Search (56 results, page 1 of 3)

  • × theme_ss:"Computerlinguistik"
  • × type_ss:"a"
  • × type_ss:"el"
  1. Bager, J.: ¬Die Text-KI ChatGPT schreibt Fachtexte, Prosa, Gedichte und Programmcode (2023) 0.02
    0.01832427 = product of:
      0.03664854 = sum of:
        0.03664854 = product of:
          0.054972813 = sum of:
            0.0053771 = weight(_text_:a in 835) [ClassicSimilarity], result of:
              0.0053771 = score(doc=835,freq=2.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.10191591 = fieldWeight in 835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=835)
            0.049595714 = weight(_text_:22 in 835) [ClassicSimilarity], result of:
              0.049595714 = score(doc=835,freq=2.0), product of:
                0.1602338 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045757167 = queryNorm
                0.30952093 = fieldWeight in 835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=835)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Date
    29.12.2022 18:22:55
    Type
    a
  2. Rieger, F.: Lügende Computer (2023) 0.02
    0.01832427 = product of:
      0.03664854 = sum of:
        0.03664854 = product of:
          0.054972813 = sum of:
            0.0053771 = weight(_text_:a in 912) [ClassicSimilarity], result of:
              0.0053771 = score(doc=912,freq=2.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.10191591 = fieldWeight in 912, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=912)
            0.049595714 = weight(_text_:22 in 912) [ClassicSimilarity], result of:
              0.049595714 = score(doc=912,freq=2.0), product of:
                0.1602338 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045757167 = queryNorm
                0.30952093 = fieldWeight in 912, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=912)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Date
    16. 3.2023 19:22:55
    Type
    a
  3. Griffiths, T.L.; Steyvers, M.: ¬A probabilistic approach to semantic representation (2002) 0.01
    0.011452621 = product of:
      0.022905242 = sum of:
        0.022905242 = product of:
          0.03435786 = sum of:
            0.02504445 = weight(_text_:m in 3671) [ClassicSimilarity], result of:
              0.02504445 = score(doc=3671,freq=2.0), product of:
                0.11386436 = queryWeight, product of:
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.045757167 = queryNorm
                0.21994986 = fieldWeight in 3671, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3671)
            0.009313411 = weight(_text_:a in 3671) [ClassicSimilarity], result of:
              0.009313411 = score(doc=3671,freq=6.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.17652355 = fieldWeight in 3671, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3671)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Semantic networks produced from human data have statistical properties that cannot be easily captured by spatial representations. We explore a probabilistic approach to semantic representation that explicitly models the probability with which words occurin diffrent contexts, and hence captures the probabilistic relationships between words. We show that this representation has statistical properties consistent with the large-scale structure of semantic networks constructed by humans, and trace the origins of these properties.
    Type
    a
  4. Nielsen, R.D.; Ward, W.; Martin, J.H.; Palmer, M.: Extracting a representation from text for semantic analysis (2008) 0.01
    0.011452621 = product of:
      0.022905242 = sum of:
        0.022905242 = product of:
          0.03435786 = sum of:
            0.02504445 = weight(_text_:m in 3365) [ClassicSimilarity], result of:
              0.02504445 = score(doc=3365,freq=2.0), product of:
                0.11386436 = queryWeight, product of:
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.045757167 = queryNorm
                0.21994986 = fieldWeight in 3365, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3365)
            0.009313411 = weight(_text_:a in 3365) [ClassicSimilarity], result of:
              0.009313411 = score(doc=3365,freq=6.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.17652355 = fieldWeight in 3365, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3365)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    We present a novel fine-grained semantic representation of text and an approach to constructing it. This representation is largely extractable by today's technologies and facilitates more detailed semantic analysis. We discuss the requirements driving the representation, suggest how it might be of value in the automated tutoring domain, and provide evidence of its validity.
