Search (41 results, page 1 of 3)

  • × language_ss:"e"
  • × type_ss:"x"
  1. Xiong, C.: Knowledge based text representations for information retrieval (2016) 0.22
    0.21995464 = product of:
      0.2749433 = sum of:
        0.04909682 = product of:
          0.14729045 = sum of:
            0.14729045 = weight(_text_:3a in 5820) [ClassicSimilarity], result of:
              0.14729045 = score(doc=5820,freq=2.0), product of:
                0.39311135 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046368346 = queryNorm
                0.3746787 = fieldWeight in 5820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5820)
          0.33333334 = coord(1/3)
        0.008615503 = weight(_text_:a in 5820) [ClassicSimilarity], result of:
          0.008615503 = score(doc=5820,freq=20.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.16114321 = fieldWeight in 5820, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
        0.20830014 = weight(_text_:2f in 5820) [ClassicSimilarity], result of:
          0.20830014 = score(doc=5820,freq=4.0), product of:
            0.39311135 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046368346 = queryNorm
            0.5298757 = fieldWeight in 5820, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
        0.0089308405 = product of:
          0.017861681 = sum of:
            0.017861681 = weight(_text_:information in 5820) [ClassicSimilarity], result of:
              0.017861681 = score(doc=5820,freq=16.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.21943474 = fieldWeight in 5820, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5820)
          0.5 = coord(1/2)
      0.8 = coord(4/5)
    
    Abstract
    The successes of information retrieval (IR) in recent decades were built upon bag-of-words representations. Effective as it is, bag-of-words is only a shallow text understanding; there is a limited amount of information for document ranking in the word space. This dissertation goes beyond words and builds knowledge based text representations, which embed the external and carefully curated information from knowledge bases, and provide richer and structured evidence for more advanced information retrieval systems. This thesis research first builds query representations with entities associated with the query. Entities' descriptions are used by query expansion techniques that enrich the query with explanation terms. Then we present a general framework that represents a query with entities that appear in the query, are retrieved by the query, or frequently show up in the top retrieved documents. A latent space model is developed to jointly learn the connections from query to entities and the ranking of documents, modeling the external evidence from knowledge bases and internal ranking features cooperatively. To further improve the quality of relevant entities, a defining factor of our query representations, we introduce learning to rank to entity search and retrieve better entities from knowledge bases. In the document representation part, this thesis research also moves one step forward with a bag-of-entities model, in which documents are represented by their automatic entity annotations, and the ranking is performed in the entity space.
    This proposal includes plans to improve the quality of relevant entities with a co-learning framework that learns from both entity labels and document labels. We also plan to develop a hybrid ranking system that combines word based and entity based representations together with their uncertainties considered. At last, we plan to enrich the text representations with connections between entities. We propose several ways to infer entity graph representations for texts, and to rank documents using their structure representations. This dissertation overcomes the limitation of word based representations with external and carefully curated information from knowledge bases. We believe this thesis research is a solid start towards the new generation of intelligent, semantic, and structured information retrieval.
    Content
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Language and Information Technologies. Vgl.: https%3A%2F%2Fwww.cs.cmu.edu%2F~cx%2Fpapers%2Fknowledge_based_text_representation.pdf&usg=AOvVaw0SaTSvhWLTh__Uz_HtOtl3.
  2. Farazi, M.: Faceted lightweight ontologies : a formalization and some experiments (2010) 0.21
    0.2102905 = product of:
      0.26286313 = sum of:
        0.061371025 = product of:
          0.18411307 = sum of:
            0.18411307 = weight(_text_:3a in 4997) [ClassicSimilarity], result of:
              0.18411307 = score(doc=4997,freq=2.0), product of:
                0.39311135 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046368346 = queryNorm
                0.46834838 = fieldWeight in 4997, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4997)
          0.33333334 = coord(1/3)
        0.011797264 = weight(_text_:a in 4997) [ClassicSimilarity], result of:
          0.011797264 = score(doc=4997,freq=24.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.22065444 = fieldWeight in 4997, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4997)
        0.18411307 = weight(_text_:2f in 4997) [ClassicSimilarity], result of:
          0.18411307 = score(doc=4997,freq=2.0), product of:
            0.39311135 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046368346 = queryNorm
            0.46834838 = fieldWeight in 4997, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4997)
        0.0055817757 = product of:
          0.011163551 = sum of:
            0.011163551 = weight(_text_:information in 4997) [ClassicSimilarity], result of:
              0.011163551 = score(doc=4997,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.13714671 = fieldWeight in 4997, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4997)
          0.5 = coord(1/2)
      0.8 = coord(4/5)
    
    Abstract
    While classifications are heavily used to categorize web content, the evolution of the web foresees a more formal structure - ontology - which can serve this purpose. Ontologies are core artifacts of the Semantic Web which enable machines to use inference rules to conduct automated reasoning on data. Lightweight ontologies bridge the gap between classifications and ontologies. A lightweight ontology (LO) is an ontology representing a backbone taxonomy where the concept of the child node is more specific than the concept of the parent node. Formal lightweight ontologies can be generated from their informal ones. The key applications of formal lightweight ontologies are document classification, semantic search, and data integration. However, these applications suffer from the following problems: the disambiguation accuracy of the state of the art NLP tools used in generating formal lightweight ontologies from their informal ones; the lack of background knowledge needed for the formal lightweight ontologies; and the limitation of ontology reuse. In this dissertation, we propose a novel solution to these problems in formal lightweight ontologies; namely, faceted lightweight ontology (FLO). FLO is a lightweight ontology in which terms, present in each node label, and their concepts, are available in the background knowledge (BK), which is organized as a set of facets. A facet can be defined as a distinctive property of the groups of concepts that can help in differentiating one group from another. Background knowledge can be defined as a subset of a knowledge base, such as WordNet, and often represents a specific domain.
