Search (35 results, page 1 of 2)

  • × theme_ss:"Suchmaschinen"
  • × theme_ss:"Retrievalalgorithmen"
  1. Tober, M.; Hennig, L.; Furch, D.: SEO Ranking-Faktoren und Rang-Korrelationen 2014 : Google Deutschland (2014) 0.06
    0.06095313 = product of:
      0.15238282 = sum of:
        0.12725374 = weight(_text_:91 in 1484) [ClassicSimilarity], result of:
          0.12725374 = score(doc=1484,freq=2.0), product of:
            0.25837386 = queryWeight, product of:
              5.5722036 = idf(docFreq=456, maxDocs=44218)
              0.046368346 = queryNorm
            0.49251786 = fieldWeight in 1484, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.5722036 = idf(docFreq=456, maxDocs=44218)
              0.0625 = fieldNorm(doc=1484)
        0.025129084 = product of:
          0.050258167 = sum of:
            0.050258167 = weight(_text_:22 in 1484) [ClassicSimilarity], result of:
              0.050258167 = score(doc=1484,freq=2.0), product of:
                0.16237405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046368346 = queryNorm
                0.30952093 = fieldWeight in 1484, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1484)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Date
    13. 9.2014 14:45:22
    Pages
    91 S
  2. Back, J.: ¬An evaluation of relevancy ranking techniques used by Internet search engines (2000) 0.05
    0.047836047 = product of:
      0.11959012 = sum of:
        0.009535614 = weight(_text_:a in 3445) [ClassicSimilarity], result of:
          0.009535614 = score(doc=3445,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.17835285 = fieldWeight in 3445, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.109375 = fieldNorm(doc=3445)
        0.1100545 = sum of:
          0.022102704 = weight(_text_:information in 3445) [ClassicSimilarity], result of:
            0.022102704 = score(doc=3445,freq=2.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.27153665 = fieldWeight in 3445, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.109375 = fieldNorm(doc=3445)
          0.087951794 = weight(_text_:22 in 3445) [ClassicSimilarity], result of:
            0.087951794 = score(doc=3445,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.5416616 = fieldWeight in 3445, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.109375 = fieldNorm(doc=3445)
      0.4 = coord(2/5)
    
    Date
    25. 8.2005 17:42:22
    Source
    Library and information research news. 24(2000) no.77, S.30-34
    Type
    a
  3. Wills, R.S.: Google's PageRank : the math behind the search engine (2006) 0.05
    0.045180324 = product of:
      0.07530054 = sum of:
        0.0072082467 = weight(_text_:a in 5954) [ClassicSimilarity], result of:
          0.0072082467 = score(doc=5954,freq=14.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.13482209 = fieldWeight in 5954, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=5954)
        0.06362687 = weight(_text_:91 in 5954) [ClassicSimilarity], result of:
          0.06362687 = score(doc=5954,freq=2.0), product of:
            0.25837386 = queryWeight, product of:
              5.5722036 = idf(docFreq=456, maxDocs=44218)
              0.046368346 = queryNorm
            0.24625893 = fieldWeight in 5954, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.5722036 = idf(docFreq=456, maxDocs=44218)
              0.03125 = fieldNorm(doc=5954)
        0.0044654203 = product of:
          0.0089308405 = sum of:
            0.0089308405 = weight(_text_:information in 5954) [ClassicSimilarity], result of:
              0.0089308405 = score(doc=5954,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.10971737 = fieldWeight in 5954, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5954)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Approximately 91 million American adults use the Internet on a typical day The number-one Internet activity is reading and writing e-mail. Search engine use is next in line and continues to increase in popularity. In fact, survey findings indicate that nearly 60 million American adults use search engines on a given day. Even though there are many Internet search engines, Google, Yahoo!, and MSN receive over 81% of all search requests. Despite claims that the quality of search provided by Yahoo! and MSN now equals that of Google, Google continues to thrive as the search engine of choice, receiving over 46% of all search requests, nearly double the volume of Yahoo! and over four times that of MSN. I use Google's search engine on a daily basis and rarely request information from other search engines. One day, I decided to visit the homepages of Google. Yahoo!, and MSN to compare the quality of search results. Coffee was on my mind that day, so I entered the simple query "coffee" in the search box at each homepage. Table 1 shows the top ten (unsponsored) results returned by each search engine. Although ordered differently, two webpages, www.peets.com and www.coffeegeek.com, appear in all three top ten lists. In addition, each pairing of top ten lists has two additional results in common. Depending on the information I hoped to obtain about coffee by using the search engines, I could argue that any one of the three returned better results: however, I was not looking for a particular webpage, so all three listings of search results seemed of equal quality. Thus, I plan to continue using Google. My decision is indicative of the problem Yahoo!, MSN, and other search engine companies face in the quest to obtain a larger percentage of Internet search volume. Search engine users are loyal to one or a few search engines and are generally happy with search results. Thus, as long as Google continues to provide results deemed high in quality, Google likely will remain the top search engine. But what set Google apart from its competitors in the first place? The answer is PageRank. In this article I explain this simple mathematical algorithm that revolutionized Web search.
