Search (23 results, page 1 of 2)

  • × author_ss:"Cole, C."
  1. Cole, C.: Activity of understanding a problem during interaction with an 'enabling' information retrieval system : modeling information flow (1999) 0.04
    0.038799785 = product of:
      0.11639935 = sum of:
        0.11639935 = sum of:
          0.031153653 = weight(_text_:online in 3675) [ClassicSimilarity], result of:
            0.031153653 = score(doc=3675,freq=2.0), product of:
              0.1548489 = queryWeight, product of:
                3.0349014 = idf(docFreq=5778, maxDocs=44218)
                0.051022716 = queryNorm
              0.20118743 = fieldWeight in 3675, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.0349014 = idf(docFreq=5778, maxDocs=44218)
                0.046875 = fieldNorm(doc=3675)
          0.043768454 = weight(_text_:retrieval in 3675) [ClassicSimilarity], result of:
            0.043768454 = score(doc=3675,freq=4.0), product of:
              0.15433937 = queryWeight, product of:
                3.024915 = idf(docFreq=5836, maxDocs=44218)
                0.051022716 = queryNorm
              0.2835858 = fieldWeight in 3675, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.024915 = idf(docFreq=5836, maxDocs=44218)
                0.046875 = fieldNorm(doc=3675)
          0.04147724 = weight(_text_:22 in 3675) [ClassicSimilarity], result of:
            0.04147724 = score(doc=3675,freq=2.0), product of:
              0.17867287 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051022716 = queryNorm
              0.23214069 = fieldWeight in 3675, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=3675)
      0.33333334 = coord(1/3)
    
    Abstract
    This article is about the mental coding processes involved in the flow of 'information' when the user is interacting with an 'enabling' information retrieval system. An 'enabling' IR system is designed to stimulate the user's grasping towards a higher understanding of the information need / problem / task that brought the user to the IR system. C. Shannon's (1949/1959) model of the flow of information and K.R. Popper's (1975) 3 worlds concept are used to diagram the flow of information between the user and system when the user receives a stimulating massage, with particluar emphasis on the decoding and encoding operations involved as the user processes the message. The key difference between the model of information flow proposed here and the linear transmission, receiver-oriented model now in use is that we assume that users of a truly interactive, 'enabling' IR system are primarily message senders, not passive receivers of the message, because they must create a new message back to the system, absed on a reconceptualization of their information need, while they are 'online' interacting with the system
    Date
    22. 5.1999 14:51:49
  2. Spink, A.; Cole, C.: ¬A multitasking framework for cognitive information retrieval (2005) 0.02
    0.015314843 = product of:
      0.045944527 = sum of:
        0.045944527 = product of:
          0.06891679 = sum of:
            0.041265294 = weight(_text_:retrieval in 642) [ClassicSimilarity], result of:
              0.041265294 = score(doc=642,freq=8.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.26736724 = fieldWeight in 642, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03125 = fieldNorm(doc=642)
            0.027651496 = weight(_text_:22 in 642) [ClassicSimilarity], result of:
              0.027651496 = score(doc=642,freq=2.0), product of:
                0.17867287 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051022716 = queryNorm
                0.15476047 = fieldWeight in 642, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=642)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Information retrieval (IR) research has developed considerably since the 1950's to include consideration of more cognitive, interactive and iterative processes during the interaction between humans and IR or Web systems (Ingwersen, 1992, 1996). Interactive search sessions by humans with IR systems have been depicted as interactive IR models (Saracevic, 1997). Human-IR system interaction is also modeled as taking place within the context of broader human information behavior (HIB) processes (Spink et al., 2002). Research into the human or cognitive (user modeling) aspects of IR is a growing body of research on user interactivity, task performance and measures for observing user interactivity. The task context and situational characteristics of users' searches and evaluation have also been identified as key elements in a user's interaction with an IR system (Cool and Spink, 2002; Vakkari, 2003). Major theorized interactive IR models have been proposed relating to the single search episode, including Ingwersen's (1992,1996) Cognitive Model of IR Interaction, Belkin et al.'s (1995) Episodic Interaction Model, and Saracevic's (1996,1997) Stratified Model of IR Interaction. In this chapter we examine Saracevic's Stratified Model of IR Interaction and extend the model within the framework of cognitive IR (CIR) to depict CIR as a multitasking process. This chapter provides a new direction for CIR research by conceptualizing IR with a multitasking context. The next section of the chapter defines the concept of multitasking in the cognitive sciences and Section 3 discusses the emerging understanding of multitasking information behavior. In Section 4, cognitive IR is depicted within a multitasking framework using Saracevic's (1996, 1997) Stratified Model of IR Interaction. In Section 5, we link information searching and seeking models together, via Saracevic's Stratified Model of IR Interaction, but starting with a unitask model of HIB. We begin to model multitasking in cognitive IR in Section 6. In Sections 7 and 8, we increase the complexity of our developing multitasking model of cognitive IR by adding coordinating mechanisms, including feedback loops. Finally, in Section 9, we conclude the chapter and indicate future directions for further research.