    Content
    PhD Dissertation at International Doctorate School in Information and Communication Technology. Vgl.: https%3A%2F%2Fcore.ac.uk%2Fdownload%2Fpdf%2F150083013.pdf&usg=AOvVaw2n-qisNagpyT0lli_6QbAQ.
    Imprint
    Trento : University / Department of information engineering and computer science
  3. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.17
    0.17393503 = product of:
      0.21741877 = sum of:
        0.04909682 = product of:
          0.14729045 = sum of:
            0.14729045 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.14729045 = score(doc=701,freq=2.0), product of:
                0.39311135 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046368346 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
        0.01155891 = weight(_text_:a in 701) [ClassicSimilarity], result of:
          0.01155891 = score(doc=701,freq=36.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.2161963 = fieldWeight in 701, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.14729045 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.14729045 = score(doc=701,freq=2.0), product of:
            0.39311135 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046368346 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.009472587 = product of:
          0.018945174 = sum of:
            0.018945174 = weight(_text_:information in 701) [ClassicSimilarity], result of:
              0.018945174 = score(doc=701,freq=18.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.23274568 = fieldWeight in 701, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.5 = coord(1/2)
      0.8 = coord(4/5)
    
    Abstract
    By the explosion of possibilities for a ubiquitous content production, the information overload problem reaches the level of complexity which cannot be managed by traditional modelling approaches anymore. Due to their pure syntactical nature traditional information retrieval approaches did not succeed in treating content itself (i.e. its meaning, and not its representation). This leads to a very low usefulness of the results of a retrieval process for a user's task at hand. In the last ten years ontologies have been emerged from an interesting conceptualisation paradigm to a very promising (semantic) modelling technology, especially in the context of the Semantic Web. From the information retrieval point of view, ontologies enable a machine-understandable form of content description, such that the retrieval process can be driven by the meaning of the content. However, the very ambiguous nature of the retrieval process in which a user, due to the unfamiliarity with the underlying repository and/or query syntax, just approximates his information need in a query, implies a necessity to include the user in the retrieval process more actively in order to close the gap between the meaning of the content and the meaning of a user's query (i.e. his information need). This thesis lays foundation for such an ontology-based interactive retrieval process, in which the retrieval system interacts with a user in order to conceptually interpret the meaning of his query, whereas the underlying domain ontology drives the conceptualisation process. In that way the retrieval process evolves from a query evaluation process into a highly interactive cooperation between a user and the retrieval system, in which the system tries to anticipate the user's information need and to deliver the relevant content proactively. Moreover, the notion of content relevance for a user's query evolves from a content dependent artefact to the multidimensional context-dependent structure, strongly influenced by the user's preferences. This cooperation process is realized as the so-called Librarian Agent Query Refinement Process. In order to clarify the impact of an ontology on the retrieval process (regarding its complexity and quality), a set of methods and tools for different levels of content and query formalisation is developed, ranging from pure ontology-based inferencing to keyword-based querying in which semantics automatically emerges from the results. Our evaluation studies have shown that the possibilities to conceptualize a user's information need in the right manner and to interpret the retrieval results accordingly are key issues for realizing much more meaningful information retrieval systems.
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
  4. Huo, W.: Automatic multi-word term extraction and its application to Web-page summarization (2012) 0.17
    0.16510816 = product of:
      0.27518025 = sum of:
        0.007078358 = weight(_text_:a in 563) [ClassicSimilarity], result of:
          0.007078358 = score(doc=563,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.13239266 = fieldWeight in 563, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=563)
        0.22093567 = weight(_text_:2f in 563) [ClassicSimilarity], result of:
          0.22093567 = score(doc=563,freq=2.0), product of:
            0.39311135 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046368346 = queryNorm
            0.56201804 = fieldWeight in 563, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=563)
        0.04716621 = sum of:
          0.009472587 = weight(_text_:information in 563) [ClassicSimilarity], result of:
            0.009472587 = score(doc=563,freq=2.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.116372846 = fieldWeight in 563, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=563)
          0.037693623 = weight(_text_:22 in 563) [ClassicSimilarity], result of:
            0.037693623 = score(doc=563,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.23214069 = fieldWeight in 563, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=563)
      0.6 = coord(3/5)
    
    Abstract
    In this thesis we propose three new word association measures for multi-word term extraction. We combine these association measures with LocalMaxs algorithm in our extraction model and compare the results of different multi-word term extraction methods. Our approach is language and domain independent and requires no training data. It can be applied to such tasks as text summarization, information retrieval, and document classification. We further explore the potential of using multi-word terms as an effective representation for general web-page summarization. We extract multi-word terms from human written summaries in a large collection of web-pages, and generate the summaries by aligning document words with these multi-word terms. Our system applies machine translation technology to learn the aligning process from a training set and focuses on selecting high quality multi-word terms from human written summaries to generate suitable results for web-page summarization.
