Search (182 results, page 1 of 10)

  • × type_ss:"el"
  • × year_i:[2010 TO 2020}
  1. Kleineberg, M.: Context analysis and context indexing : formal pragmatics in knowledge organization (2014) 0.17
    0.16856344 = sum of:
      0.13791059 = product of:
        0.41373175 = sum of:
          0.41373175 = weight(_text_:3a in 1826) [ClassicSimilarity], result of:
            0.41373175 = score(doc=1826,freq=2.0), product of:
              0.4416923 = queryWeight, product of:
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.052098576 = queryNorm
              0.93669677 = fieldWeight in 1826, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.078125 = fieldNorm(doc=1826)
        0.33333334 = coord(1/3)
      0.030652853 = product of:
        0.061305705 = sum of:
          0.061305705 = weight(_text_:web in 1826) [ClassicSimilarity], result of:
            0.061305705 = score(doc=1826,freq=2.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.36057037 = fieldWeight in 1826, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.078125 = fieldNorm(doc=1826)
        0.5 = coord(1/2)
    
    Source
    http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&ved=0CDQQFjAE&url=http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F3131107&ei=HzFWVYvGMsiNsgGTyoFI&usg=AFQjCNE2FHUeR9oQTQlNC4TPedv4Mo3DaQ&sig2=Rlzpr7a3BLZZkqZCXXN_IA&bvm=bv.93564037,d.bGg&cad=rja
  2. Hafner, R.; Schelling, B.: Automatisierung der Sacherschließung mit Semantic Web Technologie (2015) 0.09
    0.092324466 = product of:
      0.18464893 = sum of:
        0.18464893 = sum of:
          0.08582799 = weight(_text_:web in 8365) [ClassicSimilarity], result of:
            0.08582799 = score(doc=8365,freq=2.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.50479853 = fieldWeight in 8365, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.109375 = fieldNorm(doc=8365)
          0.09882093 = weight(_text_:22 in 8365) [ClassicSimilarity], result of:
            0.09882093 = score(doc=8365,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.5416616 = fieldWeight in 8365, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.109375 = fieldNorm(doc=8365)
      0.5 = coord(1/2)
    
    Date
    22. 6.2015 16:08:38
  3. Shala, E.: ¬Die Autonomie des Menschen und der Maschine : gegenwärtige Definitionen von Autonomie zwischen philosophischem Hintergrund und technologischer Umsetzbarkeit (2014) 0.08
    0.08428172 = sum of:
      0.068955295 = product of:
        0.20686588 = sum of:
          0.20686588 = weight(_text_:3a in 4388) [ClassicSimilarity], result of:
            0.20686588 = score(doc=4388,freq=2.0), product of:
              0.4416923 = queryWeight, product of:
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.052098576 = queryNorm
              0.46834838 = fieldWeight in 4388, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4388)
        0.33333334 = coord(1/3)
      0.015326426 = product of:
        0.030652853 = sum of:
          0.030652853 = weight(_text_:web in 4388) [ClassicSimilarity], result of:
            0.030652853 = score(doc=4388,freq=2.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.18028519 = fieldWeight in 4388, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4388)
        0.5 = coord(1/2)
    
    Footnote
    Vgl. unter: https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwizweHljdbcAhVS16QKHXcFD9QQFjABegQICRAB&url=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F271200105_Die_Autonomie_des_Menschen_und_der_Maschine_-_gegenwartige_Definitionen_von_Autonomie_zwischen_philosophischem_Hintergrund_und_technologischer_Umsetzbarkeit_Redigierte_Version_der_Magisterarbeit_Karls&usg=AOvVaw06orrdJmFF2xbCCp_hL26q.
  4. Eckert, K.: SKOS: eine Sprache für die Übertragung von Thesauri ins Semantic Web (2011) 0.08
    0.08306804 = product of:
      0.16613609 = sum of:
        0.16613609 = sum of:
          0.10966698 = weight(_text_:web in 4331) [ClassicSimilarity], result of:
            0.10966698 = score(doc=4331,freq=10.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.6450079 = fieldWeight in 4331, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0625 = fieldNorm(doc=4331)
          0.056469105 = weight(_text_:22 in 4331) [ClassicSimilarity], result of:
            0.056469105 = score(doc=4331,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.30952093 = fieldWeight in 4331, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=4331)
      0.5 = coord(1/2)
    