    Date
    19. 1.2007 12:55:22
    Series
    The information retrieval series, vol. 19
    Source
    New directions in cognitive information retrieval. Eds.: A. Spink, C. Cole
  3. Cole, C.; Leide, J.E.; Large, A,; Beheshti, J.; Brooks, M.: Putting it together online : information need identification for the domain novice user (2005) 0.01
    0.013874464 = product of:
      0.04162339 = sum of:
        0.04162339 = product of:
          0.062435087 = sum of:
            0.025961377 = weight(_text_:online in 3469) [ClassicSimilarity], result of:
              0.025961377 = score(doc=3469,freq=2.0), product of:
                0.1548489 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.051022716 = queryNorm
                0.16765618 = fieldWeight in 3469, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3469)
            0.03647371 = weight(_text_:retrieval in 3469) [ClassicSimilarity], result of:
              0.03647371 = score(doc=3469,freq=4.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.23632148 = fieldWeight in 3469, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3469)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Domain novice users in the beginning stages of researching a topic find themselves searching for information via information retrieval (IR) systems before they have identified their information need. Pre-Internet access technologies adapted by current IR systems poorly serve these domain novice users, whose behavior might be characterized as rudderless and without a compass. In this article we describe a conceptual design for an information retrieval system that incorporates standard information need identification classification and subject cataloging schemes, called the INIIReye System, and a study that tests the efficacy of the innovative part of the INIIReye System, called the Associative Index. The Associative Index helps the user put together his or her associative thoughts-Vannevar Bush's idea of associative indexing for his Memex machine that he never actually described. For the first time, data from the study reported here quantitatively supports the theoretical notion that the information seeker's information need is identified through transformation of his/her knowledge structure (i.e., the seeker's cognitive map or perspective an the task far which information is being sought).
  4. Cole, C.: Intelligent information retrieval : Part IV: Testing the timing of two information retrieval devices in a naturalistic setting (2001) 0.01
    0.009726323 = product of:
      0.02917897 = sum of:
        0.02917897 = product of:
          0.08753691 = sum of:
            0.08753691 = weight(_text_:retrieval in 365) [ClassicSimilarity], result of:
              0.08753691 = score(doc=365,freq=4.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.5671716 = fieldWeight in 365, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.09375 = fieldNorm(doc=365)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
  5. Cole, C.: Information need : a theory connecting information search to knowledge formation (2012) 0.01
    0.008423243 = product of:
      0.025269728 = sum of:
        0.025269728 = product of:
          0.07580918 = sum of:
            0.07580918 = weight(_text_:retrieval in 4985) [ClassicSimilarity], result of:
              0.07580918 = score(doc=4985,freq=12.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.49118498 = fieldWeight in 4985, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4985)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    LCSH
    Information retrieval
    Information storage and retrieval systems
    RSWK
    Informationsverhalten / Information Retrieval / Informationstheorie
    Subject
    Informationsverhalten / Information Retrieval / Informationstheorie
    Information retrieval
    Information storage and retrieval systems
  6. Cole, C.; Kennedy, L.; Carter, S.: ¬The optimization of online searches through the labelling of a dynamic, situation-dependent information need : the reference interview and online searching for undergraduates doing a social-science assignment (1996) 0.01
    0.007994032 = product of:
      0.023982096 = sum of:
        0.023982096 = product of:
          0.071946286 = sum of:
            0.071946286 = weight(_text_:online in 6918) [ClassicSimilarity], result of:
              0.071946286 = score(doc=6918,freq=6.0), product of:
                0.1548489 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.051022716 = queryNorm
                0.4646225 = fieldWeight in 6918, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6918)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Proposes a reference interview strategy that will allow the reference librarian to: efficiently assess the information need of undergraduates undertaking a social science assignment, label the information need, and assign the most appropriate online search strategy to satisfy this need