    Content
    A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Computer Science. Vgl. Unter: http://www.inf.ufrgs.br%2F~ceramisch%2Fdownload_files%2Fpublications%2F2009%2Fp01.pdf.
    Date
    10. 1.2013 19:22:47
  5. Makewita, S.M.: Investigating the generic information-seeking function of organisational decision-makers : perspectives on improving organisational information systems (2002) 0.03
    0.027424974 = product of:
      0.06856243 = sum of:
        0.0076151006 = weight(_text_:a in 642) [ClassicSimilarity], result of:
          0.0076151006 = score(doc=642,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.14243183 = fieldWeight in 642, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=642)
        0.060947336 = sum of:
          0.02953598 = weight(_text_:information in 642) [ClassicSimilarity], result of:
            0.02953598 = score(doc=642,freq=28.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.3628561 = fieldWeight in 642, product of:
                5.2915025 = tf(freq=28.0), with freq of:
                  28.0 = termFreq=28.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0390625 = fieldNorm(doc=642)
          0.031411353 = weight(_text_:22 in 642) [ClassicSimilarity], result of:
            0.031411353 = score(doc=642,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.19345059 = fieldWeight in 642, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=642)
      0.4 = coord(2/5)
    
    Abstract
    The past decade has seen the emergence of a new paradigm in the corporate world where organisations emphasised connectivity as a means of exposing decision-makers to wider resources of information within and outside the organisation. Many organisations followed the initiatives of enhancing infrastructures, manipulating cultural shifts and emphasising managerial commitment for creating pools and networks of knowledge. However, the concept of connectivity is not merely presenting people with the data, but more importantly, to create environments where people can seek information efficiently. This paradigm has therefore caused a shift in the function of information systems in organisations. They have to be now assessed in relation to how they underpin people's information-seeking activities within the context of their organisational environment. This research project used interpretative research methods to investigate the nature of people's information-seeking activities at two culturally contrasting organisations. Outcomes of this research project provide insights into phenomena associated with people's information-seeking function, and show how they depend on the organisational context that is defined partly by information systems. It suggests that information-seeking is not just searching for data. The inefficiencies inherent in both people and their environments can bring opaqueness into people's data, which they need to avoid or eliminate as part of seeking information. This seems to have made information-seeking a two-tier process consisting of a primary process of searching and interpreting data and auxiliary process of avoiding and eliminating opaqueness in data. Based on this view, this research suggests that organisational information systems operate naturally as implicit dual-mechanisms to underpin the above two-tier process, and that improvements to information systems should concern maintaining the balance in these dual-mechanisms.
    Date
    22. 7.2022 12:16:58
  6. Kiren, T.: ¬A clustering based indexing technique of modularized ontologies for information retrieval (2017) 0.02
    0.019865723 = product of:
      0.049664307 = sum of:
        0.0066735395 = weight(_text_:a in 4399) [ClassicSimilarity], result of:
          0.0066735395 = score(doc=4399,freq=12.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.12482099 = fieldWeight in 4399, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=4399)
        0.042990766 = sum of:
          0.017861681 = weight(_text_:information in 4399) [ClassicSimilarity], result of:
            0.017861681 = score(doc=4399,freq=16.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.21943474 = fieldWeight in 4399, product of:
                4.0 = tf(freq=16.0), with freq of:
                  16.0 = termFreq=16.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.03125 = fieldNorm(doc=4399)
          0.025129084 = weight(_text_:22 in 4399) [ClassicSimilarity], result of:
            0.025129084 = score(doc=4399,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.15476047 = fieldWeight in 4399, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=4399)
      0.4 = coord(2/5)
    
    Abstract
    Indexing plays a vital role in Information Retrieval. With the availability of huge volume of information, it has become necessary to index the information in such a way to make easier for the end users to find the information they want efficiently and accurately. Keyword-based indexing uses words as indexing terms. It is not capable of capturing the implicit relation among terms or the semantics of the words in the document. To eliminate this limitation, ontology-based indexing came into existence, which allows semantic based indexing to solve complex and indirect user queries. Ontologies are used for document indexing which allows semantic based information retrieval. Existing ontologies or the ones constructed from scratch are used presently for indexing. Constructing ontologies from scratch is a labor-intensive task and requires extensive domain knowledge whereas use of an existing ontology may leave some important concepts in documents un-annotated. Using multiple ontologies can overcome the problem of missing out concepts to a great extent, but it is difficult to manage (changes in ontologies over time by their developers) multiple ontologies and ontology heterogeneity also arises due to ontologies constructed by different ontology developers. One possible solution to managing multiple ontologies and build from scratch is to use modular ontologies for indexing.
    Modular ontologies are built in modular manner by combining modules from multiple relevant ontologies. Ontology heterogeneity also arises during modular ontology construction because multiple ontologies are being dealt with, during this process. Ontologies need to be aligned before using them for modular ontology construction. The existing approaches for ontology alignment compare all the concepts of each ontology to be aligned, hence not optimized in terms of time and search space utilization. A new indexing technique is proposed based on modular ontology. An efficient ontology alignment technique is proposed to solve the heterogeneity problem during the construction of modular ontology. Results are satisfactory as Precision and Recall are improved by (8%) and (10%) respectively. The value of Pearsons Correlation Coefficient for degree of similarity, time, search space requirement, precision and recall are close to 1 which shows that the results are significant. Further research can be carried out for using modular ontology based indexing technique for Multimedia Information Retrieval and Bio-Medical information retrieval.