    Abstract
    Das Semantic Web - bzw. Linked Data - hat das Potenzial, die Verfügbarkeit von Daten und Wissen, sowie den Zugriff darauf zu revolutionieren. Einen großen Beitrag dazu können Wissensorganisationssysteme wie Thesauri leisten, die die Daten inhaltlich erschließen und strukturieren. Leider sind immer noch viele dieser Systeme lediglich in Buchform oder in speziellen Anwendungen verfügbar. Wie also lassen sie sich für das Semantic Web nutzen? Das Simple Knowledge Organization System (SKOS) bietet eine Möglichkeit, die Wissensorganisationssysteme in eine Form zu "übersetzen", die im Web zitiert und mit anderen Resourcen verknüpft werden kann.
    Date
    15. 3.2011 19:21:22
    Theme
    Semantic Web
  5. Hollink, L.; Assem, M. van: Estimating the relevance of search results in the Culture-Web : a study of semantic distance measures (2010) 0.08
    0.07635105 = product of:
      0.1527021 = sum of:
        0.1527021 = sum of:
          0.110350266 = weight(_text_:web in 4649) [ClassicSimilarity], result of:
            0.110350266 = score(doc=4649,freq=18.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.64902663 = fieldWeight in 4649, product of:
                4.2426405 = tf(freq=18.0), with freq of:
                  18.0 = termFreq=18.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.046875 = fieldNorm(doc=4649)
          0.042351827 = weight(_text_:22 in 4649) [ClassicSimilarity], result of:
            0.042351827 = score(doc=4649,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.23214069 = fieldWeight in 4649, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=4649)
      0.5 = coord(1/2)
    
    Abstract
    More and more cultural heritage institutions publish their collections, vocabularies and metadata on the Web. The resulting Web of linked cultural data opens up exciting new possibilities for searching and browsing through these cultural heritage collections. We report on ongoing work in which we investigate the estimation of relevance in this Web of Culture. We study existing measures of semantic distance and how they apply to two use cases. The use cases relate to the structured, multilingual and multimodal nature of the Culture Web. We distinguish between measures using the Web, such as Google distance and PMI, and measures using the Linked Data Web, i.e. the semantic structure of metadata vocabularies. We perform a small study in which we compare these semantic distance measures to human judgements of relevance. Although it is too early to draw any definitive conclusions, the study provides new insights into the applicability of semantic distance measures to the Web of Culture, and clear starting points for further research.
    Date
    26.12.2011 13:40:22
    Theme
    Semantic Web
  6. Hartmann, S.; Haffner, A.: Linked-RDA-Data in der Praxis (2010) 0.06
    0.0629143 = product of:
      0.1258286 = sum of:
        0.1258286 = sum of:
          0.06935949 = weight(_text_:web in 1679) [ClassicSimilarity], result of:
            0.06935949 = score(doc=1679,freq=4.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.4079388 = fieldWeight in 1679, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0625 = fieldNorm(doc=1679)
          0.056469105 = weight(_text_:22 in 1679) [ClassicSimilarity], result of:
            0.056469105 = score(doc=1679,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.30952093 = fieldWeight in 1679, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=1679)
      0.5 = coord(1/2)
    
    Abstract
    Durch den neuen Erschließungsstandard "Resource Description and Access" (RDA) lassen sich bibliografische Daten sowie Normdaten Semantic-Web-konform repräsentieren. Der Vortrag soll aufzeigen, welche Auswirkungen RDA auf die Katalogisierung in Bibliotheken und den Zugang zu den erschlossenen Ressourcen im Semantic Web hat. Anhand erster Erfahrungen aus praktischen Umsetzungen wird erläutert, wie bibliografische Daten durch RDA und Linked-Data-Technologien besser zugänglich gemacht und vor allem nachgenutzt werden können.
    Date
    13. 2.2011 20:22:23
  7. Firnkes, M.: Schöne neue Welt : der Content der Zukunft wird von Algorithmen bestimmt (2015) 0.05
    0.053031296 = product of:
      0.10606259 = sum of:
        0.10606259 = sum of:
          0.063710764 = weight(_text_:web in 2118) [ClassicSimilarity], result of:
            0.063710764 = score(doc=2118,freq=6.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.37471575 = fieldWeight in 2118, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.046875 = fieldNorm(doc=2118)
          0.042351827 = weight(_text_:22 in 2118) [ClassicSimilarity], result of:
            0.042351827 = score(doc=2118,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.23214069 = fieldWeight in 2118, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2118)
      0.5 = coord(1/2)
    
