Search (79 results, page 1 of 4)

  • × theme_ss:"Indexierungsstudien"
  1. Ladewig, C.; Rieger, M.: Ähnlichkeitsmessung mit und ohne aspektische Indexierung (1998) 0.06
    0.06004941 = product of:
      0.18014823 = sum of:
        0.007796719 = weight(_text_:in in 2526) [ClassicSimilarity], result of:
          0.007796719 = score(doc=2526,freq=2.0), product of:
            0.06484802 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.047673445 = queryNorm
            0.120230645 = fieldWeight in 2526, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=2526)
        0.17235151 = weight(_text_:indexierung in 2526) [ClassicSimilarity], result of:
          0.17235151 = score(doc=2526,freq=4.0), product of:
            0.25638393 = queryWeight, product of:
              5.377919 = idf(docFreq=554, maxDocs=44218)
              0.047673445 = queryNorm
            0.6722399 = fieldWeight in 2526, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.377919 = idf(docFreq=554, maxDocs=44218)
              0.0625 = fieldNorm(doc=2526)
      0.33333334 = coord(2/6)
    
    Abstract
    Für eine fiktive Dokumentmenge wird eine Dokument-Wort-Matrix erstellt und mittels zweier Suchanfragen, ebenfalls als Matrix dargestellt, die Retrievalergebnisse ermittelt. Den Wörtern der Dokumentmenge werden in einem zweiten Schritt Aspekte zugeordnet und die Untersuchung erneut durchgeführt. Ein Vergleich bestätigt die schon früher gefundenen Vorteile des aspektischen Indexierung gegenüber anderen Methoden der Retrievalverbesserung, wie Trunkierung und Controlled Terms
  2. Gretz, M.; Thomas, M.: Indexierungen in biomedizinischen Literaturdatenbanken : eine vergleichende Analyse (1991) 0.06
    0.05670116 = product of:
      0.17010348 = sum of:
        0.019295897 = weight(_text_:in in 5104) [ClassicSimilarity], result of:
          0.019295897 = score(doc=5104,freq=16.0), product of:
            0.06484802 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.047673445 = queryNorm
            0.29755569 = fieldWeight in 5104, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5104)
        0.15080757 = weight(_text_:indexierung in 5104) [ClassicSimilarity], result of:
          0.15080757 = score(doc=5104,freq=4.0), product of:
            0.25638393 = queryWeight, product of:
              5.377919 = idf(docFreq=554, maxDocs=44218)
              0.047673445 = queryNorm
            0.5882099 = fieldWeight in 5104, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.377919 = idf(docFreq=554, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5104)
      0.33333334 = coord(2/6)
    
    Abstract
    Auf der Grundlage von vier Originaldokumenten, d.h. dokumentarischen Bezugseinheiten (DBEs), wird die Indexierung in vier biomedizinischen Online-Datenbanken (MEDLINE, EMBASE, BIOSIS PREVIEWS, SCISEARCH) analysiert. Anhand von Beispielen werden inahltliche Erschließung, Indexierungstiefe, Indexierungsbreite, Indexierungskonsistenz, Präzision (durch syntaktisches Indexieren, Gewichtung, Proximity Operatoren) und Wiederauffindbarkeit (Recall) der in den Datenbanken gespeicherten Dokumentationseinheien (DBEs) untersucht. Die zeitaufwendigere intellektuelle Indexierung bei MEDLINE und EMBASE erweist sich als wesentlich präziser als die schneller verfügbare maschinelle Zuteilung von Deskriptoren in BIOSIS PREVIEWS und SCISEARCH. In Teil 1 der Untersuchung werden die Indexierungen in MEDLINE und EMBASE, in Teil 2 die Deskriptorenzuteilungen in BIOSIS PREVIEWS und SCISEARCH verglichen
  3. Cleverdon, C.W.: ¬The Cranfield tests on index language devices (1967) 0.06
    0.05661341 = product of:
      0.11322682 = sum of:
        0.01653934 = weight(_text_:in in 1957) [ClassicSimilarity], result of:
          0.01653934 = score(doc=1957,freq=4.0), product of:
            0.06484802 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.047673445 = queryNorm
            0.25504774 = fieldWeight in 1957, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.09375 = fieldNorm(doc=1957)
        0.067770086 = weight(_text_:u in 1957) [ClassicSimilarity], result of:
          0.067770086 = score(doc=1957,freq=2.0), product of:
            0.15610404 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.047673445 = queryNorm
            0.43413407 = fieldWeight in 1957, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.09375 = fieldNorm(doc=1957)
        0.028917395 = product of:
          0.05783479 = sum of:
            0.05783479 = weight(_text_:retrieval in 1957) [ClassicSimilarity], result of:
              0.05783479 = score(doc=1957,freq=2.0), product of:
                0.14420812 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047673445 = queryNorm
                0.40105087 = fieldWeight in 1957, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1957)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Footnote
    Wiederabgedruckt in: Readings in information retrieval. Ed.: K. Sparck Jones u. P. Willett. San Francisco: Morgan Kaufmann 1997. S.47-58.