    Date
    20. 1.2015 18:30:22
  7. Geisriegler, E.: Enriching electronic texts with semantic metadata : a use case for the historical Newspaper Collection ANNO (Austrian Newspapers Online) of the Austrian National Libraryhek (2012) 0.02
    0.017648555 = product of:
      0.04412139 = sum of:
        0.0048162127 = weight(_text_:a in 595) [ClassicSimilarity], result of:
          0.0048162127 = score(doc=595,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.090081796 = fieldWeight in 595, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=595)
        0.039305177 = sum of:
          0.007893822 = weight(_text_:information in 595) [ClassicSimilarity], result of:
            0.007893822 = score(doc=595,freq=2.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.09697737 = fieldWeight in 595, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0390625 = fieldNorm(doc=595)
          0.031411353 = weight(_text_:22 in 595) [ClassicSimilarity], result of:
            0.031411353 = score(doc=595,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.19345059 = fieldWeight in 595, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=595)
      0.4 = coord(2/5)
    
    Date
    3. 2.2013 18:00:22
    Footnote
    Wien, Univ., Lehrgang Library and Information Studies, Master-Thesis, 2012.
    Location
    A
  8. Gordon, T.J.; Helmer-Hirschberg, O.: Report on a long-range forecasting study (1964) 0.02
    0.017297534 = product of:
      0.043243833 = sum of:
        0.00770594 = weight(_text_:a in 4204) [ClassicSimilarity], result of:
          0.00770594 = score(doc=4204,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.14413087 = fieldWeight in 4204, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=4204)
        0.03553789 = product of:
          0.07107578 = sum of:
            0.07107578 = weight(_text_:22 in 4204) [ClassicSimilarity], result of:
              0.07107578 = score(doc=4204,freq=4.0), product of:
                0.16237405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046368346 = queryNorm
                0.4377287 = fieldWeight in 4204, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4204)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Description of an experimental trend-predicting exercise covering a time period as far as 50 years into the future. The Delphi technique is used in soliciting the opinions of experts in six areas: scientific breakthroughs, population growth, automation, space progress, probability and prevention of war, and future weapon systems. Possible objections to the approach are also discussed.
    Date
    22. 6.2018 13:24:08
    22. 6.2018 13:54:52
  9. Kirk, J.: Theorising information use : managers and their work (2002) 0.01
    0.010666321 = product of:
      0.026665803 = sum of:
        0.0067426977 = weight(_text_:a in 560) [ClassicSimilarity], result of:
          0.0067426977 = score(doc=560,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.12611452 = fieldWeight in 560, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=560)
        0.019923106 = product of:
          0.03984621 = sum of:
            0.03984621 = weight(_text_:information in 560) [ClassicSimilarity], result of:
              0.03984621 = score(doc=560,freq=26.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.4895196 = fieldWeight in 560, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=560)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The focus of this thesis is information use. Although a key concept in information behaviour, information use has received little attention from information science researchers. Studies of other key concepts such as information need and information seeking are dominant in information behaviour research. Information use is an area of interest to information professionals who rely on research outcomes to shape their practice. There are few empirical studies of how people actually use information that might guide and refine the development of information systems, products and services.
    Content
    A thesis submitted to the University of Technology, Sydney in fulfilment of the requirements for the degree of Doctor of Philosophy. - Vgl. unter: http://epress.lib.uts.edu.au/dspace/bitstream/2100/309/2/02whole.pdf.
    Theme
    Information
  10. Furniss, P.: ¬A study of the compatibility of two subject catalogues (1980) 0.01
    0.009411185 = product of:
      0.023527961 = sum of:
        0.010897844 = weight(_text_:a in 1945) [ClassicSimilarity], result of:
          0.010897844 = score(doc=1945,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.20383182 = fieldWeight in 1945, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.125 = fieldNorm(doc=1945)
        0.012630116 = product of:
          0.025260232 = sum of:
            0.025260232 = weight(_text_:information in 1945) [ClassicSimilarity], result of:
              0.025260232 = score(doc=1945,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.3103276 = fieldWeight in 1945, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.125 = fieldNorm(doc=1945)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Imprint
    Sheffield : Sheffield Univ., Postgraduate School of Librarianship and Information Science
  11. Strong, R.W.: Undergraduates' information differentiation behaviors in a research process : a grounded theory approach (2005) 0.01
    0.008071594 = product of:
      0.020178985 = sum of:
        0.010194 = weight(_text_:a in 5985) [ClassicSimilarity], result of:
          0.010194 = score(doc=5985,freq=28.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.19066721 = fieldWeight in 5985, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=5985)
        0.009984984 = product of:
          0.019969968 = sum of:
            0.019969968 = weight(_text_:information in 5985) [ClassicSimilarity], result of:
              0.019969968 = score(doc=5985,freq=20.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.2453355 = fieldWeight in 5985, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5985)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This research explores, using a Grounded Theory approach, the question of how a particular group of undergraduate university students differentiates the values of retrieved information in a contemporary research process. Specifically it attempts to isolate and label those specific techniques, processes, formulae-both objective and subjective-that the students use to identify, prioritize, and successfully incorporate the most useful and valuable information into their research project. The research reviews the relevant literature covering the areas of: epistemology, knowledge acquisition, and cognitive learning theory; early relevance research; the movement from relevance models to information seeking in context; and the proximate recent research. A research methodology is articulated using a Grounded Theory approach, and the research process and research participants are fully explained and described. The findings of the research are set forth using three Thematic Sets- Traditional Relevance Measures; Structural Frames; and Metaphors: General and Ecological-using the actual discourse of the study participants, and a theoretical construct is advanced. Based on that construct, it can be theorized that identification and analysis of the metaphorical language that the particular students in this study used, both by way of general and ecological metaphors-their stories-about how they found, handled, and evaluated information, can be a very useful tool in understanding how the students identified, prioritized, and successfully incorporated the most useful and relevant information into their research projects. It also is argued that this type of metaphorical analysis could be useful in providing a bridging mechanism for a broader understanding of the relationships between traditional user relevance studies and the concepts of frame theory and sense-making. Finally, a corollary to Whitmire's original epistemological hypothesis is posited: Students who were more adept at using metaphors-either general or ecological-appeared more comfortable with handling contradictory information sources, and better able to articulate their valuing decisions. The research concludes with a discussion of the implications for both future research in the Library and Information Science field, and for the practice of both Library professionals and classroom instructors involved in assisting students involved in information valuing decision-making in a research process.
