Search (14 results, page 1 of 1)

  • × year_i:[2010 TO 2020}
  • × theme_ss:"Visualisierung"
  1. Osinska, V.; Bala, P.: New methods for visualization and improvement of classification schemes : the case of computer science (2010) 0.01
    0.011581944 = product of:
      0.06949166 = sum of:
        0.056245595 = weight(_text_:informatik in 3693) [ClassicSimilarity], result of:
          0.056245595 = score(doc=3693,freq=2.0), product of:
            0.1662844 = queryWeight, product of:
              5.1024737 = idf(docFreq=730, maxDocs=44218)
              0.032588977 = queryNorm
            0.3382494 = fieldWeight in 3693, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.1024737 = idf(docFreq=730, maxDocs=44218)
              0.046875 = fieldNorm(doc=3693)
        0.01324607 = product of:
          0.02649214 = sum of:
            0.02649214 = weight(_text_:22 in 3693) [ClassicSimilarity], result of:
              0.02649214 = score(doc=3693,freq=2.0), product of:
                0.11412105 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.032588977 = queryNorm
                0.23214069 = fieldWeight in 3693, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3693)
          0.5 = coord(1/2)
      0.16666667 = coord(2/12)
    
    Date
    22. 7.2010 19:36:46
    Field
    Informatik
  2. Su, H.-N.: Visualization of global science and technology policy research structure (2012) 0.01
    0.0071735433 = product of:
      0.08608252 = sum of:
        0.08608252 = weight(_text_:205 in 4969) [ClassicSimilarity], result of:
          0.08608252 = score(doc=4969,freq=2.0), product of:
            0.2057144 = queryWeight, product of:
              6.312392 = idf(docFreq=217, maxDocs=44218)
              0.032588977 = queryNorm
            0.41845644 = fieldWeight in 4969, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.312392 = idf(docFreq=217, maxDocs=44218)
              0.046875 = fieldNorm(doc=4969)
      0.083333336 = coord(1/12)
    
    Abstract
    This study proposes an approach for visualizing knowledge structures that creates a "research-focused parallelship network," "keyword co-occurrence network," and a knowledge map to visualize Sci-Tech policy research structure. A total of 1,125 Sci-Tech policy-related papers (873 journal papers [78%], 205 conference papers [18%], and 47 review papers [4%]) have been retrieved from the Web of Science database for quantitative analysis and mapping. Different network and contour maps based on these 1,125 papers can be constructed by choosing different information as the main actor, such as the paper title, the institute, the country, or the author keywords, to reflect Sci-Tech policy research structures in micro-, meso-, and macro-levels, respectively. The quantitative way of exploring Sci-Tech policy research papers is investigated to unveil important or emerging Sci-Tech policy implications as well as to demonstrate the dynamics and visualization of the evolution of Sci-Tech policy research.
  3. Osiñska, V.: Visual analysis of classification scheme (2010) 0.00
    0.0039059445 = product of:
      0.046871334 = sum of:
        0.046871334 = weight(_text_:informatik in 4068) [ClassicSimilarity], result of:
          0.046871334 = score(doc=4068,freq=2.0), product of:
            0.1662844 = queryWeight, product of:
              5.1024737 = idf(docFreq=730, maxDocs=44218)
              0.032588977 = queryNorm
            0.2818745 = fieldWeight in 4068, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.1024737 = idf(docFreq=730, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4068)
      0.083333336 = coord(1/12)
    
    Field
    Informatik
  4. Neubauer, G.: Visualization of typed links in linked data (2017) 0.00
    0.0029182876 = product of:
      0.03501945 = sum of:
        0.03501945 = product of:
          0.0700389 = sum of:
            0.0700389 = weight(_text_:vernetzung in 3912) [ClassicSimilarity], result of:
              0.0700389 = score(doc=3912,freq=2.0), product of:
                0.20326729 = queryWeight, product of:
                  6.237302 = idf(docFreq=234, maxDocs=44218)
                  0.032588977 = queryNorm
                0.3445655 = fieldWeight in 3912, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  6.237302 = idf(docFreq=234, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3912)
          0.5 = coord(1/2)
      0.083333336 = coord(1/12)
    