  4. Evedove, P.R. Dal; Evedove Tartarotti, R.C. Dal; Lopes Fujita, M.S.: Verbal protocols in Brazilian information science : a perspective from indexing studies (2018) 0.02
    0.020257832 = product of:
      0.060773496 = sum of:
        0.015593438 = weight(_text_:in in 4783) [ClassicSimilarity], result of:
          0.015593438 = score(doc=4783,freq=8.0), product of:
            0.06484802 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.047673445 = queryNorm
            0.24046129 = fieldWeight in 4783, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=4783)
        0.045180056 = weight(_text_:u in 4783) [ClassicSimilarity], result of:
          0.045180056 = score(doc=4783,freq=2.0), product of:
            0.15610404 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.047673445 = queryNorm
            0.28942272 = fieldWeight in 4783, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.0625 = fieldNorm(doc=4783)
      0.33333334 = coord(2/6)
    
    Series
    Advances in knowledge organization; vol.16
    Source
    Challenges and opportunities for knowledge organization in the digital age: proceedings of the Fifteenth International ISKO Conference, 9-11 July 2018, Porto, Portugal / organized by: International Society for Knowledge Organization (ISKO), ISKO Spain and Portugal Chapter, University of Porto - Faculty of Arts and Humanities, Research Centre in Communication, Information and Digital Culture (CIC.digital) - Porto. Eds.: F. Ribeiro u. M.E. Cerveira
  5. Soergel, D.: Indexing and retrieval performance : the logical evidence (1994) 0.02
    0.019119738 = product of:
      0.05735921 = sum of:
        0.009647949 = weight(_text_:in in 579) [ClassicSimilarity], result of:
          0.009647949 = score(doc=579,freq=4.0), product of:
            0.06484802 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.047673445 = queryNorm
            0.14877784 = fieldWeight in 579, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=579)
        0.047711264 = product of:
          0.09542253 = sum of:
            0.09542253 = weight(_text_:retrieval in 579) [ClassicSimilarity], result of:
              0.09542253 = score(doc=579,freq=16.0), product of:
                0.14420812 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047673445 = queryNorm
                0.6617001 = fieldWeight in 579, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=579)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    This article presents a logical analysis of the characteristics of indexing and their effects on retrieval performance.It establishes the ability to ask the questions one needs to ask as the foundation of performance evaluation, and recall and discrimination as the basic quantitative performance measures for binary noninteractive retrieval systems. It then defines the characteristics of indexing that affect retrieval - namely, indexing devices, viewpoint-based and importance-based indexing exhaustivity, indexing specifity, indexing correctness, and indexing consistency - and examines in detail their effects on retrieval. It concludes that retrieval performance depends chiefly on the match between indexing and the requirements of the individual query and on the adaption of the query formulation to the characteristics of the retrieval system, and that the ensuing complexity must be considered in the design and testing of retrieval systems
  6. Biagetti, M.T.: Indexing and scientific research needs (2006) 0.02
    0.017725604 = product of:
      0.05317681 = sum of:
        0.0136442585 = weight(_text_:in in 235) [ClassicSimilarity], result of:
          0.0136442585 = score(doc=235,freq=8.0), product of:
            0.06484802 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.047673445 = queryNorm
            0.21040362 = fieldWeight in 235, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=235)
        0.03953255 = weight(_text_:u in 235) [ClassicSimilarity], result of:
          0.03953255 = score(doc=235,freq=2.0), product of:
            0.15610404 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.047673445 = queryNorm
            0.25324488 = fieldWeight in 235, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.0546875 = fieldNorm(doc=235)
      0.33333334 = coord(2/6)
    
    Abstract
    The paper examines main problems of semantic indexing taking into consideration the connection with the needs of scientific research, in particular in the field of Social Sciences. Multi-modal indexing approach, which allows researchers to find documents according to different dimensions of research, is described. Request-oriented indexing and Pragmatic approach are also discussed and, finally, the possibility of assuming as fundamental principle, in indexing, C. S. Peirce theory of Abduction, is outlined.