    Type
    a
  4. Kanaeva, Z.: Ranking: Google und CiteSeer (2005) 0.03
    0.02574907 = product of:
      0.06437267 = sum of:
        0.004767807 = weight(_text_:a in 3276) [ClassicSimilarity], result of:
          0.004767807 = score(doc=3276,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.089176424 = fieldWeight in 3276, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3276)
        0.05960487 = sum of:
          0.015628971 = weight(_text_:information in 3276) [ClassicSimilarity], result of:
            0.015628971 = score(doc=3276,freq=4.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.1920054 = fieldWeight in 3276, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0546875 = fieldNorm(doc=3276)
          0.043975897 = weight(_text_:22 in 3276) [ClassicSimilarity], result of:
            0.043975897 = score(doc=3276,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.2708308 = fieldWeight in 3276, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=3276)
      0.4 = coord(2/5)
    
    Abstract
    Im Rahmen des klassischen Information Retrieval wurden verschiedene Verfahren für das Ranking sowie die Suche in einer homogenen strukturlosen Dokumentenmenge entwickelt. Die Erfolge der Suchmaschine Google haben gezeigt dass die Suche in einer zwar inhomogenen aber zusammenhängenden Dokumentenmenge wie dem Internet unter Berücksichtigung der Dokumentenverbindungen (Links) sehr effektiv sein kann. Unter den von der Suchmaschine Google realisierten Konzepten ist ein Verfahren zum Ranking von Suchergebnissen (PageRank), das in diesem Artikel kurz erklärt wird. Darüber hinaus wird auf die Konzepte eines Systems namens CiteSeer eingegangen, welches automatisch bibliographische Angaben indexiert (engl. Autonomous Citation Indexing, ACI). Letzteres erzeugt aus einer Menge von nicht vernetzten wissenschaftlichen Dokumenten eine zusammenhängende Dokumentenmenge und ermöglicht den Einsatz von Banking-Verfahren, die auf den von Google genutzten Verfahren basieren.
    Date
    20. 3.2005 16:23:22
    Source
    Information - Wissenschaft und Praxis. 56(2005) H.2, S.87-92
    Type
    a
  5. Furner, J.: ¬A unifying model of document relatedness for hybrid search engines (2003) 0.02
    0.022135837 = product of:
      0.055339593 = sum of:
        0.008173384 = weight(_text_:a in 2717) [ClassicSimilarity], result of:
          0.008173384 = score(doc=2717,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 2717, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2717)
        0.04716621 = sum of:
          0.009472587 = weight(_text_:information in 2717) [ClassicSimilarity], result of:
            0.009472587 = score(doc=2717,freq=2.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.116372846 = fieldWeight in 2717, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=2717)
          0.037693623 = weight(_text_:22 in 2717) [ClassicSimilarity], result of:
            0.037693623 = score(doc=2717,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.23214069 = fieldWeight in 2717, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2717)
      0.4 = coord(2/5)
    
    Abstract
    Previous work an search-engine design has indicated that information-seekers may benefit from being given the opportunity to exploit multiple sources of evidence of document relatedness. Few existing systems, however, give users more than minimal control over the selections that may be made among methods of exploitation. By applying the methods of "document network analysis" (DNA), a unifying, graph-theoretic model of content-, collaboration-, and context-based systems (CCC) may be developed in which the nature of the similarities between types of document relatedness and document ranking are clarified. The usefulness of the approach to system design suggested by this model may be tested by constructing and evaluating a prototype system (UCXtra) that allows searchers to maintain control over the multiple ways in which document collections may be ranked and re-ranked.