  7. Kennedy, L.; Cole, C.; Carter, S.: Connecting online search strategies and information needs : a user-centered, focus-labeling approach (1997) 0.01
    0.006994778 = product of:
      0.020984333 = sum of:
        0.020984333 = product of:
          0.062952995 = sum of:
            0.062952995 = weight(_text_:online in 627) [ClassicSimilarity], result of:
              0.062952995 = score(doc=627,freq=6.0), product of:
                0.1548489 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.051022716 = queryNorm
                0.4065447 = fieldWeight in 627, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=627)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    When assisting undergraduate students in accessing materials, academic librarians must balance the task of conducting reference interviews with instructing students on how to use databases (OPACs, CD-ROM and online databases). Presents a method for connecting these tasks via the construction of a search strategy which is wholly dependent on the user's information needs. Using this method, the librarian assesses and explicitly labels the student's information need (using a diagnostoc tool based on Kuhlthau's and Taylor's concept of 'focus'), then assigns the most appropriate online search strategy for the satisfaction of this need
  8. Cole, C.: Intelligent information retrieval: diagnosing information need : Part I: the theoretical framework for developing an intelligent IR tool (1998) 0.01
    0.006877549 = product of:
      0.020632647 = sum of:
        0.020632647 = product of:
          0.06189794 = sum of:
            0.06189794 = weight(_text_:retrieval in 6431) [ClassicSimilarity], result of:
              0.06189794 = score(doc=6431,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.40105087 = fieldWeight in 6431, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6431)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
  9. Cole, C.: Intelligent information retrieval: diagnosing information need : Part II: uncertainty expansion in a prototype of a diagnostic IR tool (1998) 0.01
    0.006877549 = product of:
      0.020632647 = sum of:
        0.020632647 = product of:
          0.06189794 = sum of:
            0.06189794 = weight(_text_:retrieval in 6432) [ClassicSimilarity], result of:
              0.06189794 = score(doc=6432,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.40105087 = fieldWeight in 6432, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6432)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
  10. Spink, A.; Cole, C.: New directions in cognitive information retrieval : conclusion and further research (2005) 0.01
    0.005615495 = product of:
      0.016846485 = sum of:
        0.016846485 = product of:
          0.050539456 = sum of:
            0.050539456 = weight(_text_:retrieval in 637) [ClassicSimilarity], result of:
              0.050539456 = score(doc=637,freq=12.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.32745665 = fieldWeight in 637, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03125 = fieldNorm(doc=637)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    New Directions in Cognitive Information Retrieval (IR) gathers user or cognitive approaches to IR research into one volume. The group of researchers focus on a middleground perspective between system and user. They ask the question: What is the nexus between the wider context of why and how humans behave when seeking information and the technological and other constraints that determine the interaction between user and machine? These researchers' concern for the application of user/cognitive-oriented research to IR system design thus serves as a meeting ground linking computer scientists with their largely system performance concerns and the social science research that examines human information behavior in the wider context of how human perception and cognitive mechanisms function, and the work and social frameworks in which we live. The researchers in this volume provide an in-depth revaluation of the concepts that form the basis of current IR retrieval system design. Current IR systems are in a certain sense based on design conceptualizations that view - the user's role in the user-system interaction as an input and monitoring mechanism for system performance; - the system's role in the user-system interaction as a data acquisition system, not an information retrieval system; and - the central issue in the user-system interaction as the efficacy of the system's matching algorithms, matching the user request statement to representations of the document set contained in the system's database. But the era of matching-focused approaches to interactive IR appears to be giving way to a concern for developing interactive systems to facilitate collaboration between users in the performance of their work and social tasks. There is room for cognitive approaches to interaction to break in here.
