = fieldWeight in 1234, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1234)
      0.083333336 = coord(1/12)
    
    Theme
    Internet
  12. Thelwall, M.; Goriunova, O.; Vis, F.; Faulkner, S.; Burns, A.; Aulich, J.; Mas-Bleda, A.; Stuart, E.; D'Orazio, F.: Chatting through pictures : a classification of images tweeted in one week in the UK and USA (2016) 0.00
    0.0013075785 = product of:
      0.015690941 = sum of:
        0.015690941 = weight(_text_:internet in 3215) [ClassicSimilarity], result of:
          0.015690941 = score(doc=3215,freq=2.0), product of:
            0.09621047 = queryWeight, product of:
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.032588977 = queryNorm
            0.16308975 = fieldWeight in 3215, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3215)
      0.083333336 = coord(1/12)
    
    Theme
    Internet
  13. Levitt, J.M.; Thelwall, M.: Citation levels and collaboration within library and information science (2009) 0.00
    0.001300887 = product of:
      0.015610643 = sum of:
        0.015610643 = product of:
          0.031221285 = sum of:
            0.031221285 = weight(_text_:22 in 2734) [ClassicSimilarity], result of:
              0.031221285 = score(doc=2734,freq=4.0), product of:
                0.11412105 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.032588977 = queryNorm
                0.27358043 = fieldWeight in 2734, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2734)
          0.5 = coord(1/2)
      0.083333336 = coord(1/12)
    
    Abstract
    Collaboration is a major research policy objective, but does it deliver higher quality research? This study uses citation analysis to examine the Web of Science (WoS) Information Science & Library Science subject category (IS&LS) to ascertain whether, in general, more highly cited articles are more highly collaborative than other articles. It consists of two investigations. The first investigation is a longitudinal comparison of the degree and proportion of collaboration in five strata of citation; it found that collaboration in the highest four citation strata (all in the most highly cited 22%) increased in unison over time, whereas collaboration in the lowest citation strata (un-cited articles) remained low and stable. Given that over 40% of the articles were un-cited, it seems important to take into account the differences found between un-cited articles and relatively highly cited articles when investigating collaboration in IS&LS. The second investigation compares collaboration for 35 influential information scientists; it found that their more highly cited articles on average were not more highly collaborative than their less highly cited articles. In summary, although collaborative research is conducive to high citation in general, collaboration has apparently not tended to be essential to the success of current and former elite information scientists.
    Date
    22. 3.2009 12:43:51
  14. Thelwall, M.; Maflahi, N.: Guideline references and academic citations as evidence of the clinical value of health research (2016) 0.00
    0.0011038391 = product of:
      0.01324607 = sum of:
        0.01324607 = product of:
          0.02649214 = sum of:
            0.02649214 = weight(_text_:22 in 2856) [ClassicSimilarity], result of:
              0.02649214 = score(doc=2856,freq=2.0), product of:
                0.11412105 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.032588977 = queryNorm
                0.23214069 = fieldWeight in 2856, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2856)
          0.5 = coord(1/2)
      0.083333336 = coord(1/12)
    
    Date
    19. 3.2016 12:22:00
  15. Thelwall, M.; Sud, P.: Mendeley readership counts : an investigation of temporal and disciplinary differences (2016) 0.00
    0.0011038391 = product of:
      0.01324607 = sum of:
        0.01324607 = product of:
          0.02649214 = sum of:
            0.02649214 = weight(_text_:22 in 3211) [ClassicSimilarity], result of:
              0.02649214 = score(doc=3211,freq=2.0), product of:
                0.11412105 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.032588977 = queryNorm
                0.23214069 = fieldWeight in 3211, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3211)
          0.5 = coord(1/2)
      0.083333336 = coord(1/12)
    
    Date
    16.11.2016 11:07:22
  16. Didegah, F.; Thelwall, M.: Co-saved, co-tweeted, and co-cited networks (2018) 0.00
    0.0011038391 = product of:
      0.01324607 = sum of:
        0.01324607 = product of:
          0.02649214 = sum of:
            0.02649214 = weight(_text_:22 in 4291) [ClassicSimilarity], result of:
              0.02649214 = score(doc=4291,freq=2.0), product of:
                0.11412105 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.032588977 = queryNorm
                0.23214069 = fieldWeight in 4291, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4291)
          0.5 = coord(1/2)
      0.083333336 = coord(1/12)
    
