Search (8 results, page 1 of 1)

  • × theme_ss:"Automatisches Indexieren"
  • × type_ss:"x"
  1. Nicoletti, M.: Automatische Indexierung (2001) 0.05
    0.052357085 = product of:
      0.13089271 = sum of:
        0.107641 = weight(_text_:index in 4326) [ClassicSimilarity], result of:
          0.107641 = score(doc=4326,freq=2.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.5793543 = fieldWeight in 4326, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.09375 = fieldNorm(doc=4326)
        0.023251716 = product of:
          0.069755144 = sum of:
            0.069755144 = weight(_text_:29 in 4326) [ClassicSimilarity], result of:
              0.069755144 = score(doc=4326,freq=2.0), product of:
                0.14956595 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04251826 = queryNorm
                0.46638384 = fieldWeight in 4326, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4326)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Content
    Inhalt: 1. Aufgabe - 2. Ermittlung von Mehrwortgruppen - 2.1 Definition - 3. Kennzeichnung der Mehrwortgruppen - 4. Grundformen - 5. Term- und Dokumenthäufigkeit --- Termgewichtung - 6. Steuerungsinstrument Schwellenwert - 7. Invertierter Index. Vgl. unter: http://www.grin.com/de/e-book/104966/automatische-indexierung.
    Date
    29. 9.2017 12:00:04
  2. Schneider, A.: Moderne Retrievalverfahren in klassischen bibliotheksbezogenen Anwendungen : Projekte und Perspektiven (2008) 0.01
    0.0071760663 = product of:
      0.03588033 = sum of:
        0.03588033 = weight(_text_:index in 4031) [ClassicSimilarity], result of:
          0.03588033 = score(doc=4031,freq=2.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.1931181 = fieldWeight in 4031, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.03125 = fieldNorm(doc=4031)
      0.2 = coord(1/5)
    
    Object
    IC Index
  3. Tavakolizadeh-Ravari, M.: Analysis of the long term dynamics in thesaurus developments and its consequences (2017) 0.01
    0.0071760663 = product of:
      0.03588033 = sum of:
        0.03588033 = weight(_text_:index in 3081) [ClassicSimilarity], result of:
          0.03588033 = score(doc=3081,freq=2.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.1931181 = fieldWeight in 3081, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.03125 = fieldNorm(doc=3081)
      0.2 = coord(1/5)
    
    Abstract
    Die Arbeit analysiert die dynamische Entwicklung und den Gebrauch von Thesaurusbegriffen. Zusätzlich konzentriert sie sich auf die Faktoren, die die Zahl von Indexbegriffen pro Dokument oder Zeitschrift beeinflussen. Als Untersuchungsobjekt dienten der MeSH und die entsprechende Datenbank "MEDLINE". Die wichtigsten Konsequenzen sind: 1. Der MeSH-Thesaurus hat sich durch drei unterschiedliche Phasen jeweils logarithmisch entwickelt. Solch einen Thesaurus sollte folgenden Gleichung folgen: "T = 3.076,6 Ln (d) - 22.695 + 0,0039d" (T = Begriffe, Ln = natürlicher Logarithmus und d = Dokumente). Um solch einen Thesaurus zu konstruieren, muss man demnach etwa 1.600 Dokumente von unterschiedlichen Themen des Bereiches des Thesaurus haben. Die dynamische Entwicklung von Thesauri wie MeSH erfordert die Einführung eines neuen Begriffs pro Indexierung von 256 neuen Dokumenten. 2. Die Verteilung der Thesaurusbegriffe erbrachte drei Kategorien: starke, normale und selten verwendete Headings. Die letzte Gruppe ist in einer Testphase, während in der ersten und zweiten Kategorie die neu hinzukommenden Deskriptoren zu einem Thesauruswachstum führen. 3. Es gibt ein logarithmisches Verhältnis zwischen der Zahl von Index-Begriffen pro Aufsatz und dessen Seitenzahl für die Artikeln zwischen einer und einundzwanzig Seiten. 4. Zeitschriftenaufsätze, die in MEDLINE mit Abstracts erscheinen erhalten fast zwei Deskriptoren mehr. 5. Die Findablity der nicht-englisch sprachigen Dokumente in MEDLINE ist geringer als die englische Dokumente. 6. Aufsätze der Zeitschriften mit einem Impact Factor 0 bis fünfzehn erhalten nicht mehr Indexbegriffe als die der anderen von MEDINE erfassten Zeitschriften. 7. In einem Indexierungssystem haben unterschiedliche Zeitschriften mehr oder weniger Gewicht in ihrem Findability. Die Verteilung der Indexbegriffe pro Seite hat gezeigt, dass es bei MEDLINE drei Kategorien der Publikationen gibt. Außerdem gibt es wenige stark bevorzugten Zeitschriften."
  4. Scherer, B.: Automatische Indexierung und ihre Anwendung im DFG-Projekt "Gemeinsames Portal für Bibliotheken, Archive und Museen (BAM)" (2003) 0.01
    0.0065901205 = product of:
      0.032950602 = sum of:
        0.032950602 = weight(_text_:system in 4283) [ClassicSimilarity], result of:
          0.032950602 = score(doc=4283,freq=4.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.24605882 = fieldWeight in 4283, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4283)
      0.2 = coord(1/5)
    