    Series
    The information retrieval series, vol. 19
    Source
    New directions in cognitive information retrieval. Eds.: A. Spink, C. Cole
  11. Spink, A.; Cole, C.: New directions in cognitive information retrieval : introduction (2005) 0.01
    0.0051262225 = product of:
      0.015378667 = sum of:
        0.015378667 = product of:
          0.046136 = sum of:
            0.046136 = weight(_text_:retrieval in 647) [ClassicSimilarity], result of:
              0.046136 = score(doc=647,freq=10.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.29892567 = fieldWeight in 647, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03125 = fieldNorm(doc=647)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Humans have used electronic information retrieval (IR) systems for more than 50 years as they evolved from experimental systems to full-scale Web search engines and digital libraries. The fields of library and information science (LIS), cognitive science, human factors and computer science have historically been the leading disciplines in conducting research that seeks to model human interaction with IR systems for all kinds of information related behaviors. As technology problems have been mastered, the theoretical and applied framework for studying human interaction with IR systems has evolved from systems-centered to more user-centered, or cognitive-centered approaches. However, cognitive information retrieval (CIR) research that focuses on user interaction with IR systems is still largely under-funded and is often not included at computing and systems design oriented conferences. But CIR-focused research continues, and there are signs that some IR systems designers in academia and the Web search business are realizing that user behavior research can provide valuable insights into systems design and evaluation. The goal of our book is to provide an overview of new CIR research directions. This book does not provide a history of the research field of CIR. Instead, the book confronts new ways of looking at the human information condition with regard to our increasing need to interact with IR systems. The need has grown due to a number of factors, including the increased importance of information to more people in this information age. Also, IR was once considered document-oriented, but has now evolved to include multimedia, text, and other information objects. As a result, IR systems and their complexity have proliferated as users and user purposes for using them have also proliferated. Human interaction with IR systems can often be frustrating as people often lack an understanding of IR system functionality.
    Series
    The information retrieval series, vol. 19
    Source
    New directions in cognitive information retrieval. Eds.: A. Spink, C. Cole
  12. Spink, A.; Cole, C.: Introduction (2004) 0.00
    0.004585033 = product of:
      0.013755098 = sum of:
        0.013755098 = product of:
          0.041265294 = sum of:
            0.041265294 = weight(_text_:retrieval in 2389) [ClassicSimilarity], result of:
              0.041265294 = score(doc=2389,freq=8.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.26736724 = fieldWeight in 2389, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2389)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    This is the second part of a two-part special topic JASIST issue an information seeking. The first part presented papers an the topics of health information seeking and everyday life information seeking or ELIS (i.e., information seeking outside of work or school). This second issue presents papers an the topics of information retrieval and information seeking in industry environments. Information retrieval involves a specific kind of information seeking, as the user is in direct contact with an information interface and with potential sources of information from the system's database. The user conducts the search using various strategies, tactics, etc., but there is also the possibility that information processes will occur resulting in a change in the way the user thinks about the topic of the search. If this occurs, the user is, in effect, using the found data, turning it into an informational element of some kind. Such processes can be facilitated in the design of the information retrieval system. Information seeking in industry environments takes up more and more of our working day. Even companies producing industrial products are in fact mainly producing informational elements of some kind, often for the purpose of making decisions or as starting positions for further information seeking. While there may be company mechanisms in place to aid such information seeking, and to make it more efficient, if better information seeking structures were in place, not only would workers waste less time in informational pursuits, but they would also find things, discover new processes, etc., that would benefit the corporation's bottom line. In Figure l, we plot the six papers in this issue an an information behavior continuum, following a taxonomy of information behavior terms from Spink and Cole (2001). Information Behavior is a broad term covering all aspects of information seeking, including passive or undetermined information behavior. Information-Seeking Behavior is usually thought of as active or conscious information behavior. Information-Searching Behavior describes the interactive elements between a user and an information system. Information-Use Behavior is about the user's acquisition and incorporation of data in some kind of information process. This leads to the production of information, but also back to the broad range of Information Behavior in the first part of the continuum. Though we plot all papers in this issue along this continuum, they take into account more than their general framework. The three information retrieval reports veer from the traditional information-searching approach of usersystem interaction, while the three industry environment articles veer from the traditional information-seeking approach of specific context information-seeking studies.
