Search (72 results, page 4 of 4)

  • × theme_ss:"Konzeption und Anwendung des Prinzips Thesaurus"
  1. Ma, X.; Carranza, E.J.M.; Wu, C.; Meer, F.D. van der; Liu, G.: ¬A SKOS-based multilingual thesaurus of geological time scale for interoperability of online geological maps (2011) 0.01
    0.008669936 = product of:
      0.017339872 = sum of:
        0.017339872 = product of:
          0.034679744 = sum of:
            0.034679744 = weight(_text_:web in 4800) [ClassicSimilarity], result of:
              0.034679744 = score(doc=4800,freq=4.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.2039694 = fieldWeight in 4800, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4800)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The usefulness of online geological maps is hindered by linguistic barriers. Multilingual geoscience thesauri alleviate linguistic barriers of geological maps. However, the benefits of multilingual geoscience thesauri for online geological maps are less studied. In this regard, we developed a multilingual thesaurus of geological time scale (GTS) to alleviate linguistic barriers of GTS records among online geological maps. We extended the Simple Knowledge Organization System (SKOS) model to represent the ordinal hierarchical structure of GTS terms. We collected GTS terms in seven languages and encoded them into a thesaurus by using the extended SKOS model. We implemented methods of characteristic-oriented term retrieval in JavaScript programs for accessing Web Map Services (WMS), recognizing GTS terms, and making translations. With the developed thesaurus and programs, we set up a pilot system to test recognitions and translations of GTS terms in online geological maps. Results of this pilot system proved the accuracy of the developed thesaurus and the functionality of the developed programs. Therefore, with proper deployments, SKOS-based multilingual geoscience thesauri can be functional for alleviating linguistic barriers among online geological maps and, thus, improving their interoperability.
    Content
    Article Outline 1. Introduction 2. SKOS-based multilingual thesaurus of geological time scale 2.1. Addressing the insufficiency of SKOS in the context of the Semantic Web 2.2. Addressing semantics and syntax/lexicon in multilingual GTS terms 2.3. Extending SKOS model to capture GTS structure 2.4. Summary of building the SKOS-based MLTGTS 3. Recognizing and translating GTS terms retrieved from WMS 4. Pilot system, results, and evaluation 5. Discussion 6. Conclusions Vgl. unter: http://www.sciencedirect.com/science?_ob=MiamiImageURL&_cid=271720&_user=3865853&_pii=S0098300411000744&_check=y&_origin=&_coverDate=31-Oct-2011&view=c&wchp=dGLbVlt-zSkzS&_valck=1&md5=e2c1daf53df72d034d22278212578f42&ie=/sdarticle.pdf.
  2. Dalmau, M.; Floyd, R.; Jiao, D.; Riley, J.: Integrating thesaurus relationships into search and browse in an online photograph collection (2005) 0.01
    0.007663213 = product of:
      0.015326426 = sum of:
        0.015326426 = product of:
          0.030652853 = sum of:
            0.030652853 = weight(_text_:web in 2583) [ClassicSimilarity], result of:
              0.030652853 = score(doc=2583,freq=2.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.18028519 = fieldWeight in 2583, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2583)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - Seeks to share with digital library practitioners the development process of an online image collection that integrates the syndetic structure of a controlled vocabulary to improve end-user search and browse functionality. Design/methodology/approach - Surveys controlled vocabulary structures and their utility for catalogers and end-users. Reviews research literature and usability findings that informed the specifications for integration of the controlled vocabulary structure into search and browse functionality. Discusses database functions facilitating query expansion using a controlled vocabulary structure, and web application handling of user queries and results display. Concludes with a discussion of open-source alternatives and reuse of database and application components in other environments. Findings - Affirms that structured forms of browse and search can be successfully integrated into digital collections to significantly improve the user's discovery experience. Establishes ways in which the technologies used in implementing enhanced search and browse functionality can be abstracted to work in other digital collection environments. Originality/value - Significant amounts of research on integrating thesauri structures into search and browse functionalities exist, but examples of online resources that have implemented this approach are few in comparison. The online image collection surveyed in this paper can serve as a model to other designers of digital library resources for integrating controlled vocabularies and metadata structures into more dynamic search and browse functionality for end-users.
  3. Kless, D.; Milton, S.; Kazmierczak, E.; Lindenthal, J.: Thesaurus and ontology structure : formal and pragmatic differences and similarities (2015) 0.01
    0.007663213 = product of:
      0.015326426 = sum of:
        0.015326426 = product of:
          0.030652853 = sum of:
            0.030652853 = weight(_text_:web in 2036) [ClassicSimilarity], result of:
              0.030652853 = score(doc=2036,freq=2.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.18028519 = fieldWeight in 2036, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2036)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Thesauri and other types of controlled vocabularies are increasingly re-engineered into ontologies described using the Web Ontology Language (OWL), particularly in the life sciences. This has led to the perception by some that thesauri are ontologies once they are described by using the syntax of OWL while others have emphasized the need to re-engineer a vocabulary to use it as ontology. This confusion is rooted in different perceptions of what ontologies are and how they differ from other types of vocabularies. In this article, we rigorously examine the structural differences and similarities between thesauri and meaning-defining ontologies described in OWL. Specifically, we conduct (a) a conceptual comparison of thesauri and ontologies, and (b) a comparison of a specific thesaurus and a specific ontology in the same subject field. Our results show that thesauri and ontologies need to be treated as 2 orthogonal kinds of models with superficially similar structures. An ontology is not a good thesaurus, nor is a thesaurus a good ontology. A thesaurus requires significant structural and other content changes to become an ontology, and vice versa.
  4. Dextre Clarke, S.G.: Origins and trajectory of the long thesaurus debate (2016) 0.01
    0.007663213 = product of:
      0.015326426 = sum of:
        0.015326426 = product of:
          0.030652853 = sum of:
            0.030652853 = weight(_text_:web in 2913) [ClassicSimilarity], result of:
              0.030652853 = score(doc=2913,freq=2.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.18028519 = fieldWeight in 2913, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2913)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The information retrieval thesaurus emerged in the 1950s, settled down to a more-or-less standard format in the 1970s and has continued to evolve marginally since then. Throughout its whole lifetime, doubts have been expressed about its efficacy with emphasis latterly on cost-effectiveness. Prolonged testing of different styles of index language in the 1970s failed to settle the doubts. The arena occupied by the debate has moved from small isolated databases in the post-war era to diverse situations nowadays with the whole Internet at one extreme and small in-house collections at the other. Sophisticated statistical techniques now dominate the retrieval landscape on the Internet but leave opportunities for the thesaurus and other knowledge organization techniques in niches such as image libraries and corporate intranets. The promise of an ontology-driven semantic web with linked data resources opens another opportunity. Thus much scope remains for research to establish the usefulness of the thesaurus in these places and to inspire its continuing evolution.
  5. García-Marco, F.-J.: Enhancing the visibility and relevance of thesauri in the Web : searching for a hub in the linked data environment (2016) 0.01
    0.007663213 = product of:
      0.015326426 = sum of:
        0.015326426 = product of:
          0.030652853 = sum of:
            0.030652853 = weight(_text_:web in 2916) [ClassicSimilarity], result of:
              0.030652853 = score(doc=2916,freq=2.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.18028519 = fieldWeight in 2916, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2916)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  6. Schulz, T.: Konzeption und prototypische Entwicklung eines Thesaurus für IT-Konzepte an Hochschulen (2021) 0.01
    0.007663213 = product of:
      0.015326426 = sum of:
        0.015326426 = product of:
          0.030652853 = sum of:
            0.030652853 = weight(_text_:web in 429) [ClassicSimilarity], result of:
              0.030652853 = score(doc=429,freq=2.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.18028519 = fieldWeight in 429, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=429)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Theme
    Semantic Web
  7. Chen, S.S.-J.: Methodological considerations for developing Art & Architecture Thesaurus in Chinese and its applications (2021) 0.01
    0.007663213 = product of:
      0.015326426 = sum of:
        0.015326426 = product of:
          0.030652853 = sum of:
            0.030652853 = weight(_text_:web in 579) [ClassicSimilarity], result of:
              0.030652853 = score(doc=579,freq=2.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.18028519 = fieldWeight in 579, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=579)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A multilingual thesaurus' development needs the appropriate methodological considerations not only for linguistics, but also cultural heterogeneity, as demonstrated in this report on the multilingual project of the Art & Architecture Thesaurus (AAT) in the Chinese language, which has been a collaboration between the Academia Sinica Center for Digital Culture and the Getty Research Institute for more than a decade. After a brief overview of the project, the paper will introduce a holistic methodology for considering how to enable Western art to be accessible to Chinese users and Chinese art accessible to Western users. The conceptual and structural issues will be discussed, especially the challenges of developing terminology in two different cultures. For instance, some terms shared by Western and Chinese cultures could be understood differently in each culture, which raises questions regarding their locations within the hierarchical structure of the AAT. Finally, the report will provide cases to demonstrate how the Chinese-Language AAT language supports online exhibitions, digital humanities and linking of digital art history content to the web of data.