    Abstract
    Automatische Indexierung verzeichnet schon seit einigen Jahren aufgrund steigender Informationsflut ein wachsendes Interesse. Allerdings gibt es immer noch Vorbehalte gegenüber der intellektuellen Indexierung in Bezug auf Qualität und größerem Aufwand der Systemimplementierung bzw. -pflege. Neuere Entwicklungen aus dem Bereich des Wissensmanagements, wie beispielsweise Verfahren aus der Künstlichen Intelligenz, der Informationsextraktion, dem Text Mining bzw. der automatischen Klassifikation sollen die automatische Indexierung aufwerten und verbessern. Damit soll eine intelligentere und mehr inhaltsbasierte Erschließung geleistet werden. In dieser Masterarbeit wird außerhalb der Darstellung von Grundlagen und Verfahren der automatischen Indexierung sowie neueren Entwicklungen auch Möglichkeiten der Evaluation dargestellt. Die mögliche Anwendung der automatischen Indexierung im DFG-ProjektGemeinsames Portal für Bibliotheken, Archive und Museen (BAM)" bilden den Schwerpunkt der Arbeit. Im Portal steht die bibliothekarische Erschließung von Texten im Vordergrund. In einem umfangreichen Test werden drei deutsche, linguistische Systeme mit statistischen Verfahren kombiniert (die aber teilweise im System bereits integriert ist) und evaluiert, allerdings nur auf der Basis der ausgegebenen Indexate. Abschließend kann festgestellt werden, dass die Ergebnisse und damit die Qualität (bezogen auf die Indexate) von intellektueller und automatischer Indexierung noch signifikant unterschiedlich sind. Die Gründe liegen in noch zu lösenden semantischen Problemen bzw, in der Obereinstimmung mit Worten aus einem Thesaurus, die von einem automatischen Indexierungssystem nicht immer nachvollzogen werden kann. Eine Inhaltsanreicherung mit den Indexaten zum Vorteil beim Retrieval kann, je nach System oder auch über die Einbindung durch einen Thesaurus, erreicht werden.
  5. Weiner, U.: Vor uns die Dokumentenflut oder Automatische Indexierung als notwendige und sinnvolle Ergänzung zur intellektuellen Sacherschließung (2012) 0.00
    0.0046599186 = product of:
      0.023299592 = sum of:
        0.023299592 = weight(_text_:system in 598) [ClassicSimilarity], result of:
          0.023299592 = score(doc=598,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.17398985 = fieldWeight in 598, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=598)
      0.2 = coord(1/5)
    