    Abstract
    Das Themengebiet der Arbeit behandelt Visualisierungen von typisierten Links in Linked Data. Die wissenschaftlichen Gebiete, die im Allgemeinen den Inhalt des Beitrags abgrenzen, sind das Semantic Web, das Web of Data und Informationsvisualisierung. Das Semantic Web, das von Tim Berners Lee 2001 erfunden wurde, stellt eine Erweiterung zum World Wide Web (Web 2.0) dar. Aktuelle Forschungen beziehen sich auf die Verknüpfbarkeit von Informationen im World Wide Web. Um es zu ermöglichen, solche Verbindungen wahrnehmen und verarbeiten zu können sind Visualisierungen die wichtigsten Anforderungen als Hauptteil der Datenverarbeitung. Im Zusammenhang mit dem Sematic Web werden Repräsentationen von zusammenhängenden Informationen anhand von Graphen gehandhabt. Der Grund des Entstehens dieser Arbeit ist in erster Linie die Beschreibung der Gestaltung von Linked Data-Visualisierungskonzepten, deren Prinzipien im Rahmen einer theoretischen Annäherung eingeführt werden. Anhand des Kontexts führt eine schrittweise Erweiterung der Informationen mit dem Ziel, praktische Richtlinien anzubieten, zur Vernetzung dieser ausgearbeiteten Gestaltungsrichtlinien. Indem die Entwürfe zweier alternativer Visualisierungen einer standardisierten Webapplikation beschrieben werden, die Linked Data als Netzwerk visualisiert, konnte ein Test durchgeführt werden, der deren Kompatibilität zum Inhalt hatte. Der praktische Teil behandelt daher die Designphase, die Resultate, und zukünftige Anforderungen des Projektes, die durch die Testung ausgearbeitet wurden.
  5. Graphic details : a scientific study of the importance of diagrams to science (2016) 0.00
    0.0026729335 = product of:
      0.0160376 = sum of:
        0.009414565 = weight(_text_:internet in 3035) [ClassicSimilarity], result of:
          0.009414565 = score(doc=3035,freq=2.0), product of:
            0.09621047 = queryWeight, product of:
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.032588977 = queryNorm
            0.09785385 = fieldWeight in 3035, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.0234375 = fieldNorm(doc=3035)
        0.006623035 = product of:
          0.01324607 = sum of:
            0.01324607 = weight(_text_:22 in 3035) [ClassicSimilarity], result of:
              0.01324607 = score(doc=3035,freq=2.0), product of:
                0.11412105 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.032588977 = queryNorm
                0.116070345 = fieldWeight in 3035, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3035)
          0.5 = coord(1/2)
      0.16666667 = coord(2/12)
    
