Search (150 results, page 1 of 8)

  • × theme_ss:"Semantic Web"
  • × year_i:[2010 TO 2020}
  1. Eckert, K.: SKOS: eine Sprache für die Übertragung von Thesauri ins Semantic Web (2011) 0.08
    0.08306804 = product of:
      0.16613609 = sum of:
        0.16613609 = sum of:
          0.10966698 = weight(_text_:web in 4331) [ClassicSimilarity], result of:
            0.10966698 = score(doc=4331,freq=10.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.6450079 = fieldWeight in 4331, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0625 = fieldNorm(doc=4331)
          0.056469105 = weight(_text_:22 in 4331) [ClassicSimilarity], result of:
            0.056469105 = score(doc=4331,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.30952093 = fieldWeight in 4331, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=4331)
      0.5 = coord(1/2)
    
    Abstract
    Das Semantic Web - bzw. Linked Data - hat das Potenzial, die Verfügbarkeit von Daten und Wissen, sowie den Zugriff darauf zu revolutionieren. Einen großen Beitrag dazu können Wissensorganisationssysteme wie Thesauri leisten, die die Daten inhaltlich erschließen und strukturieren. Leider sind immer noch viele dieser Systeme lediglich in Buchform oder in speziellen Anwendungen verfügbar. Wie also lassen sie sich für das Semantic Web nutzen? Das Simple Knowledge Organization System (SKOS) bietet eine Möglichkeit, die Wissensorganisationssysteme in eine Form zu "übersetzen", die im Web zitiert und mit anderen Resourcen verknüpft werden kann.
    Date
    15. 3.2011 19:21:22
    Theme
    Semantic Web
  2. Papadakis, I. et al.: Highlighting timely information in libraries through social and semantic Web technologies (2016) 0.08
    0.078642875 = product of:
      0.15728575 = sum of:
        0.15728575 = sum of:
          0.08669936 = weight(_text_:web in 2090) [ClassicSimilarity], result of:
            0.08669936 = score(doc=2090,freq=4.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.5099235 = fieldWeight in 2090, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.078125 = fieldNorm(doc=2090)
          0.07058638 = weight(_text_:22 in 2090) [ClassicSimilarity], result of:
            0.07058638 = score(doc=2090,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.38690117 = fieldWeight in 2090, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.078125 = fieldNorm(doc=2090)
      0.5 = coord(1/2)
    
    Source
    Metadata and semantics research: 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings. Eds.: E. Garoufallou
    Theme
    Semantic Web
  3. Hollink, L.; Assem, M. van: Estimating the relevance of search results in the Culture-Web : a study of semantic distance measures (2010) 0.08
    0.07635105 = product of:
      0.1527021 = sum of:
        0.1527021 = sum of:
          0.110350266 = weight(_text_:web in 4649) [ClassicSimilarity], result of:
            0.110350266 = score(doc=4649,freq=18.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.64902663 = fieldWeight in 4649, product of:
                4.2426405 = tf(freq=18.0), with freq of:
                  18.0 = termFreq=18.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.046875 = fieldNorm(doc=4649)
          0.042351827 = weight(_text_:22 in 4649) [ClassicSimilarity], result of:
            0.042351827 = score(doc=4649,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.23214069 = fieldWeight in 4649, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=4649)
      0.5 = coord(1/2)
    