    Abstract
    Während das Internet vor noch nicht allzu langer Zeit hauptsächlich ein weiteres Informationsmedium darstellte, so explodieren die technischen Möglichkeiten derzeit förmlich. Diese stärken nicht nur den gegenseitigen Austausch der Nutzer. Sie alle vermessen unsere täglichen Gewohnheiten - auf sehr vielfältige Art und Weise. Die Mechanismen, die das gekaufte Web ausmachen, werden hierdurch komplexer. In den meisten neuen Technologien und Anwendungen verbergen sich Wege, die Verbraucherverführung zu perfektionieren. Nicht wenige davon dürften zudem für die Politik und andere Interessensverbände von Bedeutung sein, als alternativer Kanal, um Wählergruppen und Unterstützer zu mobilisieren. Das nachfolgende Kapitel nennt die wichtigsten Trends der nächsten Jahre, mitsamt ihren möglichen manipulativen Auswirkungen. Nur wenn wir beobachten, von wem die Zukunftstechniken wie genutzt werden, können wir kommerziellen Auswüchsen vorbeugen.
    Content
    Mit Verweis auf das Buch: Firnkes, M.: Das gekaufte Web: wie wir online manipuliert werden. Hannover : Heise Zeitschriften Verlag 2015. 220 S.
    Date
    5. 7.2015 22:02:31
    Theme
    Semantic Web
  8. Mitchell, J.S.; Zeng, M.L.; Zumer, M.: Modeling classification systems in multicultural and multilingual contexts (2012) 0.05
    0.048338976 = product of:
      0.09667795 = sum of:
        0.09667795 = sum of:
          0.03678342 = weight(_text_:web in 1967) [ClassicSimilarity], result of:
            0.03678342 = score(doc=1967,freq=2.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.21634221 = fieldWeight in 1967, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.046875 = fieldNorm(doc=1967)
          0.059894532 = weight(_text_:22 in 1967) [ClassicSimilarity], result of:
            0.059894532 = score(doc=1967,freq=4.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.32829654 = fieldWeight in 1967, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=1967)
      0.5 = coord(1/2)
    
    Abstract
    This paper reports on the second part of an initiative of the authors on researching classification systems with the conceptual model defined by the Functional Requirements for Subject Authority Data (FRSAD) final report. In an earlier study, the authors explored whether the FRSAD conceptual model could be extended beyond subject authority data to model classification data. The focus of the current study is to determine if classification data modeled using FRSAD can be used to solve real-world discovery problems in multicultural and multilingual contexts. The paper discusses the relationships between entities (same type or different types) in the context of classification systems that involve multiple translations and /or multicultural implementations. Results of two case studies are presented in detail: (a) two instances of the DDC (DDC 22 in English, and the Swedish-English mixed translation of DDC 22), and (b) Chinese Library Classification. The use cases of conceptual models in practice are also discussed.
    Source
    Beyond libraries - subject metadata in the digital environment and semantic web. IFLA Satellite Post-Conference, 17-18 August 2012, Tallinn
  9. Open Knowledge Foundation: Prinzipien zu offenen bibliographischen Daten (2011) 0.05
    0.046630893 = product of:
      0.093261786 = sum of:
        0.093261786 = sum of:
          0.04334968 = weight(_text_:web in 4399) [ClassicSimilarity], result of:
            0.04334968 = score(doc=4399,freq=4.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.25496176 = fieldWeight in 4399, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4399)
          0.049912106 = weight(_text_:22 in 4399) [ClassicSimilarity], result of:
            0.049912106 = score(doc=4399,freq=4.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.27358043 = fieldWeight in 4399, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4399)
      0.5 = coord(1/2)
    