    Date
    11. 9.2004 17:32:22
    Type
    a
  6. Dominich, S.; Skrop, A.: PageRank and interaction information retrieval (2005) 0.01
    0.009140301 = product of:
      0.022850752 = sum of:
        0.012260076 = weight(_text_:a in 3268) [ClassicSimilarity], result of:
          0.012260076 = score(doc=3268,freq=18.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.22931081 = fieldWeight in 3268, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3268)
        0.010590675 = product of:
          0.02118135 = sum of:
            0.02118135 = weight(_text_:information in 3268) [ClassicSimilarity], result of:
              0.02118135 = score(doc=3268,freq=10.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.2602176 = fieldWeight in 3268, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3268)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The PageRank method is used by the Google Web search engine to compute the importance of Web pages. Two different views have been developed for the Interpretation of the PageRank method and values: (a) stochastic (random surfer): the PageRank values can be conceived as the steady-state distribution of a Markov chain, and (b) algebraic: the PageRank values form the eigenvector corresponding to eigenvalue 1 of the Web link matrix. The Interaction Information Retrieval (1**2 R) method is a nonclassical information retrieval paradigm, which represents a connectionist approach based an dynamic systems. In the present paper, a different Interpretation of PageRank is proposed, namely, a dynamic systems viewpoint, by showing that the PageRank method can be formally interpreted as a particular case of the Interaction Information Retrieval method; and thus, the PageRank values may be interpreted as neutral equilibrium points of the Web.
    Source
    Journal of the American Society for Information Science and Technology. 56(2005) no.1, S.63-69
    Type
    a
  7. Bauckhage, C.: Marginalizing over the PageRank damping factor (2014) 0.01
    0.008606452 = product of:
      0.021516128 = sum of:
        0.013622305 = weight(_text_:a in 928) [ClassicSimilarity], result of:
          0.013622305 = score(doc=928,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.25478977 = fieldWeight in 928, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.078125 = fieldNorm(doc=928)
        0.007893822 = product of:
          0.015787644 = sum of:
            0.015787644 = weight(_text_:information in 928) [ClassicSimilarity], result of:
              0.015787644 = score(doc=928,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.19395474 = fieldWeight in 928, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.078125 = fieldNorm(doc=928)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    In this note, we show how to marginalize over the damping parameter of the PageRank equation so as to obtain a parameter-free version known as TotalRank. Our discussion is meant as a reference and intended to provide a guided tour towards an interesting result that has applications in information retrieval and classification.