    Theme
    Information
  12. Thornton, K: Powerful structure : inspecting infrastructures of information organization in Wikimedia Foundation projects (2016) 0.01
    0.007891519 = product of:
      0.019728797 = sum of:
        0.009138121 = weight(_text_:a in 3288) [ClassicSimilarity], result of:
          0.009138121 = score(doc=3288,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1709182 = fieldWeight in 3288, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3288)
        0.010590675 = product of:
          0.02118135 = sum of:
            0.02118135 = weight(_text_:information in 3288) [ClassicSimilarity], result of:
              0.02118135 = score(doc=3288,freq=10.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.2602176 = fieldWeight in 3288, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3288)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This dissertation investigates the social and technological factors of collaboratively organizing information in commons-based peer production systems. To do so, it analyzes the diverse strategies that members of Wikimedia Foundation (WMF) project communities use to organize information. Key findings from this dissertation show that conceptual structures of information organization are encoded into the infrastructure of WMF projects. The fact that WMF projects are commons-based peer production systems means that we can inspect the code that enables these systems, but a specific type of technical literacy is required to do so. I use three methods in this dissertation. I conduct a qualitative content analysis of the discussions surrounding the design, implementation and evaluation of the category system; a quantitative analysis using descriptive statistics of patterns of editing among editors who contributed to the code of templates for information boxes; and a close reading of the infrastructure used to create the category system, the infobox templates, and the knowledge base of structured data.
    Footnote
    A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington.
  13. Francu, V.: Multilingual access to information using an intermediate language (2003) 0.01
    0.0073474604 = product of:
      0.01836865 = sum of:
        0.009437811 = weight(_text_:a in 1742) [ClassicSimilarity], result of:
          0.009437811 = score(doc=1742,freq=24.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.17652355 = fieldWeight in 1742, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=1742)
        0.0089308405 = product of:
          0.017861681 = sum of:
            0.017861681 = weight(_text_:information in 1742) [ClassicSimilarity], result of:
              0.017861681 = score(doc=1742,freq=16.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.21943474 = fieldWeight in 1742, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1742)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    While being theoretically so widely available, information can be restricted from a more general use by linguistic barriers. The linguistic aspects of the information languages and particularly the chances of an enhanced access to information by means of multilingual access facilities will make the substance of this thesis. The main problem of this research is thus to demonstrate that information retrieval can be improved by using multilingual thesaurus terms based on an intermediate or switching language to search with. Universal classification systems in general can play the role of switching languages for reasons dealt with in the forthcoming pages. The Universal Decimal Classification (UDC) in particular is the classification system used as example of a switching language for our objectives. The question may arise: why a universal classification system and not another thesaurus? Because the UDC like most of the classification systems uses symbols. Therefore, it is language independent and the problems of compatibility between such a thesaurus and different other thesauri in different languages are avoided. Another question may still arise? Why not then, assign running numbers to the descriptors in a thesaurus and make a switching language out of the resulting enumerative system? Because of some other characteristics of the UDC: hierarchical structure and terminological richness, consistency and control. One big problem to find an answer to is: can a thesaurus be made having as a basis a classification system in any and all its parts? To what extent this question can be given an affirmative answer? This depends much on the attributes of the universal classification system which can be favourably used to this purpose. Examples of different situations will be given and discussed upon beginning with those classes of UDC which are best fitted for building a thesaurus structure out of them (classes which are both hierarchical and faceted)...