    Content
    "Bibliographische Daten Um den Geltungsbereich der Prinzipien festzulegen, wird in diesem ersten Teil der zugrundeliegende Begriff bibliographischer Daten erläutert. Kerndaten Bibliographische Daten bestehen aus bibliographischen Beschreibungen. Eine bibliographische Beschreibung beschreibt eine bibliographische Ressource (Artikel, Monographie etc. - ob gedruckt oder elektronisch) zum Zwecke 1. der Identifikation der beschriebenen Ressource, d.h. des Zeigens auf eine bestimmte Ressource in der Gesamtheit aller bibliographischer Ressourcen und 2. der Lokalisierung der beschriebenen Ressource, d.h. eines Hinweises, wo die beschriebene Ressource aufzufinden ist. Traditionellerweise erfüllte eine Beschreibung beide Zwecke gleichzeitig, indem sie Information lieferte über: Autor(en) und Herausgeber, Titel, Verlag, Veröffentlichungsdatum und -ort, Identifizierung des übergeordneten Werks (z.B. einer Zeitschrift), Seitenangaben. Im Web findet Identifikation statt mittels Uniform Resource Identifiers (URIs) wie z.B. URNs oder DOIs. Lokalisierung wird ermöglicht durch HTTP-URIs, die auch als Uniform Resource Locators (URLs) bezeichnet werden. Alle URIs für bibliographische Ressourcen fallen folglich unter den engen Begriff bibliographischer Daten. Sekundäre Daten Eine bibliographische Beschreibung kann andere Informationen enthalten, die unter den Begriff bibliographischer Daten fallen, beispielsweise Nicht-Web-Identifikatoren (ISBN, LCCN, OCLC etc.), Angaben zum Urheberrechtsstatus, administrative Daten und mehr; diese Daten können von Bibliotheken, Verlagen, Wissenschaftlern, Online-Communities für Buchliebhaber, sozialen Literaturverwaltungssystemen und Anderen produziert sein. Darüber hinaus produzieren Bibliotheken und verwandte Institutionen kontrollierte Vokabulare zum Zwecke der bibliographischen Beschreibung wie z. B. Personen- und Schlagwortnormdateien, Klassifikationen etc., die ebenfalls unter den Begriff bibliographischer Daten fallen."
    Date
    22. 3.2011 18:22:29
  10. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.04
    0.044192746 = product of:
      0.08838549 = sum of:
        0.08838549 = sum of:
          0.053092297 = weight(_text_:web in 4553) [ClassicSimilarity], result of:
            0.053092297 = score(doc=4553,freq=6.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.3122631 = fieldWeight in 4553, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4553)
          0.03529319 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
            0.03529319 = score(doc=4553,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.19345059 = fieldWeight in 4553, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4553)
      0.5 = coord(1/2)
    
    Abstract
    Semantic Web knowledge representation standards, and in particular RDF and OWL, often come endowed with a formal semantics which is considered to be of fundamental importance for the field. Reasoning, i.e., the drawing of logical inferences from knowledge expressed in such standards, is traditionally based on logical deductive methods and algorithms which can be proven to be sound and complete and terminating, i.e. correct in a very strong sense. For various reasons, though, in particular the scalability issues arising from the ever increasing amounts of Semantic Web data available and the inability of deductive algorithms to deal with noise in the data, it has been argued that alternative means of reasoning should be investigated which bear high promise for high scalability and better robustness. From this perspective, deductive algorithms can be considered the gold standard regarding correctness against which alternative methods need to be tested. In this paper, we show that it is possible to train a Deep Learning system on RDF knowledge graphs, such that it is able to perform reasoning over new RDF knowledge graphs, with high precision and recall compared to the deductive gold standard.
    Date
    16.11.2018 14:22:01
    Theme
    Semantic Web
  11. Roy, W.; Gray, C.: Preparing existing metadata for repository batch import : a recipe for a fickle food (2018) 0.04
    0.039321437 = product of:
      0.078642875 = sum of:
        0.078642875 = sum of:
          0.04334968 = weight(_text_:web in 4550) [ClassicSimilarity], result of:
            0.04334968 = score(doc=4550,freq=4.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.25496176 = fieldWeight in 4550, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4550)
          0.03529319 = weight(_text_:22 in 4550) [ClassicSimilarity], result of:
            0.03529319 = score(doc=4550,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.19345059 = fieldWeight in 4550, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4550)
      0.5 = coord(1/2)
    