    Series
    Advances in knowledge organization; vol.10
    Source
    Knowledge organization for a global learning society: Proceedings of the 9th International ISKO Conference, 4-7 July 2006, Vienna, Austria. Hrsg.: G. Budin, C. Swertz u. K. Mitgutsch
  7. Cleverdon, C.W.: ASLIB Cranfield Research Project : Report on the first stage of an investigation into the comparative efficiency of indexing systems (1960) 0.02
    0.016816547 = product of:
      0.05044964 = sum of:
        0.011695079 = weight(_text_:in in 6158) [ClassicSimilarity], result of:
          0.011695079 = score(doc=6158,freq=2.0), product of:
            0.06484802 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.047673445 = queryNorm
            0.18034597 = fieldWeight in 6158, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.09375 = fieldNorm(doc=6158)
        0.03875456 = product of:
          0.07750912 = sum of:
            0.07750912 = weight(_text_:22 in 6158) [ClassicSimilarity], result of:
              0.07750912 = score(doc=6158,freq=2.0), product of:
                0.16694428 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047673445 = queryNorm
                0.46428138 = fieldWeight in 6158, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6158)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Footnote
    Rez. in: College and research libraries 22(1961) no.3, S.228 (G. Jahoda)
  8. Krovetz, R.; Croft, W.B.: Lexical ambiguity and information retrieval (1992) 0.02
    0.01633057 = product of:
      0.04899171 = sum of:
        0.015254747 = weight(_text_:in in 4028) [ClassicSimilarity], result of:
          0.015254747 = score(doc=4028,freq=10.0), product of:
            0.06484802 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.047673445 = queryNorm
            0.23523843 = fieldWeight in 4028, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4028)
        0.033736963 = product of:
          0.067473926 = sum of:
            0.067473926 = weight(_text_:retrieval in 4028) [ClassicSimilarity], result of:
              0.067473926 = score(doc=4028,freq=8.0), product of:
                0.14420812 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047673445 = queryNorm
                0.46789268 = fieldWeight in 4028, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4028)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Reports on an analysis of lexical ambiguity in information retrieval text collections and on experiments to determine the utility of word meanings for separating relevant from nonrelevant documents. Results show that there is considerable ambiguity even in a specialised database. Word senses provide a significant separation between relevant and nonrelevant documents, but several factors contribute to determining whether disambiguation will make an improvement in performance such as: resolving lexical ambiguity was found to have little impact on retrieval effectiveness for documents that have many words in common with the query. Discusses other uses of word sense disambiguation in an information retrieval context
  9. Rodriguez Bravo, B.: ¬The visibility of women in indexing languages (2006) 0.02
    0.016069511 = product of:
      0.04820853 = sum of:
        0.014323489 = weight(_text_:in in 263) [ClassicSimilarity], result of:
          0.014323489 = score(doc=263,freq=12.0), product of:
            0.06484802 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.047673445 = queryNorm
            0.22087781 = fieldWeight in 263, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=263)
        0.033885043 = weight(_text_:u in 263) [ClassicSimilarity], result of:
          0.033885043 = score(doc=263,freq=2.0), product of:
            0.15610404 = queryWeight, product of:
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.047673445 = queryNorm
            0.21706703 = fieldWeight in 263, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2744443 = idf(docFreq=4547, maxDocs=44218)
              0.046875 = fieldNorm(doc=263)
      0.33333334 = coord(2/6)
    
    Abstract
    This article analyses how gender matters are handled in indexing languages. The examples chosen were the Library of Congress Subject Headings (LCSH), the UNESCO Thesaurus (UT) and the European Women's Thesaurus (EWT). The study is based on an analysis of the entries Man/Men and Woman/Women, their subdivisions and established relationship appearing under these entries. Other headings or descriptors are also listed when they allude to men or women but the gender sense occupies only second or third place in the entry, in the shape of an adjective or a second noun. A lack of symmetry, in the treatment of gender is noted, with recommendations being made for equal status for men and women, which should, however, avoid unnecessary enumerations.