    Content
    Inhalt: INFORMATION LANGUAGES: A LINGUISTIC APPROACH MULTILINGUAL ASPECTS IN INFORMATION STORAGE AND RETRIEVAL COMPATIBILITY AND CONVERTIBILITY OF INFORMATION LANGUAGES CURRENT TRENDS IN MULTILINGUAL ACCESS BUILDING UDC-BASED MULTILINGUAL THESAURI ONLINE APPLICATIONS OF THE UDC-BASED MULTILINGUAL THESAURI THE IMPACT OF SPECIFICITY ON THE RETRIEVAL POWER OF A UDC-BASED MULTILINGUAL THESAURUS FINAL REMARKS AND GENERAL CONCLUSIONS Proefschrift voorgelegd tot het behalen van de graad van doctor in de Taal- en Letterkunde aan de Universiteit Antwerpen. - Vgl.: http://dlist.sir.arizona.edu/1862/.
  14. Schmolz, H.: Anaphora resolution and text retrieval : a lnguistic analysis of hypertexts (2015) 0.01
    0.007189882 = product of:
      0.017974705 = sum of:
        0.0068111527 = weight(_text_:a in 1172) [ClassicSimilarity], result of:
          0.0068111527 = score(doc=1172,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.12739488 = fieldWeight in 1172, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.078125 = fieldNorm(doc=1172)
        0.011163551 = product of:
          0.022327103 = sum of:
            0.022327103 = weight(_text_:information in 1172) [ClassicSimilarity], result of:
              0.022327103 = score(doc=1172,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.27429342 = fieldWeight in 1172, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1172)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    RSWK
    Englisch / Anapher <Syntax> / Hypertext / Information Retrieval / Korpus <Linguistik>
    Subject
    Englisch / Anapher <Syntax> / Hypertext / Information Retrieval / Korpus <Linguistik>
  15. Styltsvig, H.B.: Ontology-based information retrieval (2006) 0.01
    0.0071167396 = product of:
      0.017791849 = sum of:
        0.009437811 = weight(_text_:a in 1154) [ClassicSimilarity], result of:
          0.009437811 = score(doc=1154,freq=24.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.17652355 = fieldWeight in 1154, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=1154)
        0.008354037 = product of:
          0.016708074 = sum of:
            0.016708074 = weight(_text_:information in 1154) [ClassicSimilarity], result of:
              0.016708074 = score(doc=1154,freq=14.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.20526241 = fieldWeight in 1154, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1154)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    In this thesis, we will present methods for introducing ontologies in information retrieval. The main hypothesis is that the inclusion of conceptual knowledge such as ontologies in the information retrieval process can contribute to the solution of major problems currently found in information retrieval. This utilization of ontologies has a number of challenges. Our focus is on the use of similarity measures derived from the knowledge about relations between concepts in ontologies, the recognition of semantic information in texts and the mapping of this knowledge into the ontologies in use, as well as how to fuse together the ideas of ontological similarity and ontological indexing into a realistic information retrieval scenario. To achieve the recognition of semantic knowledge in a text, shallow natural language processing is used during indexing that reveals knowledge to the level of noun phrases. Furthermore, we briefly cover the identification of semantic relations inside and between noun phrases, as well as discuss which kind of problems are caused by an increase in compoundness with respect to the structure of concepts in the evaluation of queries. Measuring similarity between concepts based on distances in the structure of the ontology is discussed. In addition, a shared nodes measure is introduced and, based on a set of intuitive similarity properties, compared to a number of different measures. In this comparison the shared nodes measure appears to be superior, though more computationally complex. Some of the major problems of shared nodes which relate to the way relations differ with respect to the degree they bring the concepts they connect closer are discussed. A generalized measure called weighted shared nodes is introduced to deal with these problems. Finally, the utilization of concept similarity in query evaluation is discussed. A semantic expansion approach that incorporates concept similarity is introduced and a generalized fuzzy set retrieval model that applies expansion during query evaluation is presented. While not commonly used in present information retrieval systems, it appears that the fuzzy set model comprises the flexibility needed when generalizing to an ontology-based retrieval model and, with the introduction of a hierarchical fuzzy aggregation principle, compound concepts can be handled in a straightforward and natural manner.
    Content
    A dissertation Presented to the Faculties of Roskilde University in Partial Fulfillment of the Requirement for the Degree of Doctor of Philosophy. Vgl. unter: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.987 oder http://coitweb.uncc.edu/~ras/RS/Onto-Retrieval.pdf.
  16. Ziemba, L.: Information retrieval with concept discovery in digital collections for agriculture and natural resources (2011) 0.01
    0.007058388 = product of:
      0.01764597 = sum of:
        0.008173384 = weight(_text_:a in 4728) [ClassicSimilarity], result of:
          0.008173384 = score(doc=4728,freq=18.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 4728, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=4728)
        0.009472587 = product of:
          0.018945174 = sum of:
            0.018945174 = weight(_text_:information in 4728) [ClassicSimilarity], result of:
              0.018945174 = score(doc=4728,freq=18.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.23274568 = fieldWeight in 4728, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4728)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The amount and complexity of information available in a digital form is already huge and new information is being produced every day. Retrieving information relevant to address a particular need becomes a significant issue. This work utilizes knowledge organization systems (KOS), such as thesauri and ontologies and applies information extraction (IE) and computational linguistics (CL) techniques to organize, manage and retrieve information stored in digital collections in the agricultural domain. Two real world applications of the approach have been developed and are available and actively used by the public. An ontology is used to manage the Water Conservation Digital Library holding a dynamic collection of various types of digital resources in the domain of urban water conservation in Florida, USA. The ontology based back-end powers a fully operational web interface, available at http://library.conservefloridawater.org. The system has demonstrated numerous benefits of the ontology application, including accurate retrieval of resources, information sharing and reuse, and has proved to effectively facilitate information management. The major difficulty encountered with the approach is that large and dynamic number of concepts makes it difficult to keep the ontology consistent and to accurately catalog resources manually. To address the aforementioned issues, a combination of IE and CL techniques, such as Vector Space Model and probabilistic parsing, with the use of Agricultural Thesaurus were adapted to automatically extract concepts important for each of the texts in the Best Management Practices (BMP) Publication Library--a collection of documents in the domain of agricultural BMPs in Florida available at http://lyra.ifas.ufl.edu/LIB. A new approach of domain-specific concept discovery with the use of Internet search engine was developed. Initial evaluation of the results indicates significant improvement in precision of information extraction. The approach presented in this work focuses on problems unique to agriculture and natural resources domain, such as domain specific concepts and vocabularies, but should be applicable to any collection of texts in digital format. It may be of potential interest for anyone who needs to effectively manage a collection of digital resources.