    Type
    a
  5. Ramisch, C.; Schreiner, P.; Idiart, M.; Villavicencio, A.: ¬An evaluation of methods for the extraction of multiword expressions (20xx) 0.01
    0.010882939 = product of:
      0.021765878 = sum of:
        0.021765878 = product of:
          0.032648817 = sum of:
            0.02504445 = weight(_text_:m in 962) [ClassicSimilarity], result of:
              0.02504445 = score(doc=962,freq=2.0), product of:
                0.11386436 = queryWeight, product of:
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.045757167 = queryNorm
                0.21994986 = fieldWeight in 962, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.0625 = fieldNorm(doc=962)
            0.007604368 = weight(_text_:a in 962) [ClassicSimilarity], result of:
              0.007604368 = score(doc=962,freq=4.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.14413087 = fieldWeight in 962, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=962)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Type
    a
  6. Liu, P.J.; Saleh, M.; Pot, E.; Goodrich, B.; Sepassi, R.; Kaiser, L.; Shazeer, N.: Generating Wikipedia by summarizing long sequences (2018) 0.01
    0.010441273 = product of:
      0.020882547 = sum of:
        0.020882547 = product of:
          0.03132382 = sum of:
            0.021913894 = weight(_text_:m in 773) [ClassicSimilarity], result of:
              0.021913894 = score(doc=773,freq=2.0), product of:
                0.11386436 = queryWeight, product of:
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.045757167 = queryNorm
                0.19245613 = fieldWeight in 773, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=773)
            0.009409925 = weight(_text_:a in 773) [ClassicSimilarity], result of:
              0.009409925 = score(doc=773,freq=8.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.17835285 = fieldWeight in 773, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=773)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    We show that generating English Wikipedia articles can be approached as a multi-document summarization of source documents. We use extractive summarization to coarsely identify salient information and a neural abstractive model to generate the article. For the abstractive model, we introduce a decoder-only architecture that can scalably attend to very long sequences, much longer than typical encoder- decoder architectures used in sequence transduction. We show that this model can generate fluent, coherent multi-sentence paragraphs and even whole Wikipedia articles. When given reference documents, we show it can extract relevant factual information as reflected in perplexity, ROUGE scores and human evaluations.
    Type
    a
  7. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan, T.; Child, R.; Ramesh, A.; Ziegler, D.M.; Wu, J.; Winter, C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.; Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford, A.; Sutskever, I.; Amodei, D.: Language models are few-shot learners (2020) 0.01
    0.010334181 = product of:
      0.020668361 = sum of:
        0.020668361 = product of:
          0.03100254 = sum of:
            0.02168913 = weight(_text_:m in 872) [ClassicSimilarity], result of:
              0.02168913 = score(doc=872,freq=6.0), product of:
                0.11386436 = queryWeight, product of:
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.045757167 = queryNorm
                0.19048217 = fieldWeight in 872, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.03125 = fieldNorm(doc=872)
            0.009313411 = weight(_text_:a in 872) [ClassicSimilarity], result of:
              0.009313411 = score(doc=872,freq=24.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.17652355 = fieldWeight in 872, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=872)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.
    Type
    a
  8. Bischoff, M.: Wie eine KI lernt, sich selbst zu erklären (2023) 0.01
    0.010140518 = product of:
      0.020281035 = sum of:
        0.020281035 = product of:
          0.030421551 = sum of:
            0.02504445 = weight(_text_:m in 956) [ClassicSimilarity], result of:
              0.02504445 = score(doc=956,freq=2.0), product of:
                0.11386436 = queryWeight, product of:
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.045757167 = queryNorm
                0.21994986 = fieldWeight in 956, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.0625 = fieldNorm(doc=956)
            0.0053771 = weight(_text_:a in 956) [ClassicSimilarity], result of:
              0.0053771 = score(doc=956,freq=2.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.10191591 = fieldWeight in 956, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=956)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Type
    a
  9. Shen, M.; Liu, D.-R.; Huang, Y.-S.: Extracting semantic relations to enrich domain ontologies (2012) 0.01
    0.010021043 = product of:
      0.020042086 = sum of:
        0.020042086 = product of:
          0.030063128 = sum of:
            0.021913894 = weight(_text_:m in 267) [ClassicSimilarity], result of:
              0.021913894 = score(doc=267,freq=2.0), product of:
                0.11386436 = queryWeight, product of:
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.045757167 = queryNorm
                0.19245613 = fieldWeight in 267, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=267)
            0.008149235 = weight(_text_:a in 267) [ClassicSimilarity], result of:
              0.008149235 = score(doc=267,freq=6.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.1544581 = fieldWeight in 267, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=267)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Domain ontologies facilitate the organization, sharing and reuse of domain knowledge, and enable various vertical domain applications to operate successfully. Most methods for automatically constructing ontologies focus on taxonomic relations, such as is-kind-of and is- part-of relations. However, much of the domain-specific semantics is ignored. This work proposes a semi-unsupervised approach for extracting semantic relations from domain-specific text documents. The approach effectively utilizes text mining and existing taxonomic relations in domain ontologies to discover candidate keywords that can represent semantic relations. A preliminary experiment on the natural science domain (Taiwan K9 education) indicates that the proposed method yields valuable recommendations. This work enriches domain ontologies by adding distilled semantics.