    Series
    Advances in knowledge organization; vol.10
    Source
    Knowledge organization for a global learning society: Proceedings of the 9th International ISKO Conference, 4-7 July 2006, Vienna, Austria. Hrsg.: G. Budin, C. Swertz u. K. Mitgutsch
  10. Boyce, B.R.; McLain, J.P.: Entry point depth and online search using a controlled vocabulary (1989) 0.02
    0.015309269 = product of:
      0.045927804 = sum of:
        0.016710738 = weight(_text_:in in 2287) [ClassicSimilarity], result of:
          0.016710738 = score(doc=2287,freq=12.0), product of:
            0.06484802 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.047673445 = queryNorm
            0.2576908 = fieldWeight in 2287, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2287)
        0.029217066 = product of:
          0.058434132 = sum of:
            0.058434132 = weight(_text_:retrieval in 2287) [ClassicSimilarity], result of:
              0.058434132 = score(doc=2287,freq=6.0), product of:
                0.14420812 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047673445 = queryNorm
                0.40520695 = fieldWeight in 2287, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2287)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    The depth of indexing, the number of terms assigned on average to each document in a retrieval system as entry points, has a significantly effect on the standard retrieval performance measures in modern commercial retrieval systems, just as it did in previous experimental work. Tests on the effect of basic index search, as opposed to controlled vocabulary search, in these real systems are quite different than traditional comparisons of free text searching with controlled vocabulary searching. In modern commercial systems the controlled vocabulary serves as a precision device, since the strucure of the default for unqualified search terms in these systems requires that it do so.
  11. Tseng, Y.-H.: Keyword extraction techniques and relevance feedback (1997) 0.01
    0.014823939 = product of:
      0.044471815 = sum of:
        0.015254747 = weight(_text_:in in 1830) [ClassicSimilarity], result of:
          0.015254747 = score(doc=1830,freq=10.0), product of:
            0.06484802 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.047673445 = queryNorm
            0.23523843 = fieldWeight in 1830, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1830)
        0.029217066 = product of:
          0.058434132 = sum of:
            0.058434132 = weight(_text_:retrieval in 1830) [ClassicSimilarity], result of:
              0.058434132 = score(doc=1830,freq=6.0), product of:
                0.14420812 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047673445 = queryNorm
                0.40520695 = fieldWeight in 1830, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1830)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Automatic keyword extraction is an important and fundamental technology in an advanced information retrieval systems. Briefly compares several major keyword extraction methods, lists their advantages and disadvantages, and reports recent research progress in Taiwan. Also describes the application of a keyword extraction algorithm in an information retrieval system for relevance feedback. Preliminary analysis shows that the error rate of extracting relevant keywords is 18%, and that the precision rate is over 50%. The main disadvantage of this approach is that the extraction results depend on the retrieval results, which in turn depend on the data held by the database. Apart from collecting more data, this problem can be alleviated by the application of a thesaurus constructed by the same keyword extraction algorithm
    Footnote
    [In Chinesisch]
  12. Deaves, J.C.; Pache, J.E.: Chemical and numerical indexing for the INSPEC database (1989) 0.01
    0.014461637 = product of:
      0.04338491 = sum of:
        0.009647949 = weight(_text_:in in 2289) [ClassicSimilarity], result of:
          0.009647949 = score(doc=2289,freq=4.0), product of:
            0.06484802 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.047673445 = queryNorm
            0.14877784 = fieldWeight in 2289, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2289)
        0.033736963 = product of:
          0.067473926 = sum of:
            0.067473926 = weight(_text_:retrieval in 2289) [ClassicSimilarity], result of:
              0.067473926 = score(doc=2289,freq=8.0), product of:
                0.14420812 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047673445 = queryNorm
                0.46789268 = fieldWeight in 2289, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2289)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    The wealth of chemical information on the INSPEC database is easily retrieved using the printed subject indexes to the associated abstract journals. However, this subject indexing is insufficient for machine retrieval, and free-text searching has special difficulties. An easy-to-use retrieval system has been developed which overcomes many problems, especially the retrieval of non-stoichiometric compositions, which are a feature solid-state chemistry. The scheme is limited to inorganic material, but allows flexibility and identification of dopants, interfaces and surfaces or substrates. At the same time, a system has been introduced for the online retrieval of numerical data included in the data base. This has successfully standardized the way in which such data is held for searching, enabling further refinement of searches where numerical information is significant
  13. Burgin, R.: ¬The effect of indexing exhaustivity on retrieval performance (1991) 0.01
    0.014152957 = product of:
      0.04245887 = sum of:
        0.010128236 = weight(_text_:in in 5262) [ClassicSimilarity], result of:
          0.010128236 = score(doc=5262,freq=6.0), product of:
            0.06484802 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.047673445 = queryNorm
            0.1561842 = fieldWeight in 5262, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=5262)
        0.032330632 = product of:
          0.064661264 = sum of:
            0.064661264 = weight(_text_:retrieval in 5262) [ClassicSimilarity], result of:
              0.064661264 = score(doc=5262,freq=10.0), product of:
                0.14420812 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047673445 = queryNorm
                0.44838852 = fieldWeight in 5262, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5262)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    The study was based on the collection examnined by W.H. Shaw (Inf. proc. man. 26(1990) no.6, S.693-703, 705-718), a test collection of 1239 articles, indexed with the term cystic fibrosis; and 100 queries with 3 sets of relevance evaluations from subject experts. The effect of variations in indexing exhaustivity on retrieval performance in a vector space retrieval system was investigated by using a term weight threshold to construct different document representations for a test collection. Retrieval results showed that retrieval performance, as measured by the mean optimal measure for all queries at a term weight threshold, was highest at the most exhaustive representation, and decreased slightly as terms were eliminated and the indexing representation became less exhaustive. The findings suggest that the vector space model is more robust against variations in indexing exhaustivity that is the single-link clustering model
  14. Hersh, W.R.; Hickam, D.H.: ¬A comparison of two methods for indexing and retrieval from a full-text medical database (1992) 0.01
    0.013519697 = product of:
      0.04055909 = sum of:
        0.0068221292 = weight(_text_:in in 4526) [ClassicSimilarity], result of:
          0.0068221292 = score(doc=4526,freq=2.0), product of:
            0.06484802 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.047673445 = queryNorm
            0.10520181 = fieldWeight in 4526, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4526)
        0.033736963 = product of:
          0.067473926 = sum of:
            0.067473926 = weight(_text_:retrieval in 4526) [ClassicSimilarity], result of:
              0.067473926 = score(doc=4526,freq=8.0), product of:
                0.14420812 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047673445 = queryNorm
                0.46789268 = fieldWeight in 4526, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4526)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Reports results of a study of 2 information retrieval systems on a 2.000 document full text medical database. The first system, SAPHIRE, features concept based automatic indexing and statistical retrieval techniques, while the second system, SWORD, features traditional word based Boolean techniques, 16 medical students at Oregon Health Sciences Univ. each performed 10 searches and their results, recorded in terms of recall and precision, showed nearly equal performance for both systems. SAPHIRE was also compared with a version of SWORD modified to use automatic indexing and ranked retrieval. Using batch input of queries, the latter method performed slightly better
  15. Braam, R.R.; Bruil, J.: Quality of indexing information : authors' views on indexing of their articles in chemical abstracts online CA-file (1992) 0.01
    0.013280595 = product of:
      0.039841782 = sum of:
        0.019394096 = weight(_text_:in in 2638) [ClassicSimilarity], result of:
          0.019394096 = score(doc=2638,freq=22.0), product of:
            0.06484802 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.047673445 = queryNorm
            0.29906997 = fieldWeight in 2638, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2638)
        0.020447686 = product of:
          0.040895373 = sum of:
            0.040895373 = weight(_text_:retrieval in 2638) [ClassicSimilarity], result of:
              0.040895373 = score(doc=2638,freq=4.0), product of:
                0.14420812 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047673445 = queryNorm
                0.2835858 = fieldWeight in 2638, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2638)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Studies the quality of subject indexing by Chemical Abstracts Indexing Service by confronting authors with the particular indexing terms attributed to their computer, for 270 articles published in 54 journals, 5 articles out of each journal. Responses (80%) indicate the superior quality of keywords, both as content descriptors and as retrieval tools. Author judgements on these 2 different aspects do not always converge, however. CAS's indexing policy to cover only 'new' aspects is reflected in author's judgements that index lists are somewhat incomplete, in particular in the case of thesaurus terms (index headings). The large effort expanded by CAS in maintaining and using a subject thesuaurs, in order to select valid index headings, as compared to quick and cheap keyword postings, does not lead to clear superior quality of thesaurus terms for document description nor in retrieval. Some 20% of papers were not placed in 'proper' CA main section, according to authors. As concerns the use of indexing data by third parties, in bibliometrics, users should be aware of the indexing policies behind the data, in order to prevent invalid interpretations
  16. Rowley, J.: ¬The controlled versus natural indexing languages debate revisited : a perspective on information retrieval practice and research (1994) 0.01
    0.013169151 = product of:
      0.039507452 = sum of:
        0.015409621 = weight(_text_:in in 7151) [ClassicSimilarity], result of:
          0.015409621 = score(doc=7151,freq=20.0), product of:
            0.06484802 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.047673445 = queryNorm
            0.2376267 = fieldWeight in 7151, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=7151)
        0.02409783 = product of:
          0.04819566 = sum of:
            0.04819566 = weight(_text_:retrieval in 7151) [ClassicSimilarity], result of:
              0.04819566 = score(doc=7151,freq=8.0), product of:
                0.14420812 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047673445 = queryNorm
                0.33420905 = fieldWeight in 7151, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=7151)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    This article revisits the debate concerning controlled and natural indexing languages, as used in searching the databases of the online hosts, in-house information retrieval systems, online public access catalogues and databases stored on CD-ROM. The debate was first formulated in the early days of information retrieval more than a century ago but, despite significant advance in technology, remains unresolved. The article divides the history of the debate into four eras. Era one was characterised by the introduction of controlled vocabulary. Era two focused on comparisons between different indexing languages in order to assess which was best. Era three saw a number of case studies of limited generalisability and a general recognition that the best search performance can be achieved by the parallel use of the two types of indexing languages. The emphasis in Era four has been on the development of end-user-based systems, including online public access catalogues and databases on CD-ROM. Recent developments in the use of expert systems techniques to support the representation of meaning may lead to systems which offer significant support to the user in end-user searching. In the meantime, however, information retrieval in practice involves a mixture of natural and controlled indexing languages used to search a wide variety of different kinds of databases
  17. Veenema, F.: To index or not to index (1996) 0.01
    0.013113564 = product of:
      0.03934069 = sum of:
        0.013504315 = weight(_text_:in in 7247) [ClassicSimilarity], result of:
          0.013504315 = score(doc=7247,freq=6.0), product of:
            0.06484802 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.047673445 = queryNorm
            0.2082456 = fieldWeight in 7247, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=7247)
        0.025836375 = product of:
          0.05167275 = sum of:
            0.05167275 = weight(_text_:22 in 7247) [ClassicSimilarity], result of:
              0.05167275 = score(doc=7247,freq=2.0), product of:
                0.16694428 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047673445 = queryNorm
                0.30952093 = fieldWeight in 7247, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=7247)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Describes an experiment comparing the performance of automatic full-text indexing software for personal computers with the human intellectual assignment of indexing terms in each document in a collection. Considers the times required to index the document, to retrieve documents satisfying 5 typical foreseen information needs, and the recall and precision ratios of searching. The software used is QuickFinder facility in WordPerfect 6.1 for Windows
    Source
    Canadian journal of information and library science. 21(1996) no.2, S.1-22
  18. Neshat, N.; Horri, A.: ¬A study of subject indexing consistency between the National Library of Iran and Humanities Libraries in the area of Iranian studies (2006) 0.01
    0.012620525 = product of:
      0.037861574 = sum of:
        0.015254747 = weight(_text_:in in 230) [ClassicSimilarity], result of:
          0.015254747 = score(doc=230,freq=10.0), product of:
            0.06484802 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.047673445 = queryNorm
            0.23523843 = fieldWeight in 230, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=230)
        0.022606827 = product of:
          0.045213655 = sum of:
            0.045213655 = weight(_text_:22 in 230) [ClassicSimilarity], result of:
              0.045213655 = score(doc=230,freq=2.0), product of:
                0.16694428 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047673445 = queryNorm
                0.2708308 = fieldWeight in 230, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=230)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    This study represents an attempt to compare indexing consistency between the catalogers of the National Library of Iran (NLI) on one side and 12 major academic and special libraries located in Tehran on the other. The research findings indicate that in 75% of the libraries the subject inconsistency values are 60% to 85%. In terms of subject classes, the consistency values are 10% to 35.2%, the mean of which is 22.5%. Moreover, the findings show that whenever the number of assigned terms increases, the probability of consistency decreases. This confirms Markey's findings in 1984.