    Date
    28. 7.2018 10:00:22
  17. Barjak, F.; Li, X.; Thelwall, M.: Which factors explain the Web impact of scientists' personal homepages? (2007) 0.00
    0.0010460628 = product of:
      0.012552753 = sum of:
        0.012552753 = weight(_text_:internet in 73) [ClassicSimilarity], result of:
          0.012552753 = score(doc=73,freq=2.0), product of:
            0.09621047 = queryWeight, product of:
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.032588977 = queryNorm
            0.1304718 = fieldWeight in 73, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.03125 = fieldNorm(doc=73)
      0.083333336 = coord(1/12)
    
    Abstract
    In recent years, a considerable body of Webometric research has used hyperlinks to generate indicators for the impact of Web documents and the organizations that created them. The relationship between this Web impact and other, offline impact indicators has been explored for entire universities, departments, countries, and scientific journals, but not yet for individual scientists-an important omission. The present research closes this gap by investigating factors that may influence the Web impact (i.e., inlink counts) of scientists' personal homepages. Data concerning 456 scientists from five scientific disciplines in six European countries were analyzed, showing that both homepage content and personal and institutional characteristics of the homepage owners had significant relationships with inlink counts. A multivariate statistical analysis confirmed that full-text articles are the most linked-to content in homepages. At the individual homepage level, hyperlinks are related to several offline characteristics. Notable differences regarding total inlinks to scientists' homepages exist between the scientific disciplines and the countries in the sample. There also are both gender and age effects: fewer external inlinks (i.e., links from other Web domains) to the homepages of female and of older scientists. There is only a weak relationship between a scientist's recognition and homepage inlinks and, surprisingly, no relationship between research productivity and inlink counts. Contrary to expectations, the size of collaboration networks is negatively related to hyperlink counts. Some of the relationships between hyperlinks to homepages and the properties of their owners can be explained by the content that the homepage owners put on their homepage and their level of Internet use; however, the findings about productivity and collaborations do not seem to have a simple, intuitive explanation. Overall, the results emphasize the complexity of the phenomenon of Web linking, when analyzed at the level of individual pages.
  18. Kousha, K.; Thelwall, M.: How is science cited on the Web? : a classification of google unique Web citations (2007) 0.00
    9.19866E-4 = product of:
      0.011038392 = sum of:
        0.011038392 = product of:
          0.022076784 = sum of:
            0.022076784 = weight(_text_:22 in 586) [ClassicSimilarity], result of:
              0.022076784 = score(doc=586,freq=2.0), product of:
                0.11412105 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.032588977 = queryNorm
                0.19345059 = fieldWeight in 586, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=586)
          0.5 = coord(1/2)
      0.083333336 = coord(1/12)
    
    Abstract
    Although the analysis of citations in the scholarly literature is now an established and relatively well understood part of information science, not enough is known about citations that can be found on the Web. In particular, are there new Web types, and if so, are these trivial or potentially useful for studying or evaluating research communication? We sought evidence based upon a sample of 1,577 Web citations of the URLs or titles of research articles in 64 open-access journals from biology, physics, chemistry, and computing. Only 25% represented intellectual impact, from references of Web documents (23%) and other informal scholarly sources (2%). Many of the Web/URL citations were created for general or subject-specific navigation (45%) or for self-publicity (22%). Additional analyses revealed significant disciplinary differences in the types of Google unique Web/URL citations as well as some characteristics of scientific open-access publishing on the Web. We conclude that the Web provides access to a new and different type of citation information, one that may therefore enable us to measure different aspects of research, and the research process in particular; but to obtain good information, the different types should be separated.
  19. Thelwall, M.; Buckley, K.; Paltoglou, G.; Cai, D.; Kappas, A.: Sentiment strength detection in short informal text (2010) 0.00
    9.19866E-4 = product of:
      0.011038392 = sum of:
        0.011038392 = product of:
          0.022076784 = sum of:
            0.022076784 = weight(_text_:22 in 4200) [ClassicSimilarity], result of:
              0.022076784 = score(doc=4200,freq=2.0), product of:
                0.11412105 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.032588977 = queryNorm
                0.19345059 = fieldWeight in 4200, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4200)
          0.5 = coord(1/2)
      0.083333336 = coord(1/12)
    
    Date
    22. 1.2011 14:29:23
  20. Thelwall, M.; Sud, P.; Wilkinson, D.: Link and co-inlink network diagrams with URL citations or title mentions (2012) 0.00
    9.19866E-4 = product of:
      0.011038392 = sum of:
        0.011038392 = product of:
          0.022076784 = sum of:
            0.022076784 = weight(_text_:22 in 57) [ClassicSimilarity], result of:
              0.022076784 = score(doc=57,freq=2.0), product of:
                0.11412105 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.032588977 = queryNorm
                0.19345059 = fieldWeight in 57, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=57)
          0.5 = coord(1/2)
      0.083333336 = coord(1/12)
    
    Date
    6. 4.2012 18:16:22