    Type
    a
  10. Bird, S.; Dale, R.; Dorr, B.; Gibson, B.; Joseph, M.; Kan, M.-Y.; Lee, D.; Powley, B.; Radev, D.; Tan, Y.F.: ¬The ACL Anthology Reference Corpus : a reference dataset for bibliographic research in computational linguistics (2008) 0.01
    0.009598092 = product of:
      0.019196184 = sum of:
        0.019196184 = product of:
          0.028794276 = sum of:
            0.0177091 = weight(_text_:m in 2804) [ClassicSimilarity], result of:
              0.0177091 = score(doc=2804,freq=4.0), product of:
                0.11386436 = queryWeight, product of:
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.045757167 = queryNorm
                0.15552804 = fieldWeight in 2804, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2804)
            0.011085175 = weight(_text_:a in 2804) [ClassicSimilarity], result of:
              0.011085175 = score(doc=2804,freq=34.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.21010503 = fieldWeight in 2804, product of:
                  5.8309517 = tf(freq=34.0), with freq of:
                    34.0 = termFreq=34.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2804)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    The ACL Anthology is a digital archive of conference and journal papers in natural language processing and computational linguistics. Its primary purpose is to serve as a reference repository of research results, but we believe that it can also be an object of study and a platform for research in its own right. We describe an enriched and standardized reference corpus derived from the ACL Anthology that can be used for research in scholarly document processing. This corpus, which we call the ACL Anthology Reference Corpus (ACL ARC), brings together the recent activities of a number of research groups around the world. Our goal is to make the corpus widely available, and to encourage other researchers to use it as a standard testbed for experiments in both bibliographic and bibliometric research.
    Content
    Vgl. auch: Automatic Term Recognition (ATR) is a research task that deals with the identification of domain-specific terms. Terms, in simple words, are textual realization of significant concepts in an expertise domain. Additionally, domain-specific terms may be classified into a number of categories, in which each category represents a significant concept. A term classification task is often defined on top of an ATR procedure to perform such categorization. For instance, in the biomedical domain, terms can be classified as drugs, proteins, and genes. This is a reference dataset for terminology extraction and classification research in computational linguistics. It is a set of manually annotated terms in English language that are extracted from the ACL Anthology Reference Corpus (ACL ARC). The ACL ARC is a canonicalised and frozen subset of scientific publications in the domain of Human Language Technologies (HLT). It consists of 10,921 articles from 1965 to 2006. The dataset, called ACL RD-TEC, is comprised of more than 69,000 candidate terms that are manually annotated as valid and invalid terms. Furthermore, valid terms are classified as technology and non-technology terms. Technology terms refer to a method, process, or in general a technological concept in the domain of HLT, e.g. machine translation, word sense disambiguation, and language modelling. On the other hand, non-technology terms refer to important concepts other than technological; examples of such terms in the domain of HLT are multilingual lexicon, corpora, word sense, and language model. The dataset is created to serve as a gold standard for the comparison of the algorithms of term recognition and classification. [http://catalog.elra.info/product_info.php?products_id=1236].