    Abstract
    Vor dem Hintergrund veränderter Ansprüche der Bibliotheksbenutzer an Recherchemöglichkeiten - weg vom klassischen Online-Katalog hin zum "One-Stop-Shop" mit Funktionalitäten wie thematisches Browsing, Relevanzranking und dergleichen mehr - einerseits und der notwendigen Bearbeitung von Massendaten (Stichwort Dokumentenflut) andererseits rücken Systeme zur automatischen Indexierung wieder verstärkt in den Mittelpunkt des Interesses. Da in Österreich die Beschäftigung mit diesem Thema im Bibliotheksbereich bislang nur sehr selektiv, bezogen auf wenige konkrete Projekte, erfolgte, wird zuerst ein allgemeiner theoretischer Überblick über die unterschiedlichen Verfahrensansätze der automatischen Indexierung geboten. Im nächsten Schritt werden mit der IDX-basierten Indexierungssoftware MILOS (mit den Teilprojekten MILOS I, MILOS II und KASCADE) und dem modularen System intelligentCAPTURE (mit der integrierten Indexierungssoftware AUTINDEX) die bis vor wenigen Jahren im deutschsprachigen Raum einzigen im Praxiseinsatz befindlichen automatischen Indexierungssysteme vorgestellt. Mit zunehmender Notwendigkeit, neue Wege der inhaltlichen Erschließung zu beschreiten, wurden in den vergangenen 5 - 6 Jahren zahlreiche Softwareentwicklungen auf ihre Einsatzmöglichkeit im Bibliotheksbereich hin getestet. Stellvertretend für diese in Entwicklung befindlichen Systeme zur automatischen inhaltlichen Erschließung wird das Projekt PETRUS, welches in den Jahren 2009 - 2011 an der DNB durchgeführt wurde und die Komponenten PICA Match&Merge sowie die Extraction Platform der Firma Averbis beinhaltet, vorgestellt.
  6. Bredack, J.: Automatische Extraktion fachterminologischer Mehrwortbegriffe : ein Verfahrensvergleich (2016) 0.00
    0.0046599186 = product of:
      0.023299592 = sum of:
        0.023299592 = weight(_text_:system in 3194) [ClassicSimilarity], result of:
          0.023299592 = score(doc=3194,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.17398985 = fieldWeight in 3194, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3194)
      0.2 = coord(1/5)
    
    Abstract
    Als Extraktionssysteme wurden der TreeTagger und die Indexierungssoftware Lingo verwendet. Der TreeTagger basiert auf einem statistischen Tagging- und Chunking- Algorithmus, mit dessen Hilfe NPs automatisch identifiziert und extrahiert werden. Er kann für verschiedene Anwendungsszenarien der natürlichen Sprachverarbeitung eingesetzt werden, in erster Linie als POS-Tagger für unterschiedliche Sprachen. Das Indexierungssystem Lingo arbeitet im Gegensatz zum TreeTagger mit elektronischen Wörterbüchern und einem musterbasierten Abgleich. Lingo ist ein auf automatische Indexierung ausgerichtetes System, was eine Vielzahl von Modulen mitliefert, die individuell auf eine bestimmte Aufgabenstellung angepasst und aufeinander abgestimmt werden können. Die unterschiedlichen Verarbeitungsweisen haben sich in den Ergebnismengen beider Systeme deutlich gezeigt. Die gering ausfallenden Übereinstimmungen der Ergebnismengen verdeutlichen die abweichende Funktionsweise und konnte mit einer qualitativen Analyse beispielhaft beschrieben werden. In der vorliegenden Arbeit kann abschließend nicht geklärt werden, welches der beiden Systeme bevorzugt für die Generierung von Indextermen eingesetzt werden sollte.
  7. Glaesener, L.: Automatisches Indexieren einer informationswissenschaftlichen Datenbank mit Mehrwortgruppen (2012) 0.00
    0.0030723398 = product of:
      0.015361699 = sum of:
        0.015361699 = product of:
          0.046085097 = sum of:
            0.046085097 = weight(_text_:22 in 401) [ClassicSimilarity], result of:
              0.046085097 = score(doc=401,freq=2.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.30952093 = fieldWeight in 401, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=401)
          0.33333334 = coord(1/3)
      0.2 = coord(1/5)
    
    Date
    11. 9.2012 19:43:22
  8. Lorenz, S.: Konzeption und prototypische Realisierung einer begriffsbasierten Texterschließung (2006) 0.00
    0.0023042548 = product of:
      0.011521274 = sum of:
        0.011521274 = product of:
          0.03456382 = sum of:
            0.03456382 = weight(_text_:22 in 1746) [ClassicSimilarity], result of:
              0.03456382 = score(doc=1746,freq=2.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.23214069 = fieldWeight in 1746, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1746)
          0.33333334 = coord(1/3)
      0.2 = coord(1/5)
    
    Date
    22. 3.2015 9:17:30