    Type
    a
  8. Ding, Y.; Chowdhury, G.; Foo, S.: Organsising keywords in a Web search environment : a methodology based on co-word analysis (2000) 0.01
    0.007891519 = product of:
      0.019728797 = sum of:
        0.009138121 = weight(_text_:a in 105) [ClassicSimilarity], result of:
          0.009138121 = score(doc=105,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1709182 = fieldWeight in 105, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=105)
        0.010590675 = product of:
          0.02118135 = sum of:
            0.02118135 = weight(_text_:information in 105) [ClassicSimilarity], result of:
              0.02118135 = score(doc=105,freq=10.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.2602176 = fieldWeight in 105, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=105)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The rapid development of the Internet and World Wide Web has caused some critical problem for information retrieval. Researchers have made several attempts to solve these problems. Thesauri and subject heading lists as traditional information retrieval tools have been criticised for their efficiency to tackle these newly emerging problems. This paper proposes an information retrieval tool generated by cocitation analysis, comprising keyword clusters with relationships based on the co-occurrences of keywords in the literature. Such a tool can play the role of an associative thesaurus that can provide information about the keywords in a domain that might be useful for information searching and query expansion
    Type
    a
  9. Lempel, R.; Moran, S.: SALSA: the stochastic approach for link-structure analysis (2001) 0.01
    0.007675537 = product of:
      0.019188842 = sum of:
        0.01129502 = weight(_text_:a in 10) [ClassicSimilarity], result of:
          0.01129502 = score(doc=10,freq=22.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.21126054 = fieldWeight in 10, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=10)
        0.007893822 = product of:
          0.015787644 = sum of:
            0.015787644 = weight(_text_:information in 10) [ClassicSimilarity], result of:
              0.015787644 = score(doc=10,freq=8.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.19395474 = fieldWeight in 10, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=10)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Today, when searching for information on the WWW, one usually performs a query through a term-based search engine. These engines return, as the query's result, a list of Web pages whose contents matches the query. For broad-topic queries, such searches often result in a huge set of retrieved documents, many of which are irrelevant to the user. However, much information is contained in the link-structure of the WWW. Information such as which pages are linked to others can be used to augment search algorithms. In this context, Jon Kleinberg introduced the notion of two distinct types of Web pages: hubs and authorities. Kleinberg argued that hubs and authorities exhibit a mutually reinforcing relationship: a good hub will point to many authorities, and a good authority will be pointed at by many hubs. In light of this, he dervised an algoirthm aimed at finding authoritative pages. We present SALSA, a new stochastic approach for link-structure analysis, which examines random walks on graphs derived from the link-structure. We show that both SALSA and Kleinberg's Mutual Reinforcement approach employ the same metaalgorithm. We then prove that SALSA is quivalent to a weighted in degree analysis of the link-sturcutre of WWW subgraphs, making it computationally more efficient than the Mutual reinforcement approach. We compare that results of applying SALSA to the results derived through Kleinberg's approach. These comparisions reveal a topological Phenomenon called the TKC effectwhich, in certain cases, prevents the Mutual reinforcement approach from identifying meaningful authorities.
    Source
    ACM transactions on information systems. 19(2001) no.2, S.131-160
    Type
    a
  10. Watters, C.; Amoudi, A.: Geosearcher : location-based ranking of search engine results (2003) 0.01
    0.007508607 = product of:
      0.018771518 = sum of:
        0.013189741 = weight(_text_:a in 5152) [ClassicSimilarity], result of:
          0.013189741 = score(doc=5152,freq=30.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.24669915 = fieldWeight in 5152, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5152)
        0.0055817757 = product of:
          0.011163551 = sum of:
            0.011163551 = weight(_text_:information in 5152) [ClassicSimilarity], result of:
              0.011163551 = score(doc=5152,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.13714671 = fieldWeight in 5152, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5152)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Waters and Amoudi describe GeoSearcher, a prototype ranking program that arranges search engine results along a geo-spatial dimension without the provision of geo-spatial meta-tags or the use of geo-spatial feature extraction. GeoSearcher uses URL analysis, IptoLL, Whois, and the Getty Thesaurus of Geographic Names to determine site location. It accepts the first 200 sites returned by a search engine, identifies the coordinates, calculates their distance from a reference point and ranks in ascending order by this value. For any retrieved site the system checks if it has already been located in the current session, then sends the domain name to Whois to generate a return of a two letter country code and an area code. With no success the name is stripped one level and resent. If this fails the top level domain is tested for being a country code. Any remaining unmatched names go to IptoLL. Distance is calculated using the center point of the geographic area and a provided reference location. A test run on a set of 100 URLs from a search was successful in locating 90 sites. Eighty three pages could be manually found and 68 had sufficient information to verify location determination. Of these 65 ( 95%) had been assigned reasonably correct geographic locations. A random set of URLs used instead of a search result, yielded 80% success.