    Content
    Bill Howe and his colleagues at the University of Washington, in Seattle, decided to find out. First, they trained a computer algorithm to distinguish between various sorts of figures-which they defined as diagrams, equations, photographs, plots (such as bar charts and scatter graphs) and tables. They exposed their algorithm to between 400 and 600 images of each of these types of figure until it could distinguish them with an accuracy greater than 90%. Then they set it loose on the more-than-650,000 papers (containing more than 10m figures) stored on PubMed Central, an online archive of biomedical-research articles. To measure each paper's influence, they calculated its article-level Eigenfactor score-a modified version of the PageRank algorithm Google uses to provide the most relevant results for internet searches. Eigenfactor scoring gives a better measure than simply noting the number of times a paper is cited elsewhere, because it weights citations by their influence. A citation in a paper that is itself highly cited is worth more than one in a paper that is not.
    As the team describe in a paper posted (http://arxiv.org/abs/1605.04951) on arXiv, they found that figures did indeed matter-but not all in the same way. An average paper in PubMed Central has about one diagram for every three pages and gets 1.67 citations. Papers with more diagrams per page and, to a lesser extent, plots per page tended to be more influential (on average, a paper accrued two more citations for every extra diagram per page, and one more for every extra plot per page). By contrast, including photographs and equations seemed to decrease the chances of a paper being cited by others. That agrees with a study from 2012, whose authors counted (by hand) the number of mathematical expressions in over 600 biology papers and found that each additional equation per page reduced the number of citations a paper received by 22%. This does not mean that researchers should rush to include more diagrams in their next paper. Dr Howe has not shown what is behind the effect, which may merely be one of correlation, rather than causation. It could, for example, be that papers with lots of diagrams tend to be those that illustrate new concepts, and thus start a whole new field of inquiry. Such papers will certainly be cited a lot. On the other hand, the presence of equations really might reduce citations. Biologists (as are most of those who write and read the papers in PubMed Central) are notoriously mathsaverse. If that is the case, looking in a physics archive would probably produce a different result.
  6. Platis, N. et al.: Visualization of uncertainty in tag clouds (2016) 0.00
    0.001839732 = product of:
      0.022076784 = sum of:
        0.022076784 = product of:
          0.044153567 = sum of:
            0.044153567 = weight(_text_:22 in 2755) [ClassicSimilarity], result of:
              0.044153567 = score(doc=2755,freq=2.0), product of:
                0.11412105 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.032588977 = queryNorm
                0.38690117 = fieldWeight in 2755, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2755)
          0.5 = coord(1/2)
      0.083333336 = coord(1/12)
    
    Date
    1. 2.2016 18:25:22
  7. Leydesdorff, L.; Persson, O.: Mapping the geography of science : distribution patterns and networks of relations among cities and institutes (2010) 0.00
    0.0015690941 = product of:
      0.01882913 = sum of:
        0.01882913 = weight(_text_:internet in 3704) [ClassicSimilarity], result of:
          0.01882913 = score(doc=3704,freq=2.0), product of:
            0.09621047 = queryWeight, product of:
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.032588977 = queryNorm
            0.1957077 = fieldWeight in 3704, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.046875 = fieldNorm(doc=3704)
      0.083333336 = coord(1/12)
    
    Abstract
    Using Google Earth, Google Maps, and/or network visualization programs such as Pajek, one can overlay the network of relations among addresses in scientific publications onto the geographic map. The authors discuss the pros and cons of various options, and provide software (freeware) for bridging existing gaps between the Science Citation Indices (Thomson Reuters) and Scopus (Elsevier), on the one hand, and these various visualization tools on the other. At the level of city names, the global map can be drawn reliably on the basis of the available address information. At the level of the names of organizations and institutes, there are problems of unification both in the ISI databases and with Scopus. Pajek enables a combination of visualization and statistical analysis, whereas the Google Maps and its derivatives provide superior tools on the Internet.
  8. Börner, K.: Atlas of knowledge : anyone can map (2015) 0.00
    0.0015610645 = product of:
      0.018732773 = sum of:
        0.018732773 = product of:
          0.037465546 = sum of:
            0.037465546 = weight(_text_:22 in 3355) [ClassicSimilarity], result of:
              0.037465546 = score(doc=3355,freq=4.0), product of:
                0.11412105 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.032588977 = queryNorm
                0.32829654 = fieldWeight in 3355, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3355)
          0.5 = coord(1/2)
      0.083333336 = coord(1/12)
    
    Date
    22. 1.2017 16:54:03
    22. 1.2017 17:10:56
  9. Lin, F.-T.: Drawing a knowledge map of smart city knowledge in academia (2019) 0.00
    0.0013075785 = product of:
      0.015690941 = sum of:
        0.015690941 = weight(_text_:internet in 5454) [ClassicSimilarity], result of:
          0.015690941 = score(doc=5454,freq=2.0), product of:
            0.09621047 = queryWeight, product of:
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.032588977 = queryNorm
            0.16308975 = fieldWeight in 5454, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5454)
      0.083333336 = coord(1/12)
    