    Type
    a
  11. Perovsek, M.; Kranjca, J.; Erjaveca, T.; Cestnika, B.; Lavraca, N.: TextFlows : a visual programming platform for text mining and natural language processing (2016) 0.01
    0.009553901 = product of:
      0.019107802 = sum of:
        0.019107802 = product of:
          0.028661702 = sum of:
            0.018783338 = weight(_text_:m in 2697) [ClassicSimilarity], result of:
              0.018783338 = score(doc=2697,freq=2.0), product of:
                0.11386436 = queryWeight, product of:
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.045757167 = queryNorm
                0.1649624 = fieldWeight in 2697, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2697)
            0.009878363 = weight(_text_:a in 2697) [ClassicSimilarity], result of:
              0.009878363 = score(doc=2697,freq=12.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.18723148 = fieldWeight in 2697, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2697)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Text mining and natural language processing are fast growing areas of research, with numerous applications in business, science and creative industries. This paper presents TextFlows, a web-based text mining and natural language processing platform supporting workflow construction, sharing and execution. The platform enables visual construction of text mining workflows through a web browser, and the execution of the constructed workflows on a processing cloud. This makes TextFlows an adaptable infrastructure for the construction and sharing of text processing workflows, which can be reused in various applications. The paper presents the implemented text mining and language processing modules, and describes some precomposed workflows. Their features are demonstrated on three use cases: comparison of document classifiers and of different part-of-speech taggers on a text categorization problem, and outlier detection in document corpora.
    Type
    a
  12. Holland, M.: Erstes wissenschaftliches Buch eines Algorithmus' veröffentlicht (2019) 0.01
    0.009522572 = product of:
      0.019045144 = sum of:
        0.019045144 = product of:
          0.028567716 = sum of:
            0.021913894 = weight(_text_:m in 5227) [ClassicSimilarity], result of:
              0.021913894 = score(doc=5227,freq=2.0), product of:
                0.11386436 = queryWeight, product of:
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.045757167 = queryNorm
                0.19245613 = fieldWeight in 5227, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5227)
            0.0066538225 = weight(_text_:a in 5227) [ClassicSimilarity], result of:
              0.0066538225 = score(doc=5227,freq=4.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.12611452 = fieldWeight in 5227, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5227)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Der Wissenschaftsverlag Springer Nature hat nach eigenen Angaben das erste Buch veröffentlicht, das von einem Algorithmus verfasst wurde. Bei Springer Nature ist das nach Angaben des Wissenschaftsverlags erste maschinengenerierte Buch erschienen: "Lithium-Ion Batteries - A Machine-Generated Summary of Current Research" biete einen Überblick über die neuesten Forschungspublikationen über Lithium-Ionen-Batterien, erklärte die Goethe-Universität Frankfurt am Main. Dort wurde im Bereich Angewandte Computerlinguistik unter der Leitung von Christian Chiarcos jenes Verfahren entwickelt, das Textinhalte automatisch analysiert und relevante Publikationen auswählen kann. Es heißt "Beta Writer" und steht als Autor über dem Buch.