    Abstract
    In 2016, the University of Waterloo began offering a mediated copyright review and deposit service to support the growth of our institutional repository UWSpace. This resulted in the need to batch import large lists of published works into the institutional repository quickly and accurately. A range of methods have been proposed for harvesting publications metadata en masse, but many technological solutions can easily become detached from a workflow that is both reproducible for support staff and applicable to a range of situations. Many repositories offer the capacity for batch upload via CSV, so our method provides a template Python script that leverages the Habanero library for populating CSV files with existing metadata retrieved from the CrossRef API. In our case, we have combined this with useful metadata contained in a TSV file downloaded from Web of Science in order to enrich our metadata as well. The appeal of this 'low-maintenance' method is that it provides more robust options for gathering metadata semi-automatically, and only requires the user's ability to access Web of Science and the Python program, while still remaining flexible enough for local customizations.
    Date
    10.11.2018 16:27:22
  12. Aslam, S.; Sonkar, S.K.: Semantic Web : an overview (2019) 0.03
    0.034679744 = product of:
      0.06935949 = sum of:
        0.06935949 = product of:
          0.13871898 = sum of:
            0.13871898 = weight(_text_:web in 54) [ClassicSimilarity], result of:
              0.13871898 = score(doc=54,freq=16.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.8158776 = fieldWeight in 54, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0625 = fieldNorm(doc=54)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper presents the semantic web, web writing content, web technology, goals of semantic and obligation for the expansion of web 3.0. This paper also shows the different components of semantic web and such as HTTP, HTML, XML, XML Schema, URI, RDF, Taxonomy and OWL. To provide valuable information services semantic web execute the benefits of library functions and also to be the best use of library collection are mention here.
    Theme
    Semantic Web
  13. Bünte, O.: Bundesdatenschutzbeauftragte bezweifelt Facebooks Datenschutzversprechen (2018) 0.03
    0.03297302 = product of:
      0.06594604 = sum of:
        0.06594604 = sum of:
          0.030652853 = weight(_text_:web in 4180) [ClassicSimilarity], result of:
            0.030652853 = score(doc=4180,freq=2.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.18028519 = fieldWeight in 4180, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4180)
          0.03529319 = weight(_text_:22 in 4180) [ClassicSimilarity], result of:
            0.03529319 = score(doc=4180,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.19345059 = fieldWeight in 4180, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4180)
      0.5 = coord(1/2)
    
    Date
    23. 3.2018 13:41:22
    Footnote
    Vgl. zum Hintergrund auch: https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election; https://www.nytimes.com/2018/03/18/us/cambridge-analytica-facebook-privacy-data.html; http://www.latimes.com/business/la-fi-tn-facebook-cambridge-analytica-sued-20180321-story.html; https://www.tagesschau.de/wirtschaft/facebook-cambridge-analytica-103.html; http://www.spiegel.de/netzwelt/web/cambridge-analytica-der-eigentliche-skandal-liegt-im-system-facebook-kolumne-a-1199122.html; http://www.spiegel.de/netzwelt/netzpolitik/cambridge-analytica-facebook-sieht-sich-im-datenskandal-als-opfer-a-1199095.html; https://www.heise.de/newsticker/meldung/Datenskandal-um-Cambridge-Analytica-Facebook-sieht-sich-als-Opfer-3999922.html.
  14. Hogan, A.; Harth, A.; Umbrich, J.; Kinsella, S.; Polleres, A.; Decker, S.: Searching and browsing Linked Data with SWSE : the Semantic Web Search Engine (2011) 0.03
    0.026546149 = product of:
      0.053092297 = sum of:
        0.053092297 = product of:
          0.106184594 = sum of:
            0.106184594 = weight(_text_:web in 438) [ClassicSimilarity], result of:
              0.106184594 = score(doc=438,freq=24.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.6245262 = fieldWeight in 438, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=438)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this paper, we discuss the architecture and implementation of the Semantic Web Search Engine (SWSE). Following traditional search engine architecture, SWSE consists of crawling, data enhancing, indexing and a user interface for search, browsing and retrieval of information; unlike traditional search engines, SWSE operates over RDF Web data - loosely also known as Linked Data - which implies unique challenges for the system design, architecture, algorithms, implementation and user interface. In particular, many challenges exist in adopting Semantic Web technologies for Web data: the unique challenges of the Web - in terms of scale, unreliability, inconsistency and noise - are largely overlooked by the current Semantic Web standards. Herein, we describe the current SWSE system, initially detailing the architecture and later elaborating upon the function, design, implementation and performance of each individual component. In so doing, we also give an insight into how current Semantic Web standards can be tailored, in a best-effort manner, for use on Web data. Throughout, we offer evaluation and complementary argumentation to support our design choices, and also offer discussion on future directions and open research questions. Later, we also provide candid discussion relating to the difficulties currently faced in bringing such a search engine into the mainstream, and lessons learnt from roughly six years working on the Semantic Web Search Engine project.
    Object
    Semantic Web Search Engine
    Theme
    Semantic Web
  15. Somers, J.: Torching the modern-day library of Alexandria : somewhere at Google there is a database containing 25 million books and nobody is allowed to read them. (2017) 0.03
    0.026378417 = product of:
      0.052756835 = sum of:
        0.052756835 = sum of:
          0.024522282 = weight(_text_:web in 3608) [ClassicSimilarity], result of:
            0.024522282 = score(doc=3608,freq=2.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.14422815 = fieldWeight in 3608, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.03125 = fieldNorm(doc=3608)
          0.028234553 = weight(_text_:22 in 3608) [ClassicSimilarity], result of:
            0.028234553 = score(doc=3608,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.15476047 = fieldWeight in 3608, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=3608)
      0.5 = coord(1/2)
    
