Search (34 results, page 1 of 2)

  • × year_i:[2010 TO 2020}
  • × theme_ss:"Wissensrepräsentation"
  1. Mahesh, K.: Highly expressive tagging for knowledge organization in the 21st century (2014) 0.09
    0.085807584 = product of:
      0.17161517 = sum of:
        0.17161517 = sum of:
          0.13742718 = weight(_text_:tagging in 1434) [ClassicSimilarity], result of:
            0.13742718 = score(doc=1434,freq=4.0), product of:
              0.2979515 = queryWeight, product of:
                5.9038734 = idf(docFreq=327, maxDocs=44218)
                0.05046712 = queryNorm
              0.4612401 = fieldWeight in 1434, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                5.9038734 = idf(docFreq=327, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1434)
          0.03418799 = weight(_text_:22 in 1434) [ClassicSimilarity], result of:
            0.03418799 = score(doc=1434,freq=2.0), product of:
              0.17672725 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05046712 = queryNorm
              0.19345059 = fieldWeight in 1434, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1434)
      0.5 = coord(1/2)
    
    Abstract
    Knowledge organization of large-scale content on the Web requires substantial amounts of semantic metadata that is expensive to generate manually. Recent developments in Web technologies have enabled any user to tag documents and other forms of content thereby generating metadata that could help organize knowledge. However, merely adding one or more tags to a document is highly inadequate to capture the aboutness of the document and thereby to support powerful semantic functions such as automatic classification, question answering or true semantic search and retrieval. This is true even when the tags used are labels from a well-designed classification system such as a thesaurus or taxonomy. There is a strong need to develop a semantic tagging mechanism with sufficient expressive power to capture the aboutness of each part of a document or dataset or multimedia content in order to enable applications that can benefit from knowledge organization on the Web. This article proposes a highly expressive mechanism of using ontology snippets as semantic tags that map portions of a document or a part of a dataset or a segment of a multimedia content to concepts and relations in an ontology of the domain(s) of interest.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  2. Wang, Y.; Tai, Y.; Yang, Y.: Determination of semantic types of tags in social tagging systems (2018) 0.06
    0.05830541 = product of:
      0.11661082 = sum of:
        0.11661082 = product of:
          0.23322164 = sum of:
            0.23322164 = weight(_text_:tagging in 4648) [ClassicSimilarity], result of:
              0.23322164 = score(doc=4648,freq=8.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.78275037 = fieldWeight in 4648, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4648)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The purpose of this paper is to determine semantic types for tags in social tagging systems. In social tagging systems, the determination of the semantic type of tags plays an important role in tag classification, increasing the semantic information of tags and establishing mapping relations between tagged resources and a normed ontology. The research reported in this paper constructs the semantic type library that is needed based on the Unified Medical Language System (UMLS) and FrameNet and determines the semantic type of selected tags that have been pretreated via direct matching using the Semantic Navigator tool, the Semantic Type Word Sense Disambiguation (STWSD) tools in UMLS, and artificial matching. And finally, we verify the feasibility of the determination of semantic type for tags by empirical analysis.
    Theme
    Social tagging
  3. Zhitomirsky-Geffet, M.; Bar-Ilan, J.: Towards maximal unification of semantically diverse ontologies for controversial domains (2014) 0.05
    0.052545473 = product of:
      0.105090946 = sum of:
        0.105090946 = sum of:
          0.07774055 = weight(_text_:tagging in 1634) [ClassicSimilarity], result of:
            0.07774055 = score(doc=1634,freq=2.0), product of:
              0.2979515 = queryWeight, product of:
                5.9038734 = idf(docFreq=327, maxDocs=44218)
                0.05046712 = queryNorm
              0.2609168 = fieldWeight in 1634, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.9038734 = idf(docFreq=327, maxDocs=44218)
                0.03125 = fieldNorm(doc=1634)
          0.027350392 = weight(_text_:22 in 1634) [ClassicSimilarity], result of:
            0.027350392 = score(doc=1634,freq=2.0), product of:
              0.17672725 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05046712 = queryNorm
              0.15476047 = fieldWeight in 1634, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=1634)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - Ontologies are prone to wide semantic variability due to subjective points of view of their composers. The purpose of this paper is to propose a new approach for maximal unification of diverse ontologies for controversial domains by their relations. Design/methodology/approach - Effective matching or unification of multiple ontologies for a specific domain is crucial for the success of many semantic web applications, such as semantic information retrieval and organization, document tagging, summarization and search. To this end, numerous automatic and semi-automatic techniques were proposed in the past decade that attempt to identify similar entities, mostly classes, in diverse ontologies for similar domains. Apparently, matching individual entities cannot result in full integration of ontologies' semantics without matching their inter-relations with all other-related classes (and instances). However, semantic matching of ontological relations still constitutes a major research challenge. Therefore, in this paper the authors propose a new paradigm for assessment of maximal possible matching and unification of ontological relations. To this end, several unification rules for ontological relations were devised based on ontological reference rules, and lexical and textual entailment. These rules were semi-automatically implemented to extend a given ontology with semantically matching relations from another ontology for a similar domain. Then, the ontologies were unified through these similar pairs of relations. The authors observe that these rules can be also facilitated to reveal the contradictory relations in different ontologies. Findings - To assess the feasibility of the approach two experiments were conducted with different sets of multiple personal ontologies on controversial domains constructed by trained subjects. The results for about 50 distinct ontology pairs demonstrate a good potential of the methodology for increasing inter-ontology agreement. Furthermore, the authors show that the presented methodology can lead to a complete unification of multiple semantically heterogeneous ontologies. Research limitations/implications - This is a conceptual study that presents a new approach for semantic unification of ontologies by a devised set of rules along with the initial experimental evidence of its feasibility and effectiveness. However, this methodology has to be fully automatically implemented and tested on a larger dataset in future research. Practical implications - This result has implication for semantic search, since a richer ontology, comprised of multiple aspects and viewpoints of the domain of knowledge, enhances discoverability and improves search results. Originality/value - To the best of the knowledge, this is the first study to examine and assess the maximal level of semantic relation-based ontology unification.
    Date
    20. 1.2015 18:30:22
  4. Zeng, Q.; Yu, M.; Yu, W.; Xiong, J.; Shi, Y.; Jiang, M.: Faceted hierarchy : a new graph type to organize scientific concepts and a construction method (2019) 0.04
    0.040077582 = product of:
      0.080155164 = sum of:
        0.080155164 = product of:
          0.24046549 = sum of:
            0.24046549 = weight(_text_:3a in 400) [ClassicSimilarity], result of:
              0.24046549 = score(doc=400,freq=2.0), product of:
                0.4278608 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.05046712 = queryNorm
                0.56201804 = fieldWeight in 400, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=400)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Content
    Vgl.: https%3A%2F%2Faclanthology.org%2FD19-5317.pdf&usg=AOvVaw0ZZFyq5wWTtNTvNkrvjlGA.
  5. Xiong, C.: Knowledge based text representations for information retrieval (2016) 0.03
    0.02671839 = product of:
      0.05343678 = sum of:
        0.05343678 = product of:
          0.16031033 = sum of:
            0.16031033 = weight(_text_:3a in 5820) [ClassicSimilarity], result of:
              0.16031033 = score(doc=5820,freq=2.0), product of:
                0.4278608 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.05046712 = queryNorm
                0.3746787 = fieldWeight in 5820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5820)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Content
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Language and Information Technologies. Vgl.: https%3A%2F%2Fwww.cs.cmu.edu%2F~cx%2Fpapers%2Fknowledge_based_text_representation.pdf&usg=AOvVaw0SaTSvhWLTh__Uz_HtOtl3.
  6. Stock, W.G.: Concepts and semantic relations in information science (2010) 0.02
    0.024293922 = product of:
      0.048587844 = sum of:
        0.048587844 = product of:
          0.09717569 = sum of:
            0.09717569 = weight(_text_:tagging in 4008) [ClassicSimilarity], result of:
              0.09717569 = score(doc=4008,freq=2.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.326146 = fieldWeight in 4008, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4008)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Concept-based information retrieval and knowledge representation are in need of a theory of concepts and semantic relations. Guidelines for the construction and maintenance of knowledge organization systems (KOS) (such as ANSI/NISO Z39.19-2005 in the U.S.A. or DIN 2331:1980 in Germany) do not consider results of concept theory and theory of relations to the full extent. They are not able to unify the currently different worlds of traditional controlled vocabularies, of the social web (tagging and folksonomies) and of the semantic web (ontologies). Concept definitions as well as semantic relations are based on epistemological theories (empiricism, rationalism, hermeneutics, pragmatism, and critical theory). A concept is determined via its intension and extension as well as by definition. We will meet the problem of vagueness by introducing prototypes. Some important definitions are concept explanations (after Aristotle) and the definition of family resemblances (in the sense of Wittgenstein). We will model concepts as frames (according to Barsalou). The most important paradigmatic relation in KOS is hierarchy, which must be arranged into different classes: Hyponymy consists of taxonomy and simple hyponymy, meronymy consists of many different part-whole-relations. For practical application purposes, the transitivity of the given relation is very important. Unspecific associative relations are of little help to our focused applications and should be replaced by generalizable and domain-specific relations. We will discuss the reflexivity, symmetry, and transitivity of paradigmatic relations as well as the appearance of specific semantic relations in the different kinds of KOS (folksonomies, nomenclatures, classification systems, thesauri, and ontologies). Finally, we will pick out KOS as a central theme of the Semantic Web.
  7. Gray, A.J.G.; Gray, N.; Hall, C.W.; Ounis, I.: Finding the right term : retrieving and exploring semantic concepts in astronomical vocabularies (2010) 0.02
    0.024293922 = product of:
      0.048587844 = sum of:
        0.048587844 = product of:
          0.09717569 = sum of:
            0.09717569 = weight(_text_:tagging in 4235) [ClassicSimilarity], result of:
              0.09717569 = score(doc=4235,freq=2.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.326146 = fieldWeight in 4235, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4235)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Astronomy, like many domains, already has several sets of terminology in general use, referred to as controlled vocabularies. For example, the keywords for tagging journal articles, or the taxonomy of terms used to label image files. These existing vocabularies can be encoded into skos, a W3C proposed recommendation for representing vocabularies on the Semantic Web, so that computer systems can help users to search for and discover resources tagged with vocabulary concepts. However, this requires a search mechanism to go from a user-supplied string to a vocabulary concept. In this paper, we present our experiences in implementing the Vocabulary Explorer, a vocabulary search service based on the Terrier Information Retrieval Platform. We investigate the capabilities of existing document weighting models for identifying the correct vocabulary concept for a query. Due to the highly structured nature of a skos encoded vocabulary, we investigate the effects of term weighting (boosting the score of concepts that match on particular fields of a vocabulary concept), and query expansion. We found that the existing document weighting models provided very high quality results, but these could be improved further with the use of term weighting that makes use of the semantic evidence.
  8. Frické, M.: Logical division (2016) 0.02
    0.024293922 = product of:
      0.048587844 = sum of:
        0.048587844 = product of:
          0.09717569 = sum of:
            0.09717569 = weight(_text_:tagging in 3183) [ClassicSimilarity], result of:
              0.09717569 = score(doc=3183,freq=2.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.326146 = fieldWeight in 3183, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3183)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Division is obviously important to Knowledge Organization. Typically, an organizational infrastructure might acknowledge three types of connecting relationships: class hierarchies, where some classes are subclasses of others, partitive hierarchies, where some items are parts of others, and instantiation, where some items are members of some classes (see Z39.19 ANSI/NISO 2005 as an example). The first two of these involve division (the third, instantiation, does not involve division). Logical division would usually be a part of hierarchical classification systems, which, in turn, are central to shelving in libraries, to subject classification schemes, to controlled vocabularies, and to thesauri. Partitive hierarchies, and partitive division, are often essential to controlled vocabularies, thesauri, and subject tagging systems. Partitive hierarchies also relate to the bearers of information; for example, a journal would typically have its component articles as parts and, in turn, they might have sections as their parts, and, of course, components might be arrived at by partitive division (see Tillett 2009 as an illustration). Finally, verbal division, disambiguating homographs, is basic to controlled vocabularies. Thus Division is a broad and relevant topic. This article, though, is going to focus on Logical Division.
  9. Weller, K.: Knowledge representation in the Social Semantic Web (2010) 0.02
    0.024049757 = product of:
      0.048099514 = sum of:
        0.048099514 = product of:
          0.09619903 = sum of:
            0.09619903 = weight(_text_:tagging in 4515) [ClassicSimilarity], result of:
              0.09619903 = score(doc=4515,freq=4.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.32286808 = fieldWeight in 4515, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4515)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    RSWK
    Social Tagging
    Subject
    Social Tagging
  10. Ibekwe-SanJuan, F.: Semantic metadata annotation : tagging Medline abstracts for enhanced information access (2010) 0.02
    0.019435138 = product of:
      0.038870275 = sum of:
        0.038870275 = product of:
          0.07774055 = sum of:
            0.07774055 = weight(_text_:tagging in 3949) [ClassicSimilarity], result of:
              0.07774055 = score(doc=3949,freq=2.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.2609168 = fieldWeight in 3949, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3949)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  11. Drewer, P.; Massion, F; Pulitano, D: Was haben Wissensmodellierung, Wissensstrukturierung, künstliche Intelligenz und Terminologie miteinander zu tun? (2017) 0.02
    0.017093996 = product of:
      0.03418799 = sum of:
        0.03418799 = product of:
          0.06837598 = sum of:
            0.06837598 = weight(_text_:22 in 5576) [ClassicSimilarity], result of:
              0.06837598 = score(doc=5576,freq=2.0), product of:
                0.17672725 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05046712 = queryNorm
                0.38690117 = fieldWeight in 5576, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=5576)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    13.12.2017 14:17:22
  12. Nielsen, M.: Neuronale Netze : Alpha Go - Computer lernen Intuition (2018) 0.02
    0.017093996 = product of:
      0.03418799 = sum of:
        0.03418799 = product of:
          0.06837598 = sum of:
            0.06837598 = weight(_text_:22 in 4523) [ClassicSimilarity], result of:
              0.06837598 = score(doc=4523,freq=2.0), product of:
                0.17672725 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05046712 = queryNorm
                0.38690117 = fieldWeight in 4523, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4523)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Spektrum der Wissenschaft. 2018, H.1, S.22-27
  13. Börner, K.: Atlas of knowledge : anyone can map (2015) 0.01
    0.014504736 = product of:
      0.029009473 = sum of:
        0.029009473 = product of:
          0.058018945 = sum of:
            0.058018945 = weight(_text_:22 in 3355) [ClassicSimilarity], result of:
              0.058018945 = score(doc=3355,freq=4.0), product of:
                0.17672725 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05046712 = queryNorm
                0.32829654 = fieldWeight in 3355, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3355)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 1.2017 16:54:03
    22. 1.2017 17:10:56
  14. Deokattey, S.; Neelameghan, A.; Kumar, V.: ¬A method for developing a domain ontology : a case study for a multidisciplinary subject (2010) 0.01
    0.011965796 = product of:
      0.023931593 = sum of:
        0.023931593 = product of:
          0.047863185 = sum of:
            0.047863185 = weight(_text_:22 in 3694) [ClassicSimilarity], result of:
              0.047863185 = score(doc=3694,freq=2.0), product of:
                0.17672725 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05046712 = queryNorm
                0.2708308 = fieldWeight in 3694, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3694)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 7.2010 19:41:16
  15. Boteram, F.: Semantische Relationen in Dokumentationssprachen : vom Thesaurus zum semantischen Netz (2010) 0.01
    0.011965796 = product of:
      0.023931593 = sum of:
        0.023931593 = product of:
          0.047863185 = sum of:
            0.047863185 = weight(_text_:22 in 4792) [ClassicSimilarity], result of:
              0.047863185 = score(doc=4792,freq=2.0), product of:
                0.17672725 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05046712 = queryNorm
                0.2708308 = fieldWeight in 4792, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4792)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  16. Madalli, D.P.; Balaji, B.P.; Sarangi, A.K.: Music domain analysis for building faceted ontological representation (2014) 0.01
    0.011965796 = product of:
      0.023931593 = sum of:
        0.023931593 = product of:
          0.047863185 = sum of:
            0.047863185 = weight(_text_:22 in 1437) [ClassicSimilarity], result of:
              0.047863185 = score(doc=1437,freq=2.0), product of:
                0.17672725 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05046712 = queryNorm
                0.2708308 = fieldWeight in 1437, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1437)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  17. Hohmann, G.: ¬Die Anwendung des CIDOC-CRM für die semantische Wissensrepräsentation in den Kulturwissenschaften (2010) 0.01
    0.010256397 = product of:
      0.020512793 = sum of:
        0.020512793 = product of:
          0.041025586 = sum of:
            0.041025586 = weight(_text_:22 in 4011) [ClassicSimilarity], result of:
              0.041025586 = score(doc=4011,freq=2.0), product of:
                0.17672725 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05046712 = queryNorm
                0.23214069 = fieldWeight in 4011, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4011)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  18. Semenova, E.: Ontologie als Begriffssystem : Theoretische Überlegungen und ihre praktische Umsetzung bei der Entwicklung einer Ontologie der Wissenschaftsdisziplinen (2010) 0.01
    0.010256397 = product of:
      0.020512793 = sum of:
        0.020512793 = product of:
          0.041025586 = sum of:
            0.041025586 = weight(_text_:22 in 4095) [ClassicSimilarity], result of:
              0.041025586 = score(doc=4095,freq=2.0), product of:
                0.17672725 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05046712 = queryNorm
                0.23214069 = fieldWeight in 4095, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4095)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  19. Hollink, L.; Assem, M. van: Estimating the relevance of search results in the Culture-Web : a study of semantic distance measures (2010) 0.01
    0.010256397 = product of:
      0.020512793 = sum of:
        0.020512793 = product of:
          0.041025586 = sum of:
            0.041025586 = weight(_text_:22 in 4649) [ClassicSimilarity], result of:
              0.041025586 = score(doc=4649,freq=2.0), product of:
                0.17672725 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05046712 = queryNorm
                0.23214069 = fieldWeight in 4649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4649)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    26.12.2011 13:40:22
  20. Gödert, W.; Hubrich, J.; Nagelschmidt, M.: Semantic knowledge representation for information retrieval (2014) 0.01
    0.010256397 = product of:
      0.020512793 = sum of:
        0.020512793 = product of:
          0.041025586 = sum of:
            0.041025586 = weight(_text_:22 in 987) [ClassicSimilarity], result of:
              0.041025586 = score(doc=987,freq=2.0), product of:
                0.17672725 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05046712 = queryNorm
                0.23214069 = fieldWeight in 987, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=987)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    23. 7.2017 13:49:22

Languages

  • e 28
  • d 6

Types

  • a 27
  • el 4
  • m 3
  • x 2
  • r 1
  • More… Less…