  8. Burkart, M.: Thesaurus (2004) 0.01
    0.007058638 = product of:
      0.014117276 = sum of:
        0.014117276 = product of:
          0.028234553 = sum of:
            0.028234553 = weight(_text_:22 in 2913) [ClassicSimilarity], result of:
              0.028234553 = score(doc=2913,freq=2.0), product of:
                0.18244034 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052098576 = queryNorm
                0.15476047 = fieldWeight in 2913, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2913)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    5. 4.2013 10:18:22
  9. Mooers, C.N.: ¬The indexing language of an information retrieval system (1985) 0.01
    0.0061763083 = product of:
      0.0123526165 = sum of:
        0.0123526165 = product of:
          0.024705233 = sum of:
            0.024705233 = weight(_text_:22 in 3644) [ClassicSimilarity], result of:
              0.024705233 = score(doc=3644,freq=2.0), product of:
                0.18244034 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052098576 = queryNorm
                0.1354154 = fieldWeight in 3644, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=3644)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Original in: Information retrieval today: papers presented at an Institute conducted by the Library School and the Center for Continuation Study, University of Minnesota, Sept. 19-22, 1962. Ed. by Wesley Simonton. Minneapolis, Minn.: The Center, 1963. S.21-36.
  10. Hill, L.: New Protocols for Gazetteer and Thesaurus Services (2002) 0.01
    0.0061305705 = product of:
      0.012261141 = sum of:
        0.012261141 = product of:
          0.024522282 = sum of:
            0.024522282 = weight(_text_:web in 1206) [ClassicSimilarity], result of:
              0.024522282 = score(doc=1206,freq=2.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.14422815 = fieldWeight in 1206, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1206)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Alexandria Digital Library Project announces the online publication of two protocols to support querying and response interactions using distributed services: one for gazetteers and one for thesauri. These protocols have been developed for our own purposes and also to support the general interoperability of gazetteers and thesauri on the web. See <http://www.alexandria.ucsb.edu/~gjanee/gazetteer/> and <http://www.alexandria.ucsb.edu/~gjanee/thesaurus/>. For the gazetteer protocol, we have provided a page of test forms that can be used to experiment with the operational functions of the protocol in accessing two gazetteers: the ADL Gazetteer and the ESRI Gazetteer (ESRI has participated in the development of the gazetteer protocol). We are in the process of developing a thesaurus server and a simple client to demonstrate the use of the thesaurus protocol. We are soliciting comments on both protocols. Please remember that we are seeking protocols that are essentially "simple" and easy to implement and that support basic operations - they should not duplicate all of the functions of specialized gazetteer and thesaurus interfaces. We continue to discuss ways of handling various issues and to further develop the protocols. For the thesaurus protocol, outstanding issues include the treatment of multilingual thesauri and the degree to which the language attribute should be supported; whether the Scope Note element should be changed to a repeatable Note element; the best way to handle the hierarchical report for multi-hierarchies where portions of the hierarchy are repeated; and whether support for searching by term identifiers is redundant and unnecessary given that the terms themselves are unique within a thesaurus. For the gazetteer protocol, we continue to work on validation of query and report XML documents and on implementing the part of the protocol designed to support the submission of new entries to a gazetteer. We would like to encourage open discussion of these protocols through the NKOS discussion list (see the NKOS webpage at <http://nkos.slis.kent.edu/>) and the CGGR-L discussion list that focuses on gazetteer development (see ADL Gazetteer Development page at <http://www.alexandria.ucsb.edu/gazetteer>).
  11. Yoon, J.W.: Towards a user-oriented thesaurus for non-domain-specific image collections (2009) 0.01
    0.0061305705 = product of:
      0.012261141 = sum of:
        0.012261141 = product of:
          0.024522282 = sum of:
            0.024522282 = weight(_text_:web in 4221) [ClassicSimilarity], result of:
              0.024522282 = score(doc=4221,freq=2.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.14422815 = fieldWeight in 4221, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4221)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This study explored how user-supplied tags can be applied to designing a thesaurus that reflects the unique features of image documents. Tags from the popular image-sharing Web site Flickr were examined in terms of two central components of a thesaurus-selected concepts and their semantic relations-as well as the features of image documents. Shatford's facet category and Rosch et al.'s basic-level theory were adopted for examining concepts to be included in a thesaurus. The results suggested that the best approach to Color and Generic category descriptors is to focus on basic-level terms and to include frequently used superordinate- and subordinate-level terms. In the Abstract category, it was difficult to specify a set of abstract terms that can be used consistently and dominantly, so it was suggested to enhance browsability using hierarchical and associative relations. Study results also indicate a need for greater inclusion of Specific category terms, which were shown to be an important tool in establishing related tags. Regarding semantic relations, the study indicated that in the identification of related terms, it is important that descriptors not be limited only to the category in which a main entry belongs but broadened to include terms from other categories as well. Although future studies are needed to ensure the effectiveness of this user-oriented approach, this study yielded promising results, demonstrating that user-supplied tags can be a helpful tool in selecting concepts to be included in a thesaurus and in identifying semantic relations among the selected concepts. It is hoped that the results of this study will provide a practical guideline for designing a thesaurus for image documents that takes into account both the unique features of these documents and the unique information-seeking behaviors of general users.
  12. Broughton, V.: Essential thesaurus construction (2006) 0.00
    0.0030652853 = product of:
      0.0061305705 = sum of:
        0.0061305705 = product of:
          0.012261141 = sum of:
            0.012261141 = weight(_text_:web in 2924) [ClassicSimilarity], result of:
              0.012261141 = score(doc=2924,freq=2.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.07211407 = fieldWeight in 2924, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.015625 = fieldNorm(doc=2924)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Rez. in: Mitt. VÖB 60(2007) H.1, S.98-101 (O. Oberhauser): "Die Autorin von Essential thesaurus construction (and essential taxonomy construction, so der implizite Untertitel, vgl. S. 1) ist durch ihre Lehrtätigkeit an der bekannten School of Library, Archive and Information Studies des University College London und durch ihre bisherigen Publikationen auf den Gebieten (Facetten-)Klassifikation und Thesaurus fachlich einschlägig ausgewiesen. Nach Essential classification liegt nun ihr Thesaurus-Lehrbuch vor, mit rund 200 Seiten Text und knapp 100 Seiten Anhang ein handliches Werk, das seine Genese zum Grossteil dem Lehrbetrieb verdankt, wie auch dem kurzen Einleitungskapitel zu entnehmen ist. Das Buch ist der Schule von Jean Aitchison et al. verpflichtet und wendet sich an "the indexer" im weitesten Sinn, d.h. an alle Personen, die ein strukturiertes, kontrolliertes Fachvokabular für die Zwecke der sachlichen Erschliessung und Suche erstellen wollen bzw. müssen. Es möchte dieser Zielgruppe das nötige methodische Rüstzeug für eine solche Aufgabe vermitteln, was einschliesslich der Einleitung und der Schlussbemerkungen in zwanzig Kapiteln geschieht - eine ansprechende Strukturierung, die ein wohldosiertes Durcharbeiten möglich macht. Zu letzterem tragen auch die von der Autorin immer wieder gestellten Übungsaufgaben bei (Lösungen jeweils am Kapitelende). Zu Beginn der Darstellung wird der "information retrieval thesaurus" von dem (zumindest im angelsächsischen Raum) weit öfter mit dem Thesaurusbegriff assoziierten "reference thesaurus" abgegrenzt, einem nach begrifflicher Ähnlichkeit angeordneten Synonymenwörterbuch, das gerne als Mittel zur stilistischen Verbesserung beim Abfassen von (wissenschaftlichen) Arbeiten verwendet wird. Ohne noch ins Detail zu gehen, werden optische Erscheinungsform und Anwendungsgebiete von Thesauren vorgestellt, der Thesaurus als postkoordinierte Indexierungssprache erläutert und seine Nähe zu facettierten Klassifikationssystemen erwähnt. In der Folge stellt Broughton die systematisch organisierten Systeme (Klassifikation/ Taxonomie, Begriffs-/Themendiagramme, Ontologien) den alphabetisch angeordneten, wortbasierten (Schlagwortlisten, thesaurusartige Schlagwortsysteme und Thesauren im eigentlichen Sinn) gegenüber, was dem Leser weitere Einordnungshilfen schafft. Die Anwendungsmöglichkeiten von Thesauren als Mittel der Erschliessung (auch als Quelle für Metadatenangaben bei elektronischen bzw. Web-Dokumenten) und der Recherche (Suchformulierung, Anfrageerweiterung, Browsing und Navigieren) kommen ebenso zur Sprache wie die bei der Verwendung natürlichsprachiger Indexierungssysteme auftretenden Probleme. Mit Beispielen wird ausdrücklich auf die mehr oder weniger starke fachliche Spezialisierung der meisten dieser Vokabularien hingewiesen, wobei auch Informationsquellen über Thesauren (z.B. www.taxonomywarehouse.com) sowie Thesauren für nicht-textuelle Ressourcen kurz angerissen werden.

Authors

Years

Languages

  • e 50
  • d 15
  • f 4
  • pt 1
  • sp 1
  • More… Less…

Types

  • a 57
  • el 14
  • m 5
  • x 2
  • n 1
  • s 1
  • More… Less…