    Abstract
    This research takes the academic articles in the Web of Science's core collection database as a corpus to draw a series of knowledge maps, to explore the relationships, connectivity, dis-tribution, and evolution among their keywords with respect to smart cities in the last decade. Beyond just drawing a text cloud or measuring their sizes, we further explore their texture by iden-tifying the hottest keywords in academic articles, construct links between and among them that share common keywords, identify islands, rocks, reefs that are formed by connected articles-a metaphor inspired by Ong et al. (2005)-and analyze trends in their evolution. We found the following phenomena: 1) "Internet of Things" is the most frequently mentioned keyword in recent research articles; 2) the numbers of islands and reefs are increas-ing; 3) the evolutions of the numbers of weighted links have frac-tal-like structure; and, 4) the coverage of the largest rock, formed by articles that share a common keyword, in the largest island is converging into around 10% to 20%. These phenomena imply that a common interest in the technology of smart cities has been emerging among researchers. However, the administrative, social, economic, and cultural issues need more attention in academia in the future.
  10. Jäger-Dengler-Harles, I.: Informationsvisualisierung und Retrieval im Fokus der Infromationspraxis (2013) 0.00
    0.0011038391 = product of:
      0.01324607 = sum of:
        0.01324607 = product of:
          0.02649214 = sum of:
            0.02649214 = weight(_text_:22 in 1709) [ClassicSimilarity], result of:
              0.02649214 = score(doc=1709,freq=2.0), product of:
                0.11412105 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.032588977 = queryNorm
                0.23214069 = fieldWeight in 1709, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1709)
          0.5 = coord(1/2)
      0.083333336 = coord(1/12)
    
    Date
    4. 2.2015 9:22:39
  11. Wu, K.-C.; Hsieh, T.-Y.: Affective choosing of clustering and categorization representations in e-book interfaces (2016) 0.00
    9.19866E-4 = product of:
      0.011038392 = sum of:
        0.011038392 = product of:
          0.022076784 = sum of:
            0.022076784 = weight(_text_:22 in 3070) [ClassicSimilarity], result of:
              0.022076784 = score(doc=3070,freq=2.0), product of:
                0.11412105 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.032588977 = queryNorm
                0.19345059 = fieldWeight in 3070, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3070)
          0.5 = coord(1/2)
      0.083333336 = coord(1/12)
    
    Date
    20. 1.2015 18:30:22
  12. Wu, I.-C.; Vakkari, P.: Effects of subject-oriented visualization tools on search by novices and intermediates (2018) 0.00
    9.19866E-4 = product of:
      0.011038392 = sum of:
        0.011038392 = product of:
          0.022076784 = sum of:
            0.022076784 = weight(_text_:22 in 4573) [ClassicSimilarity], result of:
              0.022076784 = score(doc=4573,freq=2.0), product of:
                0.11412105 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.032588977 = queryNorm
                0.19345059 = fieldWeight in 4573, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4573)
          0.5 = coord(1/2)
      0.083333336 = coord(1/12)
    
    Date
    9.12.2018 16:22:25
  13. Osinska, V.; Kowalska, M.; Osinski, Z.: ¬The role of visualization in the shaping and exploration of the individual information space : part 1 (2018) 0.00
    9.19866E-4 = product of:
      0.011038392 = sum of:
        0.011038392 = product of:
          0.022076784 = sum of:
            0.022076784 = weight(_text_:22 in 4641) [ClassicSimilarity], result of:
              0.022076784 = score(doc=4641,freq=2.0), product of:
                0.11412105 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.032588977 = queryNorm
                0.19345059 = fieldWeight in 4641, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4641)
          0.5 = coord(1/2)
      0.083333336 = coord(1/12)
    
    Date
    21.12.2018 17:22:13
  14. Batorowska, H.; Kaminska-Czubala, B.: Information retrieval support : visualisation of the information space of a document (2014) 0.00
    7.358928E-4 = product of:
      0.008830713 = sum of:
        0.008830713 = product of:
          0.017661426 = sum of:
            0.017661426 = weight(_text_:22 in 1444) [ClassicSimilarity], result of:
              0.017661426 = score(doc=1444,freq=2.0), product of:
                0.11412105 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.032588977 = queryNorm
                0.15476047 = fieldWeight in 1444, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1444)
          0.5 = coord(1/2)
      0.083333336 = coord(1/12)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik