Search (65 results, page 1 of 4)

  • × theme_ss:"Wissensrepräsentation"
  1. Held, C.; Cress, U.: Social Tagging aus kognitionspsychologischer Sicht (2008) 0.10
    0.10203447 = product of:
      0.20406894 = sum of:
        0.20406894 = product of:
          0.4081379 = sum of:
            0.4081379 = weight(_text_:tagging in 2885) [ClassicSimilarity], result of:
              0.4081379 = score(doc=2885,freq=18.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                1.3698132 = fieldWeight in 2885, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2885)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Der vorliegende Artikel beschreibt Social-Tagging-Systeme aus theoretisch-kognitionspsychologischer Perspektive und zeigt einige Parallelen und Analogien zwischen Social Tagging und der individuellen kognitiven bedeutungsbezogenen Wissensrepräsentation auf. Zuerst werden wesentliche Aspekte von Social Tagging vorgestellt, die für eine psychologische Betrachtungsweise von Bedeutung sind. Danach werden Modelle und empirische Befunde der Kognitionswissenschaften bezüglich der Speicherung und des Abrufs von Inhalten des Langzeitgedächtnisses beschrieben. Als Drittes werden Parallelen und Unterschiede zwischen Social Tagging und der internen Wissensrepräsentation erläutert und die Möglichkeit von individuellen Lernprozessen durch Social-Tagging-Systeme aufgezeigt.
    Footnote
    Beitrag der Tagung "Social Tagging in der Wissensorganisation" am 21.-22.02.2008 am Institut für Wissensmedien (IWM) in Tübingen.
    Source
    Good tags - bad tags: Social Tagging in der Wissensorganisation. Hrsg.: B. Gaiser, u.a
    Theme
    Social tagging
  2. Derntl, M.; Hampel, T.; Motschnig, R.; Pitner, T.: Social Tagging und Inclusive Universal Access (2008) 0.10
    0.0966886 = product of:
      0.1933772 = sum of:
        0.1933772 = product of:
          0.3867544 = sum of:
            0.3867544 = weight(_text_:tagging in 2864) [ClassicSimilarity], result of:
              0.3867544 = score(doc=2864,freq=22.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                1.2980448 = fieldWeight in 2864, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2864)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Der vorliegende Artikel beleuchtet und bewertet Social Tagging als aktuelles Phänomen des Web 2.0 im Kontext bekannter Techniken der semantischen Datenorganisation. Tagging wird in einen Raum verwandter Ordnungs- und Strukturierungsansätze eingeordnet, um die fundamentalen Grundlagen des Social Tagging zu identifizieren und zuzuweisen. Dabei wird Tagging anhand des Inclusive Universal Access Paradigmas bewertet, das technische als auch menschlich-soziale Kriterien für die inklusive und barrierefreie Bereitstellung und Nutzung von Diensten definiert. Anhand dieser Bewertung werden fundamentale Prinzipien des "Inclusive Social Tagging" hergeleitet, die der Charakterisierung und Bewertung gängiger Tagging-Funktionalitäten in verbreiteten Web-2.0-Diensten dienen. Aus der Bewertung werden insbesondere Entwicklungsmöglichkeiten von Social Tagging und unterstützenden Diensten erkennbar.
    Footnote
    Beitrag der Tagung "Social Tagging in der Wissensorganisation" am 21.-22.02.2008 am Institut für Wissensmedien (IWM) in Tübingen.
    Source
    Good tags - bad tags: Social Tagging in der Wissensorganisation. Hrsg.: B. Gaiser, u.a
    Theme
    Social tagging
  3. Voß, J.: Vom Social Tagging zum Semantic Tagging (2008) 0.10
    0.09619903 = product of:
      0.19239806 = sum of:
        0.19239806 = product of:
          0.3847961 = sum of:
            0.3847961 = weight(_text_:tagging in 2884) [ClassicSimilarity], result of:
              0.3847961 = score(doc=2884,freq=16.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                1.2914723 = fieldWeight in 2884, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2884)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Social Tagging als freie Verschlagwortung durch Nutzer im Web wird immer häufiger mit der Idee des Semantic Web in Zusammenhang gebracht. Wie beide Konzepte in der Praxis konkret zusammenkommen sollen, bleibt jedoch meist unklar. Dieser Artikel soll hier Aufklärung leisten, indem die Kombination von Social Tagging und Semantic Web in Form von Semantic Tagging mit dem Simple Knowledge Organisation System dargestellt und auf die konkreten Möglichkeiten, Vorteile und offenen Fragen der Semantischen Indexierung eingegangen wird.
    Footnote
    Beitrag der Tagung "Social Tagging in der Wissensorganisation" am 21.-22.02.2008 am Institut für Wissensmedien (IWM) in Tübingen.
    Source
    Good tags - bad tags: Social Tagging in der Wissensorganisation. Hrsg.: B. Gaiser, u.a
    Theme
    Social tagging
  4. Mahesh, K.: Highly expressive tagging for knowledge organization in the 21st century (2014) 0.09
    0.085807584 = product of:
      0.17161517 = sum of:
        0.17161517 = sum of:
          0.13742718 = weight(_text_:tagging in 1434) [ClassicSimilarity], result of:
            0.13742718 = score(doc=1434,freq=4.0), product of:
              0.2979515 = queryWeight, product of:
                5.9038734 = idf(docFreq=327, maxDocs=44218)
                0.05046712 = queryNorm
              0.4612401 = fieldWeight in 1434, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                5.9038734 = idf(docFreq=327, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1434)
          0.03418799 = weight(_text_:22 in 1434) [ClassicSimilarity], result of:
            0.03418799 = score(doc=1434,freq=2.0), product of:
              0.17672725 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05046712 = queryNorm
              0.19345059 = fieldWeight in 1434, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1434)
      0.5 = coord(1/2)
    
    Abstract
    Knowledge organization of large-scale content on the Web requires substantial amounts of semantic metadata that is expensive to generate manually. Recent developments in Web technologies have enabled any user to tag documents and other forms of content thereby generating metadata that could help organize knowledge. However, merely adding one or more tags to a document is highly inadequate to capture the aboutness of the document and thereby to support powerful semantic functions such as automatic classification, question answering or true semantic search and retrieval. This is true even when the tags used are labels from a well-designed classification system such as a thesaurus or taxonomy. There is a strong need to develop a semantic tagging mechanism with sufficient expressive power to capture the aboutness of each part of a document or dataset or multimedia content in order to enable applications that can benefit from knowledge organization on the Web. This article proposes a highly expressive mechanism of using ontology snippets as semantic tags that map portions of a document or a part of a dataset or a segment of a multimedia content to concepts and relations in an ontology of the domain(s) of interest.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  5. Kruk, S.R.; Kruk, E.; Stankiewicz, K.: Evaluation of semantic and social technologies for digital libraries (2009) 0.08
    0.0788182 = product of:
      0.1576364 = sum of:
        0.1576364 = sum of:
          0.11661082 = weight(_text_:tagging in 3387) [ClassicSimilarity], result of:
            0.11661082 = score(doc=3387,freq=2.0), product of:
              0.2979515 = queryWeight, product of:
                5.9038734 = idf(docFreq=327, maxDocs=44218)
                0.05046712 = queryNorm
              0.39137518 = fieldWeight in 3387, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.9038734 = idf(docFreq=327, maxDocs=44218)
                0.046875 = fieldNorm(doc=3387)
          0.041025586 = weight(_text_:22 in 3387) [ClassicSimilarity], result of:
            0.041025586 = score(doc=3387,freq=2.0), product of:
              0.17672725 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05046712 = queryNorm
              0.23214069 = fieldWeight in 3387, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=3387)
      0.5 = coord(1/2)
    
    Date
    1. 8.2010 12:35:22
    Theme
    Social tagging
  6. Braun, S.; Schmidt, A.; Walter, A.; Zacharias, V.: Von Tags zu semantischen Beziehungen : kollaborative Ontologiereifung (2008) 0.07
    0.06518744 = product of:
      0.13037488 = sum of:
        0.13037488 = product of:
          0.26074976 = sum of:
            0.26074976 = weight(_text_:tagging in 2896) [ClassicSimilarity], result of:
              0.26074976 = score(doc=2896,freq=10.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.8751416 = fieldWeight in 2896, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2896)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Die Popularität von Tagging-Ansätzen hat gezeigt, dass dieses Ordnungsprinzip für Nutzer insbesondere auf kollaborativen Plattformen deutlich zugänglicher ist als strukturierte und kontrollierte Vokabulare. Allerdings stoßen Tagging-Ansätze oft an ihre Grenzen, wo sie keine ausreichende semantische Präzision ausbilden können. Umgekehrt können ontologiebasierte Ansätze zwar die semantische Präzision erreichen, werden jedoch (besonders aufgrund der schwerfälligen Pflegeprozesse) von den Nutzern kaum akzeptiert. Wir schlagen eine Verbindung beider Welten vor, die auf einer neuen Sichtweise auf die Entstehung von Ontologien fußt: die Ontologiereifung. Anhand zweier Werkzeuge aus dem Bereich des Social Semantic Bookmarking und der semantischen Bildsuche zeigen wir, wie Anwendungen aussehen können, die eine solche Ontologiereifung (in die jeweiligen Nutzungsprozesse integriert) ermöglichen und fördern.
    Footnote
    Beitrag der Tagung "Social Tagging in der Wissensorganisation" am 21.-22.02.2008 am Institut für Wissensmedien (IWM) in Tübingen.
    Source
    Good tags - bad tags: Social Tagging in der Wissensorganisation. Hrsg.: B. Gaiser, u.a
    Theme
    Social tagging
  7. Wang, Y.; Tai, Y.; Yang, Y.: Determination of semantic types of tags in social tagging systems (2018) 0.06
    0.05830541 = product of:
      0.11661082 = sum of:
        0.11661082 = product of:
          0.23322164 = sum of:
            0.23322164 = weight(_text_:tagging in 4648) [ClassicSimilarity], result of:
              0.23322164 = score(doc=4648,freq=8.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.78275037 = fieldWeight in 4648, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4648)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The purpose of this paper is to determine semantic types for tags in social tagging systems. In social tagging systems, the determination of the semantic type of tags plays an important role in tag classification, increasing the semantic information of tags and establishing mapping relations between tagged resources and a normed ontology. The research reported in this paper constructs the semantic type library that is needed based on the Unified Medical Language System (UMLS) and FrameNet and determines the semantic type of selected tags that have been pretreated via direct matching using the Semantic Navigator tool, the Semantic Type Word Sense Disambiguation (STWSD) tools in UMLS, and artificial matching. And finally, we verify the feasibility of the determination of semantic type for tags by empirical analysis.
    Theme
    Social tagging
  8. Zhitomirsky-Geffet, M.; Bar-Ilan, J.: Towards maximal unification of semantically diverse ontologies for controversial domains (2014) 0.05
    0.052545473 = product of:
      0.105090946 = sum of:
        0.105090946 = sum of:
          0.07774055 = weight(_text_:tagging in 1634) [ClassicSimilarity], result of:
            0.07774055 = score(doc=1634,freq=2.0), product of:
              0.2979515 = queryWeight, product of:
                5.9038734 = idf(docFreq=327, maxDocs=44218)
                0.05046712 = queryNorm
              0.2609168 = fieldWeight in 1634, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.9038734 = idf(docFreq=327, maxDocs=44218)
                0.03125 = fieldNorm(doc=1634)
          0.027350392 = weight(_text_:22 in 1634) [ClassicSimilarity], result of:
            0.027350392 = score(doc=1634,freq=2.0), product of:
              0.17672725 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05046712 = queryNorm
              0.15476047 = fieldWeight in 1634, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=1634)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - Ontologies are prone to wide semantic variability due to subjective points of view of their composers. The purpose of this paper is to propose a new approach for maximal unification of diverse ontologies for controversial domains by their relations. Design/methodology/approach - Effective matching or unification of multiple ontologies for a specific domain is crucial for the success of many semantic web applications, such as semantic information retrieval and organization, document tagging, summarization and search. To this end, numerous automatic and semi-automatic techniques were proposed in the past decade that attempt to identify similar entities, mostly classes, in diverse ontologies for similar domains. Apparently, matching individual entities cannot result in full integration of ontologies' semantics without matching their inter-relations with all other-related classes (and instances). However, semantic matching of ontological relations still constitutes a major research challenge. Therefore, in this paper the authors propose a new paradigm for assessment of maximal possible matching and unification of ontological relations. To this end, several unification rules for ontological relations were devised based on ontological reference rules, and lexical and textual entailment. These rules were semi-automatically implemented to extend a given ontology with semantically matching relations from another ontology for a similar domain. Then, the ontologies were unified through these similar pairs of relations. The authors observe that these rules can be also facilitated to reveal the contradictory relations in different ontologies. Findings - To assess the feasibility of the approach two experiments were conducted with different sets of multiple personal ontologies on controversial domains constructed by trained subjects. The results for about 50 distinct ontology pairs demonstrate a good potential of the methodology for increasing inter-ontology agreement. Furthermore, the authors show that the presented methodology can lead to a complete unification of multiple semantically heterogeneous ontologies. Research limitations/implications - This is a conceptual study that presents a new approach for semantic unification of ontologies by a devised set of rules along with the initial experimental evidence of its feasibility and effectiveness. However, this methodology has to be fully automatically implemented and tested on a larger dataset in future research. Practical implications - This result has implication for semantic search, since a richer ontology, comprised of multiple aspects and viewpoints of the domain of knowledge, enhances discoverability and improves search results. Originality/value - To the best of the knowledge, this is the first study to examine and assess the maximal level of semantic relation-based ontology unification.
    Date
    20. 1.2015 18:30:22
  9. Zeng, Q.; Yu, M.; Yu, W.; Xiong, J.; Shi, Y.; Jiang, M.: Faceted hierarchy : a new graph type to organize scientific concepts and a construction method (2019) 0.04
    0.040077582 = product of:
      0.080155164 = sum of:
        0.080155164 = product of:
          0.24046549 = sum of:
            0.24046549 = weight(_text_:3a in 400) [ClassicSimilarity], result of:
              0.24046549 = score(doc=400,freq=2.0), product of:
                0.4278608 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.05046712 = queryNorm
                0.56201804 = fieldWeight in 400, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=400)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Content
    Vgl.: https%3A%2F%2Faclanthology.org%2FD19-5317.pdf&usg=AOvVaw0ZZFyq5wWTtNTvNkrvjlGA.
  10. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.03
    0.02671839 = product of:
      0.05343678 = sum of:
        0.05343678 = product of:
          0.16031033 = sum of:
            0.16031033 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.16031033 = score(doc=701,freq=2.0), product of:
                0.4278608 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.05046712 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
  11. Xiong, C.: Knowledge based text representations for information retrieval (2016) 0.03
    0.02671839 = product of:
      0.05343678 = sum of:
        0.05343678 = product of:
          0.16031033 = sum of:
            0.16031033 = weight(_text_:3a in 5820) [ClassicSimilarity], result of:
              0.16031033 = score(doc=5820,freq=2.0), product of:
                0.4278608 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.05046712 = queryNorm
                0.3746787 = fieldWeight in 5820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5820)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Content
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Language and Information Technologies. Vgl.: https%3A%2F%2Fwww.cs.cmu.edu%2F~cx%2Fpapers%2Fknowledge_based_text_representation.pdf&usg=AOvVaw0SaTSvhWLTh__Uz_HtOtl3.
  12. King, B.E.; Reinold, K.: Finding the concept, not just the word : a librarian's guide to ontologies and semantics (2008) 0.03
    0.025246985 = product of:
      0.05049397 = sum of:
        0.05049397 = product of:
          0.10098794 = sum of:
            0.10098794 = weight(_text_:tagging in 2863) [ClassicSimilarity], result of:
              0.10098794 = score(doc=2863,freq=6.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.3389409 = fieldWeight in 2863, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=2863)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Aimed at students and professionals within Library and Information Services (LIS), this book is about the power and potential of ontologies to enhance the electronic search process. The book will compare search strategies and results in the current search environment and demonstrate how these could be transformed using ontologies and concept searching. Simple descriptions, visual representations, and examples of ontologies will bring a full understanding of how these concept maps are constructed to enhance retrieval through natural language queries. Readers will gain a sense of how ontologies are currently being used and how they could be applied in the future, encouraging them to think about how their own work and their users' search experiences could be enhanced by the creation of a customized ontology. Key Features Written by a librarian, for librarians (most work on ontologies is written and read by people in computer science and knowledge management) Written by a librarian who has created her own ontology and performed research on its capabilities Written in easily understandable language, with concepts broken down to the basics The Author Ms. King is the Information Specialist at the Center on Media and Child Health at Children's Hospital Boston. She is a graduate of Smith College (B.A.) and Simmons College (M.L.I.S.). She is an active member of the Special Libraries Association, and was the recipient of the 2005 SLA Innovation in Technology Award for the creation of a customized media effects ontology used for semantic searching. Readership The book is aimed at practicing librarians and information professionals as well as graduate students of Library and Information Science. Contents Introduction Part 1: Understanding Ontologies - organising knowledge; what is an ontology? How are ontologies different from other knowledge representations? How are ontologies currently being used? Key concepts Ontologies in semantic search - determining whether a search was successful; what does semantic search have to offer? Semantic techniques; semantic searching behind the scenes; key concepts Creating an ontology - how to create an ontology; key concepts Building an ontology from existing components - choosing components; customizing your knowledge structure; key concepts Part 2: Semantic Technologies Natural language processing - tagging parts of speech; grammar-based NLP; statistical NLP; semantic analysis,; current applications of NLP; key concepts Using metadata to add semantic information - structured languages; metadata tagging; semantic tagging; key concepts Other semantic capabilities - semantic classification; synsets; topic maps; rules and inference; key concepts Part 3: Case Studies: Theory into Practice Biogen Idec: using semantics in drug discovery research - Biogen Idec's solution; the future The Center on Media and Child Health: using an ontology to explore the effects of media - building the ontology; choosing the source; implementing and comparing to Boolean search; the future Partners HealthCare System: semantic technologies to improve clinical decision support - the medical appointment; partners healthcare system's solution; lessons learned; the future MINDSWAP: using ontologies to aid terrorism; intelligence gathering - building, using and maintaining the ontology; sharing information with other experts; future plans Part 4: Advanced Topics Languages for expressing ontologies - XML; RDF; OWL; SKOS; Ontology language features - comparison chart Tools for building ontologies - basic criteria when evaluating ontologies Part 5: Transitions to the Future
  13. Stock, W.G.: Concepts and semantic relations in information science (2010) 0.02
    0.024293922 = product of:
      0.048587844 = sum of:
        0.048587844 = product of:
          0.09717569 = sum of:
            0.09717569 = weight(_text_:tagging in 4008) [ClassicSimilarity], result of:
              0.09717569 = score(doc=4008,freq=2.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.326146 = fieldWeight in 4008, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4008)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Concept-based information retrieval and knowledge representation are in need of a theory of concepts and semantic relations. Guidelines for the construction and maintenance of knowledge organization systems (KOS) (such as ANSI/NISO Z39.19-2005 in the U.S.A. or DIN 2331:1980 in Germany) do not consider results of concept theory and theory of relations to the full extent. They are not able to unify the currently different worlds of traditional controlled vocabularies, of the social web (tagging and folksonomies) and of the semantic web (ontologies). Concept definitions as well as semantic relations are based on epistemological theories (empiricism, rationalism, hermeneutics, pragmatism, and critical theory). A concept is determined via its intension and extension as well as by definition. We will meet the problem of vagueness by introducing prototypes. Some important definitions are concept explanations (after Aristotle) and the definition of family resemblances (in the sense of Wittgenstein). We will model concepts as frames (according to Barsalou). The most important paradigmatic relation in KOS is hierarchy, which must be arranged into different classes: Hyponymy consists of taxonomy and simple hyponymy, meronymy consists of many different part-whole-relations. For practical application purposes, the transitivity of the given relation is very important. Unspecific associative relations are of little help to our focused applications and should be replaced by generalizable and domain-specific relations. We will discuss the reflexivity, symmetry, and transitivity of paradigmatic relations as well as the appearance of specific semantic relations in the different kinds of KOS (folksonomies, nomenclatures, classification systems, thesauri, and ontologies). Finally, we will pick out KOS as a central theme of the Semantic Web.
  14. Gray, A.J.G.; Gray, N.; Hall, C.W.; Ounis, I.: Finding the right term : retrieving and exploring semantic concepts in astronomical vocabularies (2010) 0.02
    0.024293922 = product of:
      0.048587844 = sum of:
        0.048587844 = product of:
          0.09717569 = sum of:
            0.09717569 = weight(_text_:tagging in 4235) [ClassicSimilarity], result of:
              0.09717569 = score(doc=4235,freq=2.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.326146 = fieldWeight in 4235, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4235)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Astronomy, like many domains, already has several sets of terminology in general use, referred to as controlled vocabularies. For example, the keywords for tagging journal articles, or the taxonomy of terms used to label image files. These existing vocabularies can be encoded into skos, a W3C proposed recommendation for representing vocabularies on the Semantic Web, so that computer systems can help users to search for and discover resources tagged with vocabulary concepts. However, this requires a search mechanism to go from a user-supplied string to a vocabulary concept. In this paper, we present our experiences in implementing the Vocabulary Explorer, a vocabulary search service based on the Terrier Information Retrieval Platform. We investigate the capabilities of existing document weighting models for identifying the correct vocabulary concept for a query. Due to the highly structured nature of a skos encoded vocabulary, we investigate the effects of term weighting (boosting the score of concepts that match on particular fields of a vocabulary concept), and query expansion. We found that the existing document weighting models provided very high quality results, but these could be improved further with the use of term weighting that makes use of the semantic evidence.
  15. Frické, M.: Logical division (2016) 0.02
    0.024293922 = product of:
      0.048587844 = sum of:
        0.048587844 = product of:
          0.09717569 = sum of:
            0.09717569 = weight(_text_:tagging in 3183) [ClassicSimilarity], result of:
              0.09717569 = score(doc=3183,freq=2.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.326146 = fieldWeight in 3183, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3183)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Division is obviously important to Knowledge Organization. Typically, an organizational infrastructure might acknowledge three types of connecting relationships: class hierarchies, where some classes are subclasses of others, partitive hierarchies, where some items are parts of others, and instantiation, where some items are members of some classes (see Z39.19 ANSI/NISO 2005 as an example). The first two of these involve division (the third, instantiation, does not involve division). Logical division would usually be a part of hierarchical classification systems, which, in turn, are central to shelving in libraries, to subject classification schemes, to controlled vocabularies, and to thesauri. Partitive hierarchies, and partitive division, are often essential to controlled vocabularies, thesauri, and subject tagging systems. Partitive hierarchies also relate to the bearers of information; for example, a journal would typically have its component articles as parts and, in turn, they might have sections as their parts, and, of course, components might be arrived at by partitive division (see Tillett 2009 as an illustration). Finally, verbal division, disambiguating homographs, is basic to controlled vocabularies. Thus Division is a broad and relevant topic. This article, though, is going to focus on Logical Division.
  16. Weller, K.: Knowledge representation in the Social Semantic Web (2010) 0.02
    0.024049757 = product of:
      0.048099514 = sum of:
        0.048099514 = product of:
          0.09619903 = sum of:
            0.09619903 = weight(_text_:tagging in 4515) [ClassicSimilarity], result of:
              0.09619903 = score(doc=4515,freq=4.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.32286808 = fieldWeight in 4515, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4515)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    RSWK
    Social Tagging
    Subject
    Social Tagging
  17. Ibekwe-SanJuan, F.: Semantic metadata annotation : tagging Medline abstracts for enhanced information access (2010) 0.02
    0.019435138 = product of:
      0.038870275 = sum of:
        0.038870275 = product of:
          0.07774055 = sum of:
            0.07774055 = weight(_text_:tagging in 3949) [ClassicSimilarity], result of:
              0.07774055 = score(doc=3949,freq=2.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.2609168 = fieldWeight in 3949, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3949)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  18. Schmitz-Esser, W.: Language of general communication and concept compatibility (1996) 0.02
    0.017093996 = product of:
      0.03418799 = sum of:
        0.03418799 = product of:
          0.06837598 = sum of:
            0.06837598 = weight(_text_:22 in 6089) [ClassicSimilarity], result of:
              0.06837598 = score(doc=6089,freq=2.0), product of:
                0.17672725 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05046712 = queryNorm
                0.38690117 = fieldWeight in 6089, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=6089)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Pages
    S.11-22
  19. Drewer, P.; Massion, F; Pulitano, D: Was haben Wissensmodellierung, Wissensstrukturierung, künstliche Intelligenz und Terminologie miteinander zu tun? (2017) 0.02
    0.017093996 = product of:
      0.03418799 = sum of:
        0.03418799 = product of:
          0.06837598 = sum of:
            0.06837598 = weight(_text_:22 in 5576) [ClassicSimilarity], result of:
              0.06837598 = score(doc=5576,freq=2.0), product of:
                0.17672725 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05046712 = queryNorm
                0.38690117 = fieldWeight in 5576, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=5576)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    13.12.2017 14:17:22
  20. Tudhope, D.; Hodge, G.: Terminology registries (2007) 0.02
    0.017093996 = product of:
      0.03418799 = sum of:
        0.03418799 = product of:
          0.06837598 = sum of:
            0.06837598 = weight(_text_:22 in 539) [ClassicSimilarity], result of:
              0.06837598 = score(doc=539,freq=2.0), product of:
                0.17672725 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05046712 = queryNorm
                0.38690117 = fieldWeight in 539, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=539)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    26.12.2011 13:22:07

Authors

Years

Languages

  • e 49
  • d 15

Types

  • a 49
  • el 14
  • x 5
  • m 4
  • n 1
  • r 1
  • More… Less…