  13. Cole, C.; Beheshti, J.; Leide, J. E.; Large, A.: Interactive information retrieval : bringing the user to a selection state (2005) 0.00
    0.004585033 = product of:
      0.013755098 = sum of:
        0.013755098 = product of:
          0.041265294 = sum of:
            0.041265294 = weight(_text_:retrieval in 36) [ClassicSimilarity], result of:
              0.041265294 = score(doc=36,freq=8.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.26736724 = fieldWeight in 36, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03125 = fieldNorm(doc=36)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    There have been various approaches to conceptualizing interactive information retrieval (IR), which can be generally divided into system and user approaches (Hearst, 1999; cf. also Spink, 1997). Both system and user approaches define user-system interaction in terms of the system and the user reacting to the actions or behaviors of the other: the system reacts to the user's input; the user to the output of the system (Spink, 1997). In system approach models of the interaction, e.g., Moran (1981), "[T]he user initiates an action or operation and the system responds in some way which in turn leads the user to initiate another action and so on" (Beaulieu, 2000, p. 433). In its purest form, the system approach models the user as a reactive part of the interaction, with the system taking the lead (Bates, 1990). User approaches, on the other hand, in their purest form wish to insert a model of the user in all its socio-cognitive dimensions, to the extent that system designers consider such approaches impractical (Vakkari and Jarvelin, 2005, Chap. 7, this volume). The cognitive approach to IR interaction attempts to overcome this divide (Ruthven, 2005, Chap. 4, this volume; Vakkari and Jarvelin, 2005 Chap. 7, this volume) by representing the cognitive elements of both system designers and the user in the interaction model (Larsen and Ingwersen, 2005 Chap. 3, this volume). There are cognitive approach researchers meeting in a central ground from both the system and user side. On the system side, are computer scientists employing cognitive research to design more effective IR systems from the point of view of the user's task (Nathan, 1990; Fischer, Henninger, and Redmiles, 1991; O'Day and Jeffries, 1993; Russell et al., 1993; Kitajima and Polson, 1996; Terwilliger and Polson, 1997). On the user side are cognitive approach researchers applying methods, concepts and models from psychology to design systems that are more in tune with how users acquire information (e.g., Belkin, 1980; Ford (2005, Chap. 5, this volume); Ingwersen (Larsen and Ingwersen, 2005, Chap. 3, this volume); Saracevic, 1996; Vakkari (Vakkari and Jarvelin, 2005, Chap. 7, this volume)).
    Series
    The information retrieval series, vol. 19
    Source
    New directions in cognitive information retrieval. Eds.: A. Spink, C. Cole
  14. Cole, C.: Interaction with an enabling information retrieval system : modeling the user's decoding and encoding operations (2000) 0.00
    0.004052635 = product of:
      0.012157904 = sum of:
        0.012157904 = product of:
          0.03647371 = sum of:
            0.03647371 = weight(_text_:retrieval in 4585) [ClassicSimilarity], result of:
              0.03647371 = score(doc=4585,freq=4.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.23632148 = fieldWeight in 4585, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4585)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    With new interactive technology, we can increase user satisfaction by designing information retrieval systems that inform the user while the user is on-line interacting with the system. The purpose of this article is to model the information processing operations of a generic user who has just received an information message from the system and is stimulated by the message into grasping at a higher understanding of his or her information task or problem. The model consists of 3 levels, each of which forms a separate subsystem. In the Perseption subsystem, the user perceives the system message in a visual sense; in the Comprehension subsystem, the user must comprehend the system message; and in the Application subsystem, the user must (a) interpret the system message in terms of the user's task at hand, and (b) create and send a new message back to the system to complete the interaction. Because of the information process stimulated by the interaction, the user's new message forms a query to the system that more accurately represents the user's information need than would have been the case if the interaction had not taken place. This article proposes a device to enable clarification of the user's task, and thus his/her information need at the Application subsystem level of the model
  15. Cole, C.; Mandelblatt, B.: Using Kintsch's discourse comprehension theory to model the user's coding of an informative message from an enabling information retrieval system (2000) 0.00
    0.004052635 = product of:
      0.012157904 = sum of:
        0.012157904 = product of:
          0.03647371 = sum of:
            0.03647371 = weight(_text_:retrieval in 5161) [ClassicSimilarity], result of:
              0.03647371 = score(doc=5161,freq=4.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.23632148 = fieldWeight in 5161, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5161)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    With new interactive technology, information science can use its traditional information focus to increase user satisfaction by designing information retrieval systems (IRSs) that inform the user about her task, and help the user get the task done, while the user is on-line interacting with the system. By doing so, the system enables the user to perform the task for which the information is being sought. In previous articles, we modeled the information flow and coding operations of a user who has just received an informative IRS message, dividing the user's processing of the IRS message into three subsystem levels. In this article, we use Kintsch's proposition-based construction-integration theory of discourse comprehension to further detail the user coding operations that occur in each of the three subsystems. Our enabling devices are designed to facilitate a specific coding operation in a specific subsystem. In this article, we describe an IRS device made up of two separate parts that enable the user's (1) decoding and (2) encoding of an IRS message in the Comprehension subsystem
  16. Cole, C.; Mandelblatt, B.; Stevenson, J.: Visualizing a high recall search strategy output for undergraduates in an exploration stage of researching a term paper (2002) 0.00
    0.004052635 = product of:
      0.012157904 = sum of:
        0.012157904 = product of:
          0.03647371 = sum of:
            0.03647371 = weight(_text_:retrieval in 2575) [ClassicSimilarity], result of:
              0.03647371 = score(doc=2575,freq=4.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.23632148 = fieldWeight in 2575, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2575)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    When accessing an information retrieval system, it has long been said that undergraduates who are in an exploratory stage of researching their essay topic should use a high recall search strategy; what prevents them from doing so is the information overload factor associated with showing the undergraduate a long list of citations. One method of overcoming information overload is summarizing and visualizing the citation list. This paper examines five summarization and visualization schemes for presenting information retrieval (IR) citation output, then discusses whether these schemes are appropriate for undergraduates and other domain novice users. We ask and answer four questions: (1) What is the message these schemes try to communicate and (2) is this message appropriate for domain novice users like undergraduates? (3) How do these schemes communicate their message and (4) is how they communicate the message appropriate for a domain novice? We conclude that (i) the most appropriate message for information space visualizations for domain novice users is associative thinking, and (ii) the message should be communicated with a standardized look that remains relatively constant over time so that the shape and form of the visualization can become familiar and thus useful to students as they navigate their way through the information space produced by a high recall search strategy.
  17. Leide, J.E.; Cole, C.; Beheshti, J.; Large, A.; Lin, Y.: Task-based information retrieval : structuring undergraduate history essays for better course evaluation using essay-type visualizations (2007) 0.00
    0.004052635 = product of:
      0.012157904 = sum of:
        0.012157904 = product of:
          0.03647371 = sum of:
            0.03647371 = weight(_text_:retrieval in 460) [ClassicSimilarity], result of:
              0.03647371 = score(doc=460,freq=4.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.23632148 = fieldWeight in 460, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=460)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    When domain novices are in C.C. Kuhlthau's (1993) Stage 3, the exploration stage of researching an assignment, they often do not know their information need; this causes them to go back to Stage 2, the topic-selection stage, when they are selecting keywords to formulate their query to an Information Retrieval (IR) system. Our hypothesis is that instead of going backward, they should be going forward toward a goal state-the performance of the task for which they are seeking the information. If they can somehow construct their goal state into a query, this forward-looking query better operationalizes their information need than does a topic-based query. For domain novice undergraduates seeking information for a course essay, we define their task as selecting a high-impact essay structure which will put the students' learning on display for the course instructor who will evaluate the essay. We report a study of first-year history undergraduate students which tested the use and effectiveness of "essay type" as a task-focused query-formulation device. We randomly assigned 78 history undergraduates to an intervention group and a control group. The dependent variable was essay quality, based on (a) an evaluation of the student's essay by a research team member, and (b) the marks given to the student's essay by the course instructor. We found that conscious or formal consideration of essay type is inconclusive as a basis of a task-focused query-formulation device for IR.
  18. Cole, C.: ¬A theory of information need for information retrieval that connects information to knowledge (2011) 0.00
    0.004052635 = product of:
      0.012157904 = sum of:
        0.012157904 = product of:
          0.03647371 = sum of:
            0.03647371 = weight(_text_:retrieval in 4474) [ClassicSimilarity], result of:
              0.03647371 = score(doc=4474,freq=4.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.23632148 = fieldWeight in 4474, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4474)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    This article proposes a theory of information need for information retrieval (IR). Information need traditionally denotes the start state for someone seeking information, which includes information search using an IR system. There are two perspectives on information need. The dominant, computer science perspective is that the user needs to find an answer to a well-defined question which is easy for the user to formulate into a query to the system. Ironically, information science's best known model of information need (Taylor, 1968) deems it to be a "black box"-unknowable and nonspecifiable by the user in a query to the information system. Information science has instead devoted itself to studying eight adjacent or surrogate concepts (information seeking, search and use; problem, problematic situation and task; sense making and evolutionary adaptation/information foraging). Based on an analysis of these eight adjacent/surrogate concepts, we create six testable propositions for a theory of information need. The central assumption of the theory is that while computer science sees IR as an information- or answer-finding system, focused on the user finding an answer, an information science or user-oriented theory of information need envisages a knowledge formulation/acquisition system.
  19. Cole, C.; Behesthi, J.; Large, A.; Lamoureux, I.; Abuhimed, D.; AlGhamdi, M.: Seeking information for a middle school history project : the concept of implicit knowledge in the students' transition from Kuhlthau's Stage 3 to Stage 4 (2013) 0.00
    0.0038404856 = product of:
      0.011521457 = sum of:
        0.011521457 = product of:
          0.03456437 = sum of:
            0.03456437 = weight(_text_:22 in 667) [ClassicSimilarity], result of:
              0.03456437 = score(doc=667,freq=2.0), product of:
                0.17867287 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051022716 = queryNorm
                0.19345059 = fieldWeight in 667, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=667)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Date
    22. 3.2013 19:41:17
  20. Cole, C.; Lin, Y.; Leide, J.; Large, A.; Beheshti, J.: ¬A classification of mental models of undergraduates seeking information for a course essay in history and psychology : preliminary investigations into aligning their mental models with online thesauri (2007) 0.00
    0.0032635499 = product of:
      0.00979065 = sum of:
        0.00979065 = product of:
          0.029371947 = sum of:
            0.029371947 = weight(_text_:online in 625) [ClassicSimilarity], result of:
              0.029371947 = score(doc=625,freq=4.0), product of:
                0.1548489 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.051022716 = queryNorm
                0.18968134 = fieldWeight in 625, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.03125 = fieldNorm(doc=625)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    The article reports a field study which examined the mental models of 80 undergraduates seeking information for either a history or psychology course essay when they were in an early, exploration stage of researching their essay. This group is presently at a disadvantage when using thesaurus-type schemes in indexes and online search engines because there is a disconnect between how domain novice users of IR systems represent a topic space and how this space is represented in the standard IR system thesaurus. The study attempted to (a) ascertain the coding language used by the 80 undergraduates in the study to mentally represent their topic and then (b) align the mental models with the hierarchical structure found in many thesauri. The intervention focused the undergraduates' thinking about their topic from a topic statement to a thesis statement. The undergraduates were asked to produce three mental model diagrams for their real-life course essay at the beginning, middle, and end of the interview, for a total of 240 mental model diagrams, from which we created a 12-category mental model classification scheme. Findings indicate that at the end of the intervention, (a) the percentage of vertical mental models increased from 24 to 35% of all mental models; but that (b) 3rd-year students had fewer vertical mental models than did 1st-year undergraduates in the study, which is counterintuitive. The results indicate that there is justification for pursuing our research based on the hypothesis that rotating a domain novice's mental model into a vertical position would make it easier for him or her to cognitively connect with the thesaurus's hierarchical representation of the topic area.