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.2, S.140-151
    Type
    a
  11. Jindal, V.; Bawa, S.; Batra, S.: ¬A review of ranking approaches for semantic search on Web (2014) 0.01
    0.006548052 = product of:
      0.01637013 = sum of:
        0.005779455 = weight(_text_:a in 2799) [ClassicSimilarity], result of:
          0.005779455 = score(doc=2799,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.10809815 = fieldWeight in 2799, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2799)
        0.010590675 = product of:
          0.02118135 = sum of:
            0.02118135 = weight(_text_:information in 2799) [ClassicSimilarity], result of:
              0.02118135 = score(doc=2799,freq=10.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.2602176 = fieldWeight in 2799, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2799)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    With ever increasing information being available to the end users, search engines have become the most powerful tools for obtaining useful information scattered on the Web. However, it is very common that even most renowned search engines return result sets with not so useful pages to the user. Research on semantic search aims to improve traditional information search and retrieval methods where the basic relevance criteria rely primarily on the presence of query keywords within the returned pages. This work is an attempt to explore different relevancy ranking approaches based on semantics which are considered appropriate for the retrieval of relevant information. In this paper, various pilot projects and their corresponding outcomes have been investigated based on methodologies adopted and their most distinctive characteristics towards ranking. An overview of selected approaches and their comparison by means of the classification criteria has been presented. With the help of this comparison, some common concepts and outstanding features have been identified.
    Source
    Information processing and management. 50(2014) no.2, S.416-425
    Type
    a
  12. Meghabghab, G.: Google's Web page ranking applied to different topological Web graph structures (2001) 0.01
    0.006540462 = product of:
      0.016351154 = sum of:
        0.010769378 = weight(_text_:a in 6028) [ClassicSimilarity], result of:
          0.010769378 = score(doc=6028,freq=20.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.20142901 = fieldWeight in 6028, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6028)
        0.0055817757 = product of:
          0.011163551 = sum of:
            0.011163551 = weight(_text_:information in 6028) [ClassicSimilarity], result of:
              0.011163551 = score(doc=6028,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.13714671 = fieldWeight in 6028, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6028)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This research is part of the ongoing study to better understand web page ranking on the web. It looks at a web page as a graph structure or a web graph, and tries to classify different web graphs in the new coordinate space: (out-degree, in-degree). The out-degree coordinate od is defined as the number of outgoing web pages from a given web page. The in-degree id coordinate is the number of web pages that point to a given web page. In this new coordinate space a metric is built to classify how close or far different web graphs are. Google's web ranking algorithm (Brin & Page, 1998) on ranking web pages is applied in this new coordinate space. The results of the algorithm has been modified to fit different topological web graph structures. Also the algorithm was not successful in the case of general web graphs and new ranking web algorithms have to be considered. This study does not look at enhancing web ranking by adding any contextual information. It only considers web links as a source to web page ranking. The author believes that understanding the underlying web page as a graph will help design better ranking web algorithms, enhance retrieval and web performance, and recommends using graphs as a part of visual aid for browsing engine designers
    Source
    Journal of the American Society for Information Science and technology. 52(2001) no.9, S.736-747
    Type
    a
  13. White, R.W.; Jose, J.M.; Ruthven, I.: Using top-ranking sentences to facilitate effective information access (2005) 0.01
    0.006203569 = product of:
      0.015508923 = sum of:
        0.0076151006 = weight(_text_:a in 3881) [ClassicSimilarity], result of:
          0.0076151006 = score(doc=3881,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.14243183 = fieldWeight in 3881, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3881)
        0.007893822 = product of:
          0.015787644 = sum of:
            0.015787644 = weight(_text_:information in 3881) [ClassicSimilarity], result of:
              0.015787644 = score(doc=3881,freq=8.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.19395474 = fieldWeight in 3881, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3881)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Web searchers typically fall to view search results beyond the first page nor fully examine those results presented to them. In this article we describe an approach that encourages a deeper examination of the contents of the document set retrieved in response to a searcher's query. The approach shifts the focus of perusal and interaction away from potentially uninformative document surrogates (such as titles, sentence fragments, and URLs) to actual document content, and uses this content to drive the information seeking process. Current search interfaces assume searchers examine results document-by-document. In contrast our approach extracts, ranks, and presents the contents of the top-ranked document set. We use query-relevant topranking sentences extracted from the top documents at retrieval time as fine-grained representations of topranked document content and, when combined in a ranked list, an overview of these documents. The interaction of the searcher provides implicit evidence that is used to reorder the sentences where appropriate. We evaluate our approach in three separate user studies, each applying these sentences in a different way. The findings of these studies show that top-ranking sentences can facilitate effective information access.