    Abstract
    You were going to get one-click access to the full text of nearly every book that's ever been published. Books still in print you'd have to pay for, but everything else-a collection slated to grow larger than the holdings at the Library of Congress, Harvard, the University of Michigan, at any of the great national libraries of Europe-would have been available for free at terminals that were going to be placed in every local library that wanted one. At the terminal you were going to be able to search tens of millions of books and read every page of any book you found. You'd be able to highlight passages and make annotations and share them; for the first time, you'd be able to pinpoint an idea somewhere inside the vastness of the printed record, and send somebody straight to it with a link. Books would become as instantly available, searchable, copy-pasteable-as alive in the digital world-as web pages. It was to be the realization of a long-held dream. "The universal library has been talked about for millennia," Richard Ovenden, the head of Oxford's Bodleian Libraries, has said. "It was possible to think in the Renaissance that you might be able to amass the whole of published knowledge in a single room or a single institution." In the spring of 2011, it seemed we'd amassed it in a terminal small enough to fit on a desk. "This is a watershed event and can serve as a catalyst for the reinvention of education, research, and intellectual life," one eager observer wrote at the time. On March 22 of that year, however, the legal agreement that would have unlocked a century's worth of books and peppered the country with access terminals to a universal library was rejected under Rule 23(e)(2) of the Federal Rules of Civil Procedure by the U.S. District Court for the Southern District of New York. When the library at Alexandria burned it was said to be an "international catastrophe." When the most significant humanities project of our time was dismantled in court, the scholars, archivists, and librarians who'd had a hand in its undoing breathed a sigh of relief, for they believed, at the time, that they had narrowly averted disaster.
  16. Wolchover, N.: Wie ein Aufsehen erregender Beweis kaum Beachtung fand (2017) 0.02
    0.024956053 = product of:
      0.049912106 = sum of:
        0.049912106 = product of:
          0.09982421 = sum of:
            0.09982421 = weight(_text_:22 in 3582) [ClassicSimilarity], result of:
              0.09982421 = score(doc=3582,freq=4.0), product of:
                0.18244034 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052098576 = queryNorm
                0.54716086 = fieldWeight in 3582, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3582)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 4.2017 10:42:05
    22. 4.2017 10:48:38
  17. Vatant, B.: Porting library vocabularies to the Semantic Web, and back : a win-win round trip (2010) 0.02
    0.02432995 = product of:
      0.0486599 = sum of:
        0.0486599 = product of:
          0.0973198 = sum of:
            0.0973198 = weight(_text_:web in 3968) [ClassicSimilarity], result of:
              0.0973198 = score(doc=3968,freq=14.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.57238775 = fieldWeight in 3968, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3968)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The role of vocabularies is critical in the long overdue synergy between the Web and Library heritage. The Semantic Web should leverage existing vocabularies instead of reinventing them, but the specific features of library vocabularies make them more or less portable to the Semantic Web. Based on preliminary results in the framework of the TELplus project, we suggest guidelines for needed evolutions in order to make vocabularies usable and efficient in the Semantic Web realm, assess choices made so far by large libraries to publish vocabularies conformant to standards and good practices, and review how Semantic Web tools can help managing those vocabularies.
    Theme
    Semantic Web
  18. Auer, S.; Lehmann, J.: Making the Web a data washing machine : creating knowledge out of interlinked data (2010) 0.02
    0.024233207 = product of:
      0.048466414 = sum of:
        0.048466414 = product of:
          0.09693283 = sum of:
            0.09693283 = weight(_text_:web in 112) [ClassicSimilarity], result of:
              0.09693283 = score(doc=112,freq=20.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.5701118 = fieldWeight in 112, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=112)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Over the past 3 years, the semantic web activity has gained momentum with the widespread publishing of structured data as RDF. The Linked Data paradigm has therefore evolved from a practical research idea into a very promising candidate for addressing one of the biggest challenges in the area of the Semantic Web vision: the exploitation of the Web as a platform for data and information integration. To translate this initial success into a world-scale reality, a number of research challenges need to be addressed: the performance gap between relational and RDF data management has to be closed, coherence and quality of data published on theWeb have to be improved, provenance and trust on the Linked Data Web must be established and generally the entrance barrier for data publishers and users has to be lowered. In this vision statement we discuss these challenges and argue, that research approaches tackling these challenges should be integrated into a mutual refinement cycle. We also present two crucial use-cases for the widespread adoption of linked data.
    Content
    Vgl.: http://www.semantic-web-journal.net/content/new-submission-making-web-data-washing-machine-creating-knowledge-out-interlinked-data http://www.semantic-web-journal.net/sites/default/files/swj24_0.pdf.
    Source
    Semantic Web journal. 0(2010), no.1
    Theme
    Semantic Web
  19. Gómez-Pérez, A.; Corcho, O.: Ontology languages for the Semantic Web (2015) 0.02
    0.024233207 = product of:
      0.048466414 = sum of:
        0.048466414 = product of:
          0.09693283 = sum of:
            0.09693283 = weight(_text_:web in 3297) [ClassicSimilarity], result of:
              0.09693283 = score(doc=3297,freq=20.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.5701118 = fieldWeight in 3297, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3297)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Ontologies have proven to be an essential element in many applications. They are used in agent systems, knowledge management systems, and e-commerce platforms. They can also generate natural language, integrate intelligent information, provide semantic-based access to the Internet, and extract information from texts in addition to being used in many other applications to explicitly declare the knowledge embedded in them. However, not only are ontologies useful for applications in which knowledge plays a key role, but they can also trigger a major change in current Web contents. This change is leading to the third generation of the Web-known as the Semantic Web-which has been defined as "the conceptual structuring of the Web in an explicit machine-readable way."1 This definition does not differ too much from the one used for defining an ontology: "An ontology is an explicit, machinereadable specification of a shared conceptualization."2 In fact, new ontology-based applications and knowledge architectures are developing for this new Web. A common claim for all of these approaches is the need for languages to represent the semantic information that this Web requires-solving the heterogeneous data exchange in this heterogeneous environment. Here, we don't decide which language is best of the Semantic Web. Rather, our goal is to help developers find the most suitable language for their representation needs. The authors analyze the most representative ontology languages created for the Web and compare them using a common framework.
    Theme
    Semantic Web
  20. Cahier, J.-P.; Zaher, L'H.; Isoard , G.: Document et modèle pour l'action, une méthode pour le web socio-sémantique : application à un web 2.0 en développement durable (2010) 0.02
    0.023989651 = product of:
      0.047979303 = sum of:
        0.047979303 = product of:
          0.095958605 = sum of:
            0.095958605 = weight(_text_:web in 4836) [ClassicSimilarity], result of:
              0.095958605 = score(doc=4836,freq=10.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.5643819 = fieldWeight in 4836, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4836)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We present the DOCMA method (DOCument and Model for Action) focused to Socio-Semantic web applications in large communities of interest. DOCMA is dedicated to end-users without any knowledge in Information Science. Community Members can elicit, structure and index shared business items emerging from their inquiry (such as projects, actors, products, geographically situated objects of interest.). We apply DOCMA to an experiment in the field of Sustainable Development: the Cartodd-Map21 collaborative Web portal.
    Theme
    Semantic Web

Languages

  • e 112
  • d 62
  • f 2
  • i 2
  • a 1
  • More… Less…

Types

  • a 108
  • s 7
  • r 6
  • x 4
  • m 1
  • More… Less…