    Abstract
    More and more cultural heritage institutions publish their collections, vocabularies and metadata on the Web. The resulting Web of linked cultural data opens up exciting new possibilities for searching and browsing through these cultural heritage collections. We report on ongoing work in which we investigate the estimation of relevance in this Web of Culture. We study existing measures of semantic distance and how they apply to two use cases. The use cases relate to the structured, multilingual and multimodal nature of the Culture Web. We distinguish between measures using the Web, such as Google distance and PMI, and measures using the Linked Data Web, i.e. the semantic structure of metadata vocabularies. We perform a small study in which we compare these semantic distance measures to human judgements of relevance. Although it is too early to draw any definitive conclusions, the study provides new insights into the applicability of semantic distance measures to the Web of Culture, and clear starting points for further research.
    Date
    26.12.2011 13:40:22
    Theme
    Semantic Web
  4. Keyser, P. de: Indexing : from thesauri to the Semantic Web (2012) 0.07
    0.06622623 = product of:
      0.13245246 = sum of:
        0.13245246 = sum of:
          0.09010062 = weight(_text_:web in 3197) [ClassicSimilarity], result of:
            0.09010062 = score(doc=3197,freq=12.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.5299281 = fieldWeight in 3197, product of:
                3.4641016 = tf(freq=12.0), with freq of:
                  12.0 = termFreq=12.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.046875 = fieldNorm(doc=3197)
          0.042351827 = weight(_text_:22 in 3197) [ClassicSimilarity], result of:
            0.042351827 = score(doc=3197,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.23214069 = fieldWeight in 3197, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=3197)
      0.5 = coord(1/2)
    
    Abstract
    Indexing consists of both novel and more traditional techniques. Cutting-edge indexing techniques, such as automatic indexing, ontologies, and topic maps, were developed independently of older techniques such as thesauri, but it is now recognized that these older methods also hold expertise. Indexing describes various traditional and novel indexing techniques, giving information professionals and students of library and information sciences a broad and comprehensible introduction to indexing. This title consists of twelve chapters: an Introduction to subject readings and theasauri; Automatic indexing versus manual indexing; Techniques applied in automatic indexing of text material; Automatic indexing of images; The black art of indexing moving images; Automatic indexing of music; Taxonomies and ontologies; Metadata formats and indexing; Tagging; Topic maps; Indexing the web; and The Semantic Web.
    Date
    24. 8.2016 14:03:22
    RSWK
    Semantic Web
    Subject
    Semantic Web
    Theme
    Semantic Web
  5. Firnkes, M.: Schöne neue Welt : der Content der Zukunft wird von Algorithmen bestimmt (2015) 0.05
    0.053031296 = product of:
      0.10606259 = sum of:
        0.10606259 = sum of:
          0.063710764 = weight(_text_:web in 2118) [ClassicSimilarity], result of:
            0.063710764 = score(doc=2118,freq=6.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.37471575 = fieldWeight in 2118, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.046875 = fieldNorm(doc=2118)
          0.042351827 = weight(_text_:22 in 2118) [ClassicSimilarity], result of:
            0.042351827 = score(doc=2118,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.23214069 = fieldWeight in 2118, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2118)
      0.5 = coord(1/2)
    
    Abstract
    Während das Internet vor noch nicht allzu langer Zeit hauptsächlich ein weiteres Informationsmedium darstellte, so explodieren die technischen Möglichkeiten derzeit förmlich. Diese stärken nicht nur den gegenseitigen Austausch der Nutzer. Sie alle vermessen unsere täglichen Gewohnheiten - auf sehr vielfältige Art und Weise. Die Mechanismen, die das gekaufte Web ausmachen, werden hierdurch komplexer. In den meisten neuen Technologien und Anwendungen verbergen sich Wege, die Verbraucherverführung zu perfektionieren. Nicht wenige davon dürften zudem für die Politik und andere Interessensverbände von Bedeutung sein, als alternativer Kanal, um Wählergruppen und Unterstützer zu mobilisieren. Das nachfolgende Kapitel nennt die wichtigsten Trends der nächsten Jahre, mitsamt ihren möglichen manipulativen Auswirkungen. Nur wenn wir beobachten, von wem die Zukunftstechniken wie genutzt werden, können wir kommerziellen Auswüchsen vorbeugen.
    Content
    Mit Verweis auf das Buch: Firnkes, M.: Das gekaufte Web: wie wir online manipuliert werden. Hannover : Heise Zeitschriften Verlag 2015. 220 S.
    Date
    5. 7.2015 22:02:31
    Theme
    Semantic Web
  6. Brunetti, J.M.; Roberto García, R.: User-centered design and evaluation of overview components for semantic data exploration (2014) 0.05
    0.04879702 = product of:
      0.09759404 = sum of:
        0.09759404 = sum of:
          0.06935949 = weight(_text_:web in 1626) [ClassicSimilarity], result of:
            0.06935949 = score(doc=1626,freq=16.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.4079388 = fieldWeight in 1626, product of:
                4.0 = tf(freq=16.0), with freq of:
                  16.0 = termFreq=16.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.03125 = fieldNorm(doc=1626)
          0.028234553 = weight(_text_:22 in 1626) [ClassicSimilarity], result of:
            0.028234553 = score(doc=1626,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.15476047 = fieldWeight in 1626, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=1626)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - The growing volumes of semantic data available in the web result in the need for handling the information overload phenomenon. The potential of this amount of data is enormous but in most cases it is very difficult for users to visualize, explore and use this data, especially for lay-users without experience with Semantic Web technologies. The paper aims to discuss these issues. Design/methodology/approach - The Visual Information-Seeking Mantra "Overview first, zoom and filter, then details-on-demand" proposed by Shneiderman describes how data should be presented in different stages to achieve an effective exploration. The overview is the first user task when dealing with a data set. The objective is that the user is capable of getting an idea about the overall structure of the data set. Different information architecture (IA) components supporting the overview tasks have been developed, so they are automatically generated from semantic data, and evaluated with end-users. Findings - The chosen IA components are well known to web users, as they are present in most web pages: navigation bars, site maps and site indexes. The authors complement them with Treemaps, a visualization technique for displaying hierarchical data. These components have been developed following an iterative User-Centered Design methodology. Evaluations with end-users have shown that they get easily used to them despite the fact that they are generated automatically from structured data, without requiring knowledge about the underlying semantic technologies, and that the different overview components complement each other as they focus on different information search needs. Originality/value - Obtaining semantic data sets overviews cannot be easily done with the current semantic web browsers. Overviews become difficult to achieve with large heterogeneous data sets, which is typical in the Semantic Web, because traditional IA techniques do not easily scale to large data sets. There is little or no support to obtain overview information quickly and easily at the beginning of the exploration of a new data set. This can be a serious limitation when exploring a data set for the first time, especially for lay-users. The proposal is to reuse and adapt existing IA components to provide this overview to users and show that they can be generated automatically from the thesaurus and ontologies that structure semantic data while providing a comparable user experience to traditional web sites.
    Date
    20. 1.2015 18:30:22
    Theme
    Semantic Web
  7. Metadata and semantics research : 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings (2016) 0.05
    0.046162233 = product of:
      0.092324466 = sum of:
        0.092324466 = sum of:
          0.042913996 = weight(_text_:web in 3283) [ClassicSimilarity], result of:
            0.042913996 = score(doc=3283,freq=2.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.25239927 = fieldWeight in 3283, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0546875 = fieldNorm(doc=3283)
          0.049410466 = weight(_text_:22 in 3283) [ClassicSimilarity], result of:
            0.049410466 = score(doc=3283,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.2708308 = fieldWeight in 3283, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=3283)
      0.5 = coord(1/2)
    
    Theme
    Semantic Web
  8. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.04
    0.044192746 = product of:
      0.08838549 = sum of:
        0.08838549 = sum of:
          0.053092297 = weight(_text_:web in 4553) [ClassicSimilarity], result of:
            0.053092297 = score(doc=4553,freq=6.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.3122631 = fieldWeight in 4553, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4553)
          0.03529319 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
            0.03529319 = score(doc=4553,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.19345059 = fieldWeight in 4553, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4553)
      0.5 = coord(1/2)
    
    Abstract
    Semantic Web knowledge representation standards, and in particular RDF and OWL, often come endowed with a formal semantics which is considered to be of fundamental importance for the field. Reasoning, i.e., the drawing of logical inferences from knowledge expressed in such standards, is traditionally based on logical deductive methods and algorithms which can be proven to be sound and complete and terminating, i.e. correct in a very strong sense. For various reasons, though, in particular the scalability issues arising from the ever increasing amounts of Semantic Web data available and the inability of deductive algorithms to deal with noise in the data, it has been argued that alternative means of reasoning should be investigated which bear high promise for high scalability and better robustness. From this perspective, deductive algorithms can be considered the gold standard regarding correctness against which alternative methods need to be tested. In this paper, we show that it is possible to train a Deep Learning system on RDF knowledge graphs, such that it is able to perform reasoning over new RDF knowledge graphs, with high precision and recall compared to the deductive gold standard.
    Date
    16.11.2018 14:22:01
    Theme
    Semantic Web
  9. Hooland, S. van; Verborgh, R.; Wilde, M. De; Hercher, J.; Mannens, E.; Wa, R.Van de: Evaluating the success of vocabulary reconciliation for cultural heritage collections (2013) 0.04
    0.039567623 = product of:
      0.07913525 = sum of:
        0.07913525 = sum of:
          0.03678342 = weight(_text_:web in 662) [ClassicSimilarity], result of:
            0.03678342 = score(doc=662,freq=2.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.21634221 = fieldWeight in 662, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.046875 = fieldNorm(doc=662)
          0.042351827 = weight(_text_:22 in 662) [ClassicSimilarity], result of:
            0.042351827 = score(doc=662,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.23214069 = fieldWeight in 662, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=662)
      0.5 = coord(1/2)
    
    Date
    22. 3.2013 19:29:20
    Theme
    Semantic Web
  10. Prud'hommeaux, E.; Gayo, E.: RDF ventures to boldly meet your most pedestrian needs (2015) 0.04
    0.039567623 = product of:
      0.07913525 = sum of:
        0.07913525 = sum of:
          0.03678342 = weight(_text_:web in 2024) [ClassicSimilarity], result of:
            0.03678342 = score(doc=2024,freq=2.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.21634221 = fieldWeight in 2024, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.046875 = fieldNorm(doc=2024)
          0.042351827 = weight(_text_:22 in 2024) [ClassicSimilarity], result of:
            0.042351827 = score(doc=2024,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.23214069 = fieldWeight in 2024, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2024)
      0.5 = coord(1/2)
    
    Source
    Bulletin of the Association for Information Science and Technology. 41(2015) no.4, S.18-22
    Theme
    Semantic Web
  11. ¬The Semantic Web - ISWC 2010 : 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Selected Papers, Part 2. (2010) 0.04
    0.035117254 = product of:
      0.07023451 = sum of:
        0.07023451 = product of:
          0.14046901 = sum of:
            0.14046901 = weight(_text_:web in 4706) [ClassicSimilarity], result of:
              0.14046901 = score(doc=4706,freq=42.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.8261705 = fieldWeight in 4706, product of:
                  6.4807405 = tf(freq=42.0), with freq of:
                    42.0 = termFreq=42.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4706)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The two-volume set LNCS 6496 and 6497 constitutes the refereed proceedings of the 9th International Semantic Web Conference, ISWC 2010, held in Shanghai, China, during November 7-11, 2010. Part I contains 51 papers out of 578 submissions to the research track. Part II contains 18 papers out of 66 submissions to the semantic Web in-use track, 6 papers out of 26 submissions to the doctoral consortium track, and also 4 invited talks. Each submitted paper were carefully reviewed. The International Semantic Web Conferences (ISWC) constitute the major international venue where the latest research results and technical innovations on all aspects of the Semantic Web are presented. ISWC brings together researchers, practitioners, and users from the areas of artificial intelligence, databases, social networks, distributed computing, Web engineering, information systems, natural language processing, soft computing, and human computer interaction to discuss the major challenges and proposed solutions, the success stories and failures, as well the visions that can advance research and drive innovation in the Semantic Web.
    RSWK
    Semantic Web / Kongress / Schanghai <2010>
    Semantic Web / Ontologie <Wissensverarbeitung> / Kongress / Schanghai <2010>
    Semantic Web / Datenverwaltung / Wissensmanagement / Kongress / Schanghai <2010>
    Semantic Web / Anwendungssystem / Kongress / Schanghai <2010>
    Semantic Web / World Wide Web 2.0 / Kongress / Schanghai <2010>
    Subject
    Semantic Web / Kongress / Schanghai <2010>
    Semantic Web / Ontologie <Wissensverarbeitung> / Kongress / Schanghai <2010>
    Semantic Web / Datenverwaltung / Wissensmanagement / Kongress / Schanghai <2010>
    Semantic Web / Anwendungssystem / Kongress / Schanghai <2010>
    Semantic Web / World Wide Web 2.0 / Kongress / Schanghai <2010>
    Theme
    Semantic Web
  12. Aslam, S.; Sonkar, S.K.: Semantic Web : an overview (2019) 0.03
    0.034679744 = product of:
      0.06935949 = sum of:
        0.06935949 = product of:
          0.13871898 = sum of:
            0.13871898 = weight(_text_:web in 54) [ClassicSimilarity], result of:
              0.13871898 = score(doc=54,freq=16.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.8158776 = fieldWeight in 54, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0625 = fieldNorm(doc=54)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper presents the semantic web, web writing content, web technology, goals of semantic and obligation for the expansion of web 3.0. This paper also shows the different components of semantic web and such as HTTP, HTML, XML, XML Schema, URI, RDF, Taxonomy and OWL. To provide valuable information services semantic web execute the benefits of library functions and also to be the best use of library collection are mention here.
    Theme
    Semantic Web
  13. Metadata and semantics research : 7th Research Conference, MTSR 2013 Thessaloniki, Greece, November 19-22, 2013. Proceedings (2013) 0.03
    0.032641627 = product of:
      0.065283254 = sum of:
        0.065283254 = sum of:
          0.030344777 = weight(_text_:web in 1155) [ClassicSimilarity], result of:
            0.030344777 = score(doc=1155,freq=4.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.17847323 = fieldWeight in 1155, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.02734375 = fieldNorm(doc=1155)
          0.034938477 = weight(_text_:22 in 1155) [ClassicSimilarity], result of:
            0.034938477 = score(doc=1155,freq=4.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.19150631 = fieldWeight in 1155, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.02734375 = fieldNorm(doc=1155)
      0.5 = coord(1/2)
    
    Abstract
    Metadata and semantics are integral to any information system and significant to the sphere of Web data. Research focusing on metadata and semantics is crucial for advancing our understanding and knowledge of metadata; and, more profoundly for being able to effectively discover, use, archive, and repurpose information. In response to this need, researchers are actively examining methods for generating, reusing, and interchanging metadata. Integrated with these developments is research on the application of computational methods, linked data, and data analytics. A growing body of work also targets conceptual and theoretical designs providing foundational frameworks for metadata and semantic applications. There is no doubt that metadata weaves its way into nearly every aspect of our information ecosystem, and there is great motivation for advancing the current state of metadata and semantics. To this end, it is vital that scholars and practitioners convene and share their work.
    Date
    17.12.2013 12:51:22
    Theme
    Semantic Web
  14. Weller, K.: Anforderungen an die Wissensrepräsentation im Social Semantic Web (2010) 0.03
    0.032185495 = product of:
      0.06437099 = sum of:
        0.06437099 = product of:
          0.12874198 = sum of:
            0.12874198 = weight(_text_:web in 4061) [ClassicSimilarity], result of:
              0.12874198 = score(doc=4061,freq=18.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.75719774 = fieldWeight in 4061, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4061)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Dieser Artikel gibt einen Einblick in die aktuelle Verschmelzung von Web 2.0-und Semantic Web-Ansätzen, die als Social Semantic Web beschrieben werden kann. Die Grundidee des Social Semantic Web wird beschrieben und einzelne erste Anwendungsbeispiele vorgestellt. Ein wesentlicher Schwerpunkt dieser Entwicklung besteht in der Umsetzung neuer Methoden und Herangehensweisen im Bereich der Wissensrepräsentation. Dieser Artikel stellt vier Schwerpunkte vor, in denen sich die Wissensrepräsentationsmethoden im Social Semantic Web weiterentwickeln müssen und geht dabei jeweils auf den aktuellen Stand ein.
    Object
    Web 2.0
    Source
    Semantic web & linked data: Elemente zukünftiger Informationsinfrastrukturen ; 1. DGI-Konferenz ; 62. Jahrestagung der DGI ; Frankfurt am Main, 7. - 9. Oktober 2010 ; Proceedings / Deutsche Gesellschaft für Informationswissenschaft und Informationspraxis. Hrsg.: M. Ockenfeld
    Theme
    Semantic Web
  15. Lukasiewicz, T.: Uncertainty reasoning for the Semantic Web (2017) 0.03
    0.032185495 = product of:
      0.06437099 = sum of:
        0.06437099 = product of:
          0.12874198 = sum of:
            0.12874198 = weight(_text_:web in 3939) [ClassicSimilarity], result of:
              0.12874198 = score(doc=3939,freq=18.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.75719774 = fieldWeight in 3939, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3939)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Semantic Web has attracted much attention, both from academia and industry. An important role in research towards the Semantic Web is played by formalisms and technologies for handling uncertainty and/or vagueness. In this paper, I first provide some motivating examples for handling uncertainty and/or vagueness in the Semantic Web. I then give an overview of some own formalisms for handling uncertainty and/or vagueness in the Semantic Web.
    Series
    Lecture Notes in Computer Scienc;10370) (Information Systems and Applications, incl. Internet/Web, and HCI
    Source
    Reasoning Web: Semantic Interoperability on the Web, 13th International Summer School 2017, London, UK, July 7-11, 2017, Tutorial Lectures. Eds.: Ianni, G. et al
    Theme
    Semantic Web
  16. Zhitomirsky-Geffet, M.; Bar-Ilan, J.: Towards maximal unification of semantically diverse ontologies for controversial domains (2014) 0.03
    0.03145715 = product of:
      0.0629143 = sum of:
        0.0629143 = sum of:
          0.034679744 = weight(_text_:web in 1634) [ClassicSimilarity], result of:
            0.034679744 = score(doc=1634,freq=4.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.2039694 = fieldWeight in 1634, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.03125 = fieldNorm(doc=1634)
          0.028234553 = weight(_text_:22 in 1634) [ClassicSimilarity], result of:
            0.028234553 = score(doc=1634,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.15476047 = fieldWeight in 1634, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=1634)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - Ontologies are prone to wide semantic variability due to subjective points of view of their composers. The purpose of this paper is to propose a new approach for maximal unification of diverse ontologies for controversial domains by their relations. Design/methodology/approach - Effective matching or unification of multiple ontologies for a specific domain is crucial for the success of many semantic web applications, such as semantic information retrieval and organization, document tagging, summarization and search. To this end, numerous automatic and semi-automatic techniques were proposed in the past decade that attempt to identify similar entities, mostly classes, in diverse ontologies for similar domains. Apparently, matching individual entities cannot result in full integration of ontologies' semantics without matching their inter-relations with all other-related classes (and instances). However, semantic matching of ontological relations still constitutes a major research challenge. Therefore, in this paper the authors propose a new paradigm for assessment of maximal possible matching and unification of ontological relations. To this end, several unification rules for ontological relations were devised based on ontological reference rules, and lexical and textual entailment. These rules were semi-automatically implemented to extend a given ontology with semantically matching relations from another ontology for a similar domain. Then, the ontologies were unified through these similar pairs of relations. The authors observe that these rules can be also facilitated to reveal the contradictory relations in different ontologies. Findings - To assess the feasibility of the approach two experiments were conducted with different sets of multiple personal ontologies on controversial domains constructed by trained subjects. The results for about 50 distinct ontology pairs demonstrate a good potential of the methodology for increasing inter-ontology agreement. Furthermore, the authors show that the presented methodology can lead to a complete unification of multiple semantically heterogeneous ontologies. Research limitations/implications - This is a conceptual study that presents a new approach for semantic unification of ontologies by a devised set of rules along with the initial experimental evidence of its feasibility and effectiveness. However, this methodology has to be fully automatically implemented and tested on a larger dataset in future research. Practical implications - This result has implication for semantic search, since a richer ontology, comprised of multiple aspects and viewpoints of the domain of knowledge, enhances discoverability and improves search results. Originality/value - To the best of the knowledge, this is the first study to examine and assess the maximal level of semantic relation-based ontology unification.
    Date
    20. 1.2015 18:30:22
    Theme
    Semantic Web
  17. Sequeda, J.F.: Integrating relational databases with the Semantic Web : a reflection (2017) 0.03
    0.030499205 = product of:
      0.06099841 = sum of:
        0.06099841 = product of:
          0.12199682 = sum of:
            0.12199682 = weight(_text_:web in 3935) [ClassicSimilarity], result of:
              0.12199682 = score(doc=3935,freq=22.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.717526 = fieldWeight in 3935, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3935)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    From the beginning it was understood that the success of the Semantic Web hinges on integrating the vast amount of data stored in Relational Databases. This manuscript reflects on the last 10 years of our research results to integrate Relational Databases with the Semantic Web. Since 2007, our research has led us to answer the following question: How and to what extent can Relational Databases be Integrated with the Semantic Web? The answer comes in two parts. We start by presenting how to get from Relational Databases to the Semantic Web via mappings, such as the W3C Direct Mapping and R2RML standards. Subsequently, we present how the Semantic Web can access Relational Databases. We finalize with how Relational Databases and Semantic Web technologies are being used practice for data integration and discuss open challenges.
    Series
    Lecture Notes in Computer Scienc;10370) (Information Systems and Applications, incl. Internet/Web, and HCI
    Source
    Reasoning Web: Semantic Interoperability on the Web, 13th International Summer School 2017, London, UK, July 7-11, 2017, Tutorial Lectures. Eds.: Ianni, G. et al
    Theme
    Semantic Web
  18. Weller, K.: Knowledge representation in the Social Semantic Web (2010) 0.03
    0.028887367 = product of:
      0.057774734 = sum of:
        0.057774734 = product of:
          0.11554947 = sum of:
            0.11554947 = weight(_text_:web in 4515) [ClassicSimilarity], result of:
              0.11554947 = score(doc=4515,freq=58.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.67960584 = fieldWeight in 4515, product of:
                  7.615773 = tf(freq=58.0), with freq of:
                    58.0 = termFreq=58.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4515)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The main purpose of this book is to sum up the vital and highly topical research issue of knowledge representation on the Web and to discuss novel solutions by combining benefits of folksonomies and Web 2.0 approaches with ontologies and semantic technologies. This book contains an overview of knowledge representation approaches in past, present and future, introduction to ontologies, Web indexing and in first case the novel approaches of developing ontologies. This title combines aspects of knowledge representation for both the Semantic Web (ontologies) and the Web 2.0 (folksonomies). Currently there is no monographic book which provides a combined overview over these topics. focus on the topic of using knowledge representation methods for document indexing purposes. For this purpose, considerations from classical librarian interests in knowledge representation (thesauri, classification schemes etc.) are included, which are not part of most other books which have a stronger background in computer science.
    Footnote
    Rez. in: iwp 62(2011) H.4, S.205-206 (C. Carstens): "Welche Arten der Wissensrepräsentation existieren im Web, wie ausgeprägt sind semantische Strukturen in diesem Kontext, und wie können soziale Aktivitäten im Sinne des Web 2.0 zur Strukturierung von Wissen im Web beitragen? Diesen Fragen widmet sich Wellers Buch mit dem Titel Knowledge Representation in the Social Semantic Web. Der Begriff Social Semantic Web spielt einerseits auf die semantische Strukturierung von Daten im Sinne des Semantic Web an und deutet andererseits auf die zunehmend kollaborative Inhaltserstellung im Social Web hin. Weller greift die Entwicklungen in diesen beiden Bereichen auf und beleuchtet die Möglichkeiten und Herausforderungen, die aus der Kombination der Aktivitäten im Semantic Web und im Social Web entstehen. Der Fokus des Buches liegt dabei primär auf den konzeptuellen Herausforderungen, die sich in diesem Kontext ergeben. So strebt die originäre Vision des Semantic Web die Annotation aller Webinhalte mit ausdrucksstarken, hochformalisierten Ontologien an. Im Social Web hingegen werden große Mengen an Daten von Nutzern erstellt, die häufig mithilfe von unkontrollierten Tags in Folksonomies annotiert werden. Weller sieht in derartigen kollaborativ erstellten Inhalten und Annotationen großes Potenzial für die semantische Indexierung, eine wichtige Voraussetzung für das Retrieval im Web. Das Hauptinteresse des Buches besteht daher darin, eine Brücke zwischen den Wissensrepräsentations-Methoden im Social Web und im Semantic Web zu schlagen. Um dieser Fragestellung nachzugehen, gliedert sich das Buch in drei Teile. . . .
    Insgesamt besticht das Buch insbesondere durch seine breite Sichtweise, die Aktualität und die Fülle an Referenzen. Es ist somit sowohl als Überblickswerk geeignet, das umfassend über aktuelle Entwicklungen und Trends der Wissensrepräsentation im Semantic und Social Web informiert, als auch als Lektüre für Experten, für die es vor allem als kontextualisierte und sehr aktuelle Sammlung von Referenzen eine wertvolle Ressource darstellt." Weitere Rez. in: Journal of Documentation. 67(2011), no.5, S.896-899 (P. Rafferty)
    LCSH
    Semantic Web
    Object
    Web 2.0
    RSWK
    Semantic Web
    World Wide Web 2.0
    Subject
    Semantic Web
    World Wide Web 2.0
    Semantic Web
    Theme
    Semantic Web
  19. Weiand, K.; Hartl, A.; Hausmann, S.; Furche, T.; Bry, F.: Keyword-based search over semantic data (2012) 0.03
    0.028673118 = product of:
      0.057346236 = sum of:
        0.057346236 = product of:
          0.11469247 = sum of:
            0.11469247 = weight(_text_:web in 432) [ClassicSimilarity], result of:
              0.11469247 = score(doc=432,freq=28.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.6745654 = fieldWeight in 432, product of:
                  5.2915025 = tf(freq=28.0), with freq of:
                    28.0 = termFreq=28.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=432)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    For a long while, the creation of Web content required at least basic knowledge of Web technologies, meaning that for many Web users, the Web was de facto a read-only medium. This changed with the arrival of the "social Web," when Web applications started to allow users to publish Web content without technological expertise. Here, content creation is often an inclusive, iterative, and interactive process. Examples of social Web applications include blogs, social networking sites, as well as many specialized applications, for example, for saving and sharing bookmarks and publishing photos. Social semantic Web applications are social Web applications in which knowledge is expressed not only in the form of text and multimedia but also through informal to formal annotations that describe, reflect, and enhance the content. These annotations often take the shape of RDF graphs backed by ontologies, but less formal annotations such as free-form tags or tags from a controlled vocabulary may also be available. Wikis are one example of social Web applications for collecting and sharing knowledge. They allow users to easily create and edit documents, so-called wiki pages, using a Web browser. The pages in a wiki are often heavily interlinked, which makes it easy to find related information and browse the content.
    Source
    Semantic search over the Web. Eds.: R. De Virgilio, et al
    Theme
    Semantic Web
  20. Padmavathi, T.; Krishnamurthy, M.: Semantic Web tools and techniques for knowledge organization : an overview (2017) 0.03
    0.02838494 = product of:
      0.05676988 = sum of:
        0.05676988 = product of:
          0.11353976 = sum of:
            0.11353976 = weight(_text_:web in 3618) [ClassicSimilarity], result of:
              0.11353976 = score(doc=3618,freq=14.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.6677857 = fieldWeight in 3618, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3618)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The enormous amount of information generated every day and spread across the web is diversified in nature far beyond human consumption. To overcome this difficulty, the transformation of current unstructured information into a structured form called a "Semantic Web" was proposed by Tim Berners-Lee in 1989 to enable computers to understand and interpret the information they store. The aim of the semantic web is the integration of heterogeneous and distributed data spread across the web for knowledge discovery. The core of sematic web technologies includes knowledge representation languages RDF and OWL, ontology editors and reasoning tools, and ontology query languages such as SPARQL have also been discussed.
    Theme
    Semantic Web

Languages

  • e 116
  • d 32
  • f 1
  • More… Less…

Types

  • a 93
  • m 38
  • el 28
  • s 14
  • x 7
  • r 2
  • More… Less…

Subjects