    Date
    4. 1.2007 10:22:26
  19. Ellis, D.; Furner, J.; Willett, P.: On the creation of hypertext links in full-text documents : measurement of retrieval effectiveness (1996) 0.01
    0.012092985 = product of:
      0.036278956 = sum of:
        0.015409621 = weight(_text_:in in 4214) [ClassicSimilarity], result of:
          0.015409621 = score(doc=4214,freq=20.0), product of:
            0.06484802 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.047673445 = queryNorm
            0.2376267 = fieldWeight in 4214, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4214)
        0.020869333 = product of:
          0.041738667 = sum of:
            0.041738667 = weight(_text_:retrieval in 4214) [ClassicSimilarity], result of:
              0.041738667 = score(doc=4214,freq=6.0), product of:
                0.14420812 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047673445 = queryNorm
                0.28943354 = fieldWeight in 4214, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4214)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    An important stage in the process or retrieval of objects from a hypertext database is the creation of a set of internodal links that are intended to represent the relationships existing between objects; this operation is often undertaken manually, just as index terms are often manually assigned to documents in a conventional retrieval system. In an earlier article (1994), the results were published of a study in which several different sets of links were inserted, each by a different person, between the paragraphs of each of a number of full-text documents. These results showed little similarity between the link-sets, a finding that was comparable with those of studies of inter-indexer consistency, which suggest that there is generally only a low level of agreement between the sets of index terms assigned to a document by different indexers. In this article, a description is provided of an investigation into the nature of the relationship existing between (i) the levels of inter-linker consistency obtaining among the group of hypertext databases used in our earlier experiments, and (ii) the levels of effectiveness of a number of searches carried out in those databases. An account is given of the implementation of the searches and of the methods used in the calculation of numerical values expressing their effectiveness. Analysis of the results of a comparison between recorded levels of consistency and those of effectiveness does not allow us to draw conclusions about the consistency - effectiveness relationship that are equivalent to those drawn in comparable studies of inter-indexer consistency
  20. Taniguchi, S.: Recording evidence in bibliographic records and descriptive metadata (2005) 0.01
    0.01123359 = product of:
      0.033700768 = sum of:
        0.014323489 = weight(_text_:in in 3565) [ClassicSimilarity], result of:
          0.014323489 = score(doc=3565,freq=12.0), product of:
            0.06484802 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.047673445 = queryNorm
            0.22087781 = fieldWeight in 3565, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=3565)
        0.01937728 = product of:
          0.03875456 = sum of:
            0.03875456 = weight(_text_:22 in 3565) [ClassicSimilarity], result of:
              0.03875456 = score(doc=3565,freq=2.0), product of:
                0.16694428 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047673445 = queryNorm
                0.23214069 = fieldWeight in 3565, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3565)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    In this article recording evidence for data values in addition to the values themselves in bibliographic records and descriptive metadata is proposed, with the aim of improving the expressiveness and reliability of those records and metadata. Recorded evidence indicates why and how data values are recorded for elements. Recording the history of changes in data values is also proposed, with the aim of reinforcing recorded evidence. First, evidence that can be recorded is categorized into classes: identifiers of rules or tasks, action descriptions of them, and input and output data of them. Dates of recording values and evidence are an additional class. Then, the relative usefulness of evidence classes and also levels (i.e., the record, data element, or data value level) to which an individual evidence class is applied, is examined. Second, examples that can be viewed as recorded evidence in existing bibliographic records and current cataloging rules are shown. Third, some examples of bibliographic records and descriptive metadata with notes of evidence are demonstrated. Fourth, ways of using recorded evidence are addressed.
    Date
    18. 6.2005 13:16:22

Authors

Languages

  • e 75
  • d 2
  • chi 1
  • nl 1
  • More… Less…

Types

  • a 76
  • m 1
  • r 1
  • x 1
  • More… Less…