    Source
    Journal of the American Society for Information Science and Technology. 56(2005) no.10, S.1113-1125
    Type
    a
  14. Radev, D.; Fan, W.; Qu, H.; Wu, H.; Grewal, A.: Probabilistic question answering on the Web (2005) 0.01
    0.005898641 = product of:
      0.014746603 = sum of:
        0.0100103095 = weight(_text_:a in 3455) [ClassicSimilarity], result of:
          0.0100103095 = score(doc=3455,freq=12.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.18723148 = fieldWeight in 3455, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3455)
        0.0047362936 = product of:
          0.009472587 = sum of:
            0.009472587 = weight(_text_:information in 3455) [ClassicSimilarity], result of:
              0.009472587 = score(doc=3455,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.116372846 = fieldWeight in 3455, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3455)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Web-based search engines such as Google and NorthernLight return documents that are relevant to a user query, not answers to user questions. We have developed an architecture that augments existing search engines so that they support natural language question answering. The process entails five steps: query modulation, document retrieval, passage extraction, phrase extraction, and answer ranking. In this article, we describe some probabilistic approaches to the last three of these stages. We show how our techniques apply to a number of existing search engines, and we also present results contrasting three different methods for question answering. Our algorithm, probabilistic phrase reranking (PPR), uses proximity and question type features and achieves a total reciprocal document rank of .20 an the TREC8 corpus. Our techniques have been implemented as a Web-accessible system, called NSIR.
    Source
    Journal of the American Society for Information Science and Technology. 56(2005) no.6, S.571-583
    Type
    a
  15. Chen, Z.; Meng, X.; Fowler, R.H.; Zhu, B.: Real-time adaptive feature and document learning for Web search (2001) 0.01
    0.005886516 = product of:
      0.01471629 = sum of:
        0.010769378 = weight(_text_:a in 5209) [ClassicSimilarity], result of:
          0.010769378 = score(doc=5209,freq=20.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.20142901 = fieldWeight in 5209, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5209)
        0.003946911 = product of:
          0.007893822 = sum of:
            0.007893822 = weight(_text_:information in 5209) [ClassicSimilarity], result of:
              0.007893822 = score(doc=5209,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.09697737 = fieldWeight in 5209, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5209)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Chen et alia report on the design of FEATURES, a web search engine with adaptive features based on minimal relevance feedback. Rather than developing user profiles from previous searcher activity either at the server or client location, or updating indexes after search completion, FEATURES allows for index and user characterization files to be updated during query modification on retrieval from a general purpose search engine. Indexing terms relevant to a query are defined as the union of all terms assigned to documents retrieved by the initial search run and are used to build a vector space model on this retrieved set. The top ten weighted terms are presented to the user for a relevant non-relevant choice which is used to modify the term weights. Documents are chosen if their summed term weights are greater than some threshold. A user evaluation of the top ten ranked documents as non-relevant will decrease these term weights and a positive judgement will increase them. A new ordering of the retrieved set will generate new display lists of terms and documents. Precision is improved in a test on Alta Vista searches.
    Source
    Journal of the American Society for Information Science and technology. 52(2001) no.8, S.655-665
    Type
    a
  16. Austin, D.: How Google finds your needle in the Web's haystack : as we'll see, the trick is to ask the web itself to rank the importance of pages... (2006) 0.01
    0.0058457847 = product of:
      0.014614461 = sum of:
        0.009829085 = weight(_text_:a in 93) [ClassicSimilarity], result of:
          0.009829085 = score(doc=93,freq=34.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1838419 = fieldWeight in 93, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.02734375 = fieldNorm(doc=93)
        0.004785376 = product of:
          0.009570752 = sum of:
            0.009570752 = weight(_text_:information in 93) [ClassicSimilarity], result of:
              0.009570752 = score(doc=93,freq=6.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.11757882 = fieldWeight in 93, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=93)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Imagine a library containing 25 billion documents but with no centralized organization and no librarians. In addition, anyone may add a document at any time without telling anyone. You may feel sure that one of the documents contained in the collection has a piece of information that is vitally important to you, and, being impatient like most of us, you'd like to find it in a matter of seconds. How would you go about doing it? Posed in this way, the problem seems impossible. Yet this description is not too different from the World Wide Web, a huge, highly-disorganized collection of documents in many different formats. Of course, we're all familiar with search engines (perhaps you found this article using one) so we know that there is a solution. This article will describe Google's PageRank algorithm and how it returns pages from the web's collection of 25 billion documents that match search criteria so well that "google" has become a widely used verb. Most search engines, including Google, continually run an army of computer programs that retrieve pages from the web, index the words in each document, and store this information in an efficient format. Each time a user asks for a web search using a search phrase, such as "search engine," the search engine determines all the pages on the web that contains the words in the search phrase. (Perhaps additional information such as the distance between the words "search" and "engine" will be noted as well.) Here is the problem: Google now claims to index 25 billion pages. Roughly 95% of the text in web pages is composed from a mere 10,000 words. This means that, for most searches, there will be a huge number of pages containing the words in the search phrase. What is needed is a means of ranking the importance of the pages that fit the search criteria so that the pages can be sorted with the most important pages at the top of the list. One way to determine the importance of pages is to use a human-generated ranking. For instance, you may have seen pages that consist mainly of a large number of links to other resources in a particular area of interest. Assuming the person maintaining this page is reliable, the pages referenced are likely to be useful. Of course, the list may quickly fall out of date, and the person maintaining the list may miss some important pages, either unintentionally or as a result of an unstated bias. Google's PageRank algorithm assesses the importance of web pages without human evaluation of the content. In fact, Google feels that the value of its service is largely in its ability to provide unbiased results to search queries; Google claims, "the heart of our software is PageRank." As we'll see, the trick is to ask the web itself to rank the importance of pages.
  17. Agosti, M.; Pretto, L.: ¬A theoretical study of a generalized version of kleinberg's HITS algorithm (2005) 0.01
    0.0056654564 = product of:
      0.014163641 = sum of:
        0.01021673 = weight(_text_:a in 4) [ClassicSimilarity], result of:
          0.01021673 = score(doc=4,freq=18.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.19109234 = fieldWeight in 4, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4)
        0.003946911 = product of:
          0.007893822 = sum of:
            0.007893822 = weight(_text_:information in 4) [ClassicSimilarity], result of:
              0.007893822 = score(doc=4,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.09697737 = fieldWeight in 4, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Kleinberg's HITS (Hyperlink-Induced Topic Search) algorithm (Kleinberg 1999), which was originally developed in a Web context, tries to infer the authoritativeness of a Web page in relation to a specific query using the structure of a subgraph of the Web graph, which is obtained considering this specific query. Recent applications of this algorithm in contexts far removed from that of Web searching (Bacchin, Ferro and Melucci 2002, Ng et al. 2001) inspired us to study the algorithm in the abstract, independently of its particular applications, trying to mathematically illuminate its behaviour. In the present paper we detail this theoretical analysis. The original work starts from the definition of a revised and more general version of the algorithm, which includes the classic one as a particular case. We perform an analysis of the structure of two particular matrices, essential to studying the behaviour of the algorithm, and we prove the convergence of the algorithm in the most general case, finding the analytic expression of the vectors to which it converges. Then we study the symmetry of the algorithm and prove the equivalence between the existence of symmetry and the independence from the order of execution of some basic operations on initial vectors. Finally, we expound some interesting consequences of our theoretical results.