  17. Kara, S.: ¬An ontology-based retrieval system using semantic indexing (2012) 0.01
    0.007058388 = product of:
      0.01764597 = sum of:
        0.008173384 = weight(_text_:a in 3829) [ClassicSimilarity], result of:
          0.008173384 = score(doc=3829,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 3829, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3829)
        0.009472587 = product of:
          0.018945174 = sum of:
            0.018945174 = weight(_text_:information in 3829) [ClassicSimilarity], result of:
              0.018945174 = score(doc=3829,freq=8.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.23274569 = fieldWeight in 3829, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3829)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    In this thesis, we present an ontology-based information extraction and retrieval system and its application to soccer domain. In general, we deal with three issues in semantic search, namely, usability, scalability and retrieval performance. We propose a keyword-based semantic retrieval approach. The performance of the system is improved considerably using domain-specific information extraction, inference and rules. Scalability is achieved by adapting a semantic indexing approach. The system is implemented using the state-of-the-art technologies in SemanticWeb and its performance is evaluated against traditional systems as well as the query expansion methods. Furthermore, a detailed evaluation is provided to observe the performance gain due to domain-specific information extraction and inference. Finally, we show how we use semantic indexing to solve simple structural ambiguities.
    Source
    Information Systems. 37(2012) no. 4, S.294-305
    Type
    a
  18. Tzitzikas, Y.: Collaborative ontology-based information indexing and retrieval (2002) 0.01
    0.0070185377 = product of:
      0.017546345 = sum of:
        0.008615503 = weight(_text_:a in 2281) [ClassicSimilarity], result of:
          0.008615503 = score(doc=2281,freq=20.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.16114321 = fieldWeight in 2281, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=2281)
        0.0089308405 = product of:
          0.017861681 = sum of:
            0.017861681 = weight(_text_:information in 2281) [ClassicSimilarity], result of:
              0.017861681 = score(doc=2281,freq=16.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.21943474 = fieldWeight in 2281, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2281)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    An information system like the Web is a continuously evolving system consisting of multiple heterogeneous information sources, covering a wide domain of discourse, and a huge number of users (human or software) with diverse characteristics and needs, that produce and consume information. The challenge nowadays is to build a scalable information infrastructure enabling the effective, accurate, content based retrieval of information, in a way that adapts to the characteristics and interests of the users. The aim of this work is to propose formally sound methods for building such an information network based on ontologies which are widely used and are easy to grasp by ordinary Web users. The main results of this work are: - A novel scheme for indexing and retrieving objects according to multiple aspects or facets. The proposed scheme is a faceted scheme enriched with a method for specifying the combinations of terms that are valid. We give a model-theoretic interpretation to this model and we provide mechanisms for inferring the valid combinations of terms. This inference service can be exploited for preventing errors during the indexing process, which is very important especially in the case where the indexing is done collaboratively by many users, and for deriving "complete" navigation trees suitable for browsing through the Web. The proposed scheme has several advantages over the hierarchical classification schemes currently employed by Web catalogs, namely, conceptual clarity (it is easier to understand), compactness (it takes less space), and scalability (the update operations can be formulated more easily and be performed more effciently). - A exible and effecient model for building mediators over ontology based information sources. The proposed mediators support several modes of query translation and evaluation which can accommodate various application needs and levels of answer quality. The proposed model can be used for providing users with customized views of Web catalogs. It can also complement the techniques for building mediators over relational sources so as to support approximate translation of partially ordered domain values.