    Type
    a
  13. Aizawa, A.; Kohlhase, M.: Mathematical information retrieval (2021) 0.01
    0.009522572 = product of:
      0.019045144 = sum of:
        0.019045144 = product of:
          0.028567716 = sum of:
            0.021913894 = weight(_text_:m in 667) [ClassicSimilarity], result of:
              0.021913894 = score(doc=667,freq=2.0), product of:
                0.11386436 = queryWeight, product of:
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.045757167 = queryNorm
                0.19245613 = fieldWeight in 667, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=667)
            0.0066538225 = weight(_text_:a in 667) [ClassicSimilarity], result of:
              0.0066538225 = score(doc=667,freq=4.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.12611452 = fieldWeight in 667, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=667)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Type
    a
  14. Rötzer, F.: KI-Programm besser als Menschen im Verständnis natürlicher Sprache (2018) 0.01
    0.009162135 = product of:
      0.01832427 = sum of:
        0.01832427 = product of:
          0.027486406 = sum of:
            0.00268855 = weight(_text_:a in 4217) [ClassicSimilarity], result of:
              0.00268855 = score(doc=4217,freq=2.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.050957955 = fieldWeight in 4217, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4217)
            0.024797857 = weight(_text_:22 in 4217) [ClassicSimilarity], result of:
              0.024797857 = score(doc=4217,freq=2.0), product of:
                0.1602338 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045757167 = queryNorm
                0.15476047 = fieldWeight in 4217, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4217)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Date
    22. 1.2018 11:32:44
    Type
    a
  15. Franke-Maier, M.: Computerlinguistik und Bibliotheken : Editorial (2016) 0.01
    0.008963036 = product of:
      0.017926073 = sum of:
        0.017926073 = product of:
          0.026889108 = sum of:
            0.022136377 = weight(_text_:m in 3206) [ClassicSimilarity], result of:
              0.022136377 = score(doc=3206,freq=4.0), product of:
                0.11386436 = queryWeight, product of:
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.045757167 = queryNorm
                0.19441006 = fieldWeight in 3206, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3206)
            0.00475273 = weight(_text_:a in 3206) [ClassicSimilarity], result of:
              0.00475273 = score(doc=3206,freq=4.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.090081796 = fieldWeight in 3206, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3206)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Vor 50 Jahren, im Februar 1966, wies Floyd M. Cammack auf den Zusammenhang von "Linguistics and Libraries" hin. Er ging dabei von dem Eintrag für "Linguistics" in den Library of Congress Subject Headings (LCSH) von 1957 aus, der als Verweis "See Language and Languages; Philology; Philology, Comparative" enthielt. Acht Jahre später kamen unter dem Schlagwort "Language and Languages" Ergänzungen wie "language data processing", "automatic indexing", "machine translation" und "psycholinguistics" hinzu. Für Cammack zeigt sich hier ein Netz komplexer Wechselbeziehungen, die unter dem Begriff "Linguistics" zusammengefasst werden sollten. Dieses System habe wichtigen Einfluss auf alle, die mit dem Sammeln, Organisieren, Speichern und Wiederauffinden von Informationen befasst seien. (Cammack 1966:73). Hier liegt - im übertragenen Sinne - ein Heft vor Ihnen, in dem es um computerlinguistische Verfahren in Bibliotheken geht. Letztlich geht es um eine Versachlichung der Diskussion, um den Stellenwert der Inhaltserschliessung und die Rekalibrierung ihrer Wertschätzung in Zeiten von Mega-Indizes und Big Data. Der derzeitige Widerspruch zwischen dem Wunsch nach relevanter Treffermenge in Rechercheoberflächen vs. der Erfahrung des Relevanz-Rankings ist zu lösen. Explizit auch die Frage, wie oft wir von letzterem enttäuscht wurden und was zu tun ist, um das Verhältnis von recall und precision wieder in ein angebrachtes Gleichgewicht zu bringen. Unsere Nutzerinnen und Nutzer werden es uns danken.
    Editor
    Ledl, A.
    Type
    a
  16. Park, J.S.; O'Brien, J.C.; Cai, C.J.; Ringel Morris, M.; Liang, P.; Bernstein, M.S.: Generative agents : interactive simulacra of human behavior (2023) 0.01
    0.007961584 = product of:
      0.015923169 = sum of:
        0.015923169 = product of:
          0.02388475 = sum of:
            0.015652781 = weight(_text_:m in 972) [ClassicSimilarity], result of:
              0.015652781 = score(doc=972,freq=2.0), product of:
                0.11386436 = queryWeight, product of:
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.045757167 = queryNorm
                0.13746867 = fieldWeight in 972, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=972)
            0.00823197 = weight(_text_:a in 972) [ClassicSimilarity], result of:
              0.00823197 = score(doc=972,freq=12.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.15602624 = fieldWeight in 972, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=972)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Believable proxies of human behavior can empower interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication to prototyping tools. In this paper, we introduce generative agents--computational software agents that simulate believable human behavior. Generative agents wake up, cook breakfast, and head to work; artists paint, while authors write; they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors: for example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture--observation, planning, and reflection--each contribute critically to the believability of agent behavior. By fusing large language models with computational, interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior.
    Type
    a
  17. Wordhoard (o.J.) 0.00
    0.0020746938 = product of:
      0.0041493876 = sum of:
        0.0041493876 = product of:
          0.012448162 = sum of:
            0.012448162 = weight(_text_:a in 3922) [ClassicSimilarity], result of:
              0.012448162 = score(doc=3922,freq=14.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.23593865 = fieldWeight in 3922, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3922)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Abstract
    WordHoard defines a multiword unit as a special type of collocate in which the component words comprise a meaningful phrase. For example, "Knight of the Round Table" is a meaningful multiword unit or phrase. WordHoard uses the notion of a pseudo-bigram to generalize the computation of bigram (two word) statistical measures to phrases (n-grams) longer than two words, and to allow comparisons of these measures for phrases with different word counts. WordHoard applies the localmaxs algorithm of Silva et al. to the pseudo-bigrams to identify potential compositional phrases that "stand out" in a text. WordHoard can also filter two and three word phrases using the word class filters suggested by Justeson and Katz.
    Type
    a
  18. WordHoard: finding multiword units (20??) 0.00
    0.0020746938 = product of:
      0.0041493876 = sum of:
        0.0041493876 = product of:
          0.012448162 = sum of:
            0.012448162 = weight(_text_:a in 1123) [ClassicSimilarity], result of:
              0.012448162 = score(doc=1123,freq=14.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.23593865 = fieldWeight in 1123, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1123)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Abstract
    WordHoard defines a multiword unit as a special type of collocate in which the component words comprise a meaningful phrase. For example, "Knight of the Round Table" is a meaningful multiword unit or phrase. WordHoard uses the notion of a pseudo-bigram to generalize the computation of bigram (two word) statistical measures to phrases (n-grams) longer than two words, and to allow comparisons of these measures for phrases with different word counts. WordHoard applies the localmaxs algorithm of Silva et al. to the pseudo-bigrams to identify potential compositional phrases that "stand out" in a text. WordHoard can also filter two and three word phrases using the word class filters suggested by Justeson and Katz.
    Type
    a
  19. Schmid, H.: Improvements in Part-of-Speech tagging with an application to German (1995) 0.00
    0.002003927 = product of:
      0.004007854 = sum of:
        0.004007854 = product of:
          0.012023562 = sum of:
            0.012023562 = weight(_text_:a in 124) [ClassicSimilarity], result of:
              0.012023562 = score(doc=124,freq=10.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.22789092 = fieldWeight in 124, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=124)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Abstract
    This paper presents a couple of extensions to a basic Markov Model tagger (called TreeTagger) which improve its accuracy when trained on small corpora. The basic tagger was originally developed for English Schmid, 1994. The extensions together reduced error rates on a German test corpus by more than a third.
    Type
    a
  20. Kiela, D.; Clark, S.: Detecting compositionality of multi-word expressions using nearest neighbours in vector space models (2013) 0.00
    0.002003927 = product of:
      0.004007854 = sum of:
        0.004007854 = product of:
          0.012023562 = sum of:
            0.012023562 = weight(_text_:a in 1161) [ClassicSimilarity], result of:
              0.012023562 = score(doc=1161,freq=10.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.22789092 = fieldWeight in 1161, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1161)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Abstract
    We present a novel unsupervised approach to detecting the compositionality of multi-word expressions. We compute the compositionality of a phrase through substituting the constituent words with their "neighbours" in a semantic vector space and averaging over the distance between the original phrase and the substituted neighbour phrases. Several methods of obtaining neighbours are presented. The results are compared to existing supervised results and achieve state-of-the-art performance on a verb-object dataset of human compositionality ratings.
    Type
    a

Years

Languages

  • e 28
  • d 26
  • el 1
  • More… Less…