    Source
    Advances in mathematical/formal methods in information retrieval. 8(2005) no.2 , S.219-243
    Type
    a
  18. Thelwall, M.: Can Google's PageRank be used to find the most important academic Web pages? (2003) 0.01
    0.0051638708 = product of:
      0.012909677 = sum of:
        0.008173384 = weight(_text_:a in 4457) [ClassicSimilarity], result of:
          0.008173384 = score(doc=4457,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 4457, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=4457)
        0.0047362936 = product of:
          0.009472587 = sum of:
            0.009472587 = weight(_text_:information in 4457) [ClassicSimilarity], result of:
              0.009472587 = score(doc=4457,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.116372846 = fieldWeight in 4457, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4457)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Google's PageRank is an influential algorithm that uses a model of Web use that is dominated by its link structure in order to rank pages by their estimated value to the Web community. This paper reports on the outcome of applying the algorithm to the Web sites of three national university systems in order to test whether it is capable of identifying the most important Web pages. The results are also compared with simple inlink counts. It was discovered that the highest inlinked pages do not always have the highest PageRank, indicating that the two metrics are genuinely different, even for the top pages. More significantly, however, internal links dominated external links for the high ranks in either method and superficial reasons accounted for high scores in both cases. It is concluded that PageRank is not useful for identifying the top pages in a site and that it must be combined with a powerful text matching techniques in order to get the quality of information retrieval results provided by Google.
    Type
    a
  19. Ding, Y.; Yan, E.; Frazho, A.; Caverlee, J.: PageRank for ranking authors in co-citation networks (2009) 0.00
    0.0049910345 = product of:
      0.012477586 = sum of:
        0.005779455 = weight(_text_:a in 3161) [ClassicSimilarity], result of:
          0.005779455 = score(doc=3161,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.10809815 = fieldWeight in 3161, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3161)
        0.0066981306 = product of:
          0.013396261 = sum of:
            0.013396261 = weight(_text_:information in 3161) [ClassicSimilarity], result of:
              0.013396261 = score(doc=3161,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.16457605 = fieldWeight in 3161, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3161)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This paper studies how varied damping factors in the PageRank algorithm influence the ranking of authors and proposes weighted PageRank algorithms. We selected the 108 most highly cited authors in the information retrieval (IR) area from the 1970s to 2008 to form the author co-citation network. We calculated the ranks of these 108 authors based on PageRank with the damping factor ranging from 0.05 to 0.95. In order to test the relationship between different measures, we compared PageRank and weighted PageRank results with the citation ranking, h-index, and centrality measures. We found that in our author co-citation network, citation rank is highly correlated with PageRank with different damping factors and also with different weighted PageRank algorithms; citation rank and PageRank are not significantly correlated with centrality measures; and h-index rank does not significantly correlate with centrality measures but does significantly correlate with other measures. The key factors that have impact on the PageRank of authors in the author co-citation network are being co-cited with important authors.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.11, S.2229-2243
    Type
    a
  20. Thelwall, M.; Vaughan, L.: New versions of PageRank employing alternative Web document models (2004) 0.00
    0.0049160775 = product of:
      0.012290194 = sum of:
        0.004086692 = weight(_text_:a in 674) [ClassicSimilarity], result of:
          0.004086692 = score(doc=674,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.07643694 = fieldWeight in 674, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=674)
        0.008203502 = product of:
          0.016407004 = sum of:
            0.016407004 = weight(_text_:information in 674) [ClassicSimilarity], result of:
              0.016407004 = score(doc=674,freq=6.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.20156369 = fieldWeight in 674, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=674)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Introduces several new versions of PageRank (the link based Web page ranking algorithm), based on an information science perspective on the concept of the Web document. Although the Web page is the typical indivisible unit of information in search engine results and most Web information retrieval algorithms, other research has suggested that aggregating pages based on directories and domains gives promising alternatives, particularly when Web links are the object of study. The new algorithms introduced based on these alternatives were used to rank four sets of Web pages. The ranking results were compared with human subjects' rankings. The results of the tests were somewhat inconclusive: the new approach worked well for the set that includes pages from different Web sites; however, it does not work well in ranking pages that are from the same site. It seems that the new algorithms may be effective for some tasks but not for others, especially when only low numbers of links are involved or the pages to be ranked are from the same site or directory.
    Type
    a

Languages

  • e 26
  • d 9

Types

  • a 30
  • m 3
  • el 2
  • r 1
  • More… Less…