  19. Schwarz, K.: Domain model enhanced search : a comparison of taxonomy, thesaurus and ontology (2005) 0.01
    0.0068851607 = product of:
      0.017212901 = sum of:
        0.010897844 = weight(_text_:a in 4569) [ClassicSimilarity], result of:
          0.010897844 = score(doc=4569,freq=32.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.20383182 = fieldWeight in 4569, product of:
              5.656854 = tf(freq=32.0), with freq of:
                32.0 = termFreq=32.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=4569)
        0.006315058 = product of:
          0.012630116 = sum of:
            0.012630116 = weight(_text_:information in 4569) [ClassicSimilarity], result of:
              0.012630116 = score(doc=4569,freq=8.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.1551638 = fieldWeight in 4569, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4569)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The results of this thesis are intended to support the information architect in designing a solution for improved search in a corporate environment. Specifically we have examined the type of search problems that require a domain model to enhance the search process. There are several approaches to modeling a domain. We have considered 3 different types of domain modeling schemes; taxonomy, thesaurus and ontology. The intention is to support the information architect in making an informed choice between one or more of these schemes. In our opinion the main criteria for this choice are the modeling characteristics of a scheme and the suitability for application in the search process. The second chapter is a discussion of modeling characteristics of each scheme, followed by a comparison between them. This should give an information architect an idea of which aspects of a domain can be modeled with each scheme. What is missing here is an indication of the effort required to model a domain with each scheme. There are too many factors that influence the amount of required effort, ranging from measurable factors like domain size and resource characteristics to cultural matters such as the willingness to share knowledge and the existence of a project champion in the team to keep the project running. The third chapter shows what role domain models can play in each part of the search process. This gives an idea of the problems that domain models can solve. We have split the search process into individual parts to show that domain models can be applied very differently in the process. The fourth chapter makes recommendations about the suitability of each individualdomain modeling scheme for improving search. Each scheme has particular characteristics that make it especially suitable for a domain or a search problem. In the appendix each case study is described in detail. These descriptions are intended to serve as a benchmark. The current problem of the enterprise can be compared to those described to see which case study is most similar, which solution was chosen, which problems arose and how they were dealt with. An important issue that we have not touched upon in this thesis is that of maintenance. The real problems of a domain model are revealed when it is applied in a search system and its deficits and wrong assumptions become clear. Adaptation and maintenance are always required. Unfortunately we have not been able to glean sufficient information about maintenance issues from our case studies to draw any meaningful conclusions.
  20. Markó, K.G.: Foundation, implementation and evaluation of the MorphoSaurus system (2008) 0.01
    0.0068555474 = product of:
      0.017138869 = sum of:
        0.009829085 = weight(_text_:a in 4415) [ClassicSimilarity], result of:
          0.009829085 = score(doc=4415,freq=34.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1838419 = fieldWeight in 4415, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4415)
        0.0073097823 = product of:
          0.014619565 = sum of:
            0.014619565 = weight(_text_:information in 4415) [ClassicSimilarity], result of:
              0.014619565 = score(doc=4415,freq=14.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.1796046 = fieldWeight in 4415, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4415)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This work proposes an approach which is intended to meet the particular challenges of Medical Language Processing, in particular medical information retrieval. At its core lies a new type of dictionary, in which the entries are equivalence classes of subwords, i.e., semantically minimal units. These equivalence classes capture intralingual as well as interlingual synonymy. As equivalence classes abstract away from subtle particularities within and between languages and reference to them is realized via a language-independent conceptual system, they form an interlingua. In this work, the theoretical foundations of this approach are elaborated on. Furthermore, design considerations of applications based on the subword methodology are drawn up and showcase implementations are evaluated in detail. Starting with the introduction of Medical Linguistics as a field of active research in Chapter two, its consideration as a domain separated form general linguistics is motivated. In particular, morphological phenomena inherent to medical language are figured in more detail, which leads to an alternative view on medical terms and the introduction of the notion of subwords. Chapter three describes the formal foundation of subwords and the underlying linguistic declarative as well as procedural knowledge. An implementation of the subword model for the medical domain, the MorphoSaurus system, is presented in Chapter four. Emphasis will be given on the multilingual aspect of the proposed approach, including English, German, and Portuguese. The automatic acquisition of (medical) subwords for other languages (Spanish, French, and Swedish), and their integration in already available resources is described in the fifth Chapter.
    The proper handling of acronyms plays a crucial role in medical texts, e.g. in patient records, as well as in scientific literature. Chapter six presents an approach, in which acronyms are automatically acquired from (bio-) medical literature. Furthermore, acronyms and their definitions in different languages are linked to each other using the MorphoSaurus text processing system. Automatic word sense disambiguation is still one of the most challenging tasks in Natural Language Processing. In Chapter seven, cross-lingual considerations lead to a new methodology for automatic disambiguation applied to subwords. Beginning with Chapter eight, a series of applications based onMorphoSaurus are introduced. Firstly, the implementation of the subword approach within a crosslanguage information retrieval setting for the medical domain is described and evaluated on standard test document collections. In Chapter nine, this methodology is extended to multilingual information retrieval in the Web, for which user queries are translated into target languages based on the segmentation into subwords and their interlingual mappings. The cross-lingual, automatic assignment of document descriptors to documents is the topic of Chapter ten. A large-scale evaluation of a heuristic, as well as a statistical algorithm is carried out using a prominent medical thesaurus as a controlled vocabulary. In Chapter eleven, it will be shown how MorphoSaurus can be used to map monolingual, lexical resources across different languages. As a result, a large multilingual medical lexicon with high coverage and complete lexical information is built and evaluated against a comparable, already available and commonly used lexical repository for the medical domain. Chapter twelve sketches a few applications based on MorphoSaurus. The generality and applicability of the subword approach to other domains is outlined, and proof-of-concepts in real-world scenarios are presented. Finally, Chapter thirteen recapitulates the most important aspects of MorphoSaurus and the potential benefit of its employment in medical information systems is carefully assessed, both for medical experts in their everyday life, but also with regard to health care consumers and their existential information needs.
    Source
    Subword indexing, lexical learning and word sense disambiguation for medical crosslanguage information retrieval