Search (58 results, page 3 of 3)

  • × theme_ss:"Retrievalalgorithmen"
  • × year_i:[2010 TO 2020}
  1. Karisani, P.; Rahgozar, M.; Oroumchian, F.: Transforming LSA space dimensions into a rubric for an automatic assessment and feedback system (2016) 0.00
    0.0031590632 = product of:
      0.02211344 = sum of:
        0.0071344664 = weight(_text_:information in 2970) [ClassicSimilarity], result of:
          0.0071344664 = score(doc=2970,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13714671 = fieldWeight in 2970, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2970)
        0.014978974 = weight(_text_:retrieval in 2970) [ClassicSimilarity], result of:
          0.014978974 = score(doc=2970,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.16710453 = fieldWeight in 2970, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2970)
      0.14285715 = coord(2/14)
    
    Abstract
    Pseudo-relevance feedback is the basis of a category of automatic query modification techniques. Pseudo-relevance feedback methods assume the initial retrieved set of documents to be relevant. Then they use these documents to extract more relevant terms for the query or just re-weigh the user's original query. In this paper, we propose a straightforward, yet effective use of pseudo-relevance feedback method in detecting more informative query terms and re-weighting them. The query-by-query analysis of our results indicates that our method is capable of identifying the most important keywords even in short queries. Our main idea is that some of the top documents may contain a closer context to the user's information need than the others. Therefore, re-examining the similarity of those top documents and weighting this set based on their context could help in identifying and re-weighting informative query terms. Our experimental results in standard English and Persian test collections show that our method improves retrieval performance, in terms of MAP criterion, up to 7% over traditional query term re-weighting methods.
    Source
    Information processing and management. 52(2016) no.3, S.478-489
  2. González-Ibáñez, R.; Esparza-Villamán, A.; Vargas-Godoy, J.C.; Shah, C.: ¬A comparison of unimodal and multimodal models for implicit detection of relevance in interactive IR (2019) 0.00
    0.0031590632 = product of:
      0.02211344 = sum of:
        0.0071344664 = weight(_text_:information in 5417) [ClassicSimilarity], result of:
          0.0071344664 = score(doc=5417,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13714671 = fieldWeight in 5417, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5417)
        0.014978974 = weight(_text_:retrieval in 5417) [ClassicSimilarity], result of:
          0.014978974 = score(doc=5417,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.16710453 = fieldWeight in 5417, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5417)
      0.14285715 = coord(2/14)
    
    Abstract
    Implicit detection of relevance has been approached by many during the last decade. From the use of individual measures to the use of multiple features from different sources (multimodality), studies have shown the feasibility to automatically detect whether a document is relevant. Despite promising results, it is not clear yet to what extent multimodality constitutes an effective approach compared to unimodality. In this article, we hypothesize that it is possible to build unimodal models capable of outperforming multimodal models in the detection of perceived relevance. To test this hypothesis, we conducted three experiments to compare unimodal and multimodal classification models built using a combination of 24 features. Our classification experiments showed that a univariate unimodal model based on the left-click feature supports our hypothesis. On the other hand, our prediction experiment suggests that multimodality slightly improves early classification compared to the best unimodal models. Based on our results, we argue that the feasibility for practical applications of state-of-the-art multimodal approaches may be strongly constrained by technology, cultural, ethical, and legal aspects, in which case unimodality may offer a better alternative today for supporting relevance detection in interactive information retrieval systems.
    Source
    Journal of the Association for Information Science and Technology. 70(2019) no.11, S.1223-1235
  3. Behnert, C.; Borst, T.: Neue Formen der Relevanz-Sortierung in bibliothekarischen Informationssystemen : das DFG-Projekt LibRank (2015) 0.00
    0.003153452 = product of:
      0.044148326 = sum of:
        0.044148326 = weight(_text_:bibliothek in 5392) [ClassicSimilarity], result of:
          0.044148326 = score(doc=5392,freq=2.0), product of:
            0.121660605 = queryWeight, product of:
              4.1055303 = idf(docFreq=1980, maxDocs=44218)
              0.029633347 = queryNorm
            0.36288103 = fieldWeight in 5392, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1055303 = idf(docFreq=1980, maxDocs=44218)
              0.0625 = fieldNorm(doc=5392)
      0.071428575 = coord(1/14)
    
    Source
    Bibliothek: Forschung und Praxis. 39(2015) H.3, S.384-393
  4. Bilal, D.: Ranking, relevance judgment, and precision of information retrieval on children's queries : evaluation of Google, Yahoo!, Bing, Yahoo! Kids, and ask Kids (2012) 0.00
    0.002864987 = product of:
      0.020054907 = sum of:
        0.008071727 = weight(_text_:information in 393) [ClassicSimilarity], result of:
          0.008071727 = score(doc=393,freq=8.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.1551638 = fieldWeight in 393, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=393)
        0.0119831795 = weight(_text_:retrieval in 393) [ClassicSimilarity], result of:
          0.0119831795 = score(doc=393,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.13368362 = fieldWeight in 393, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=393)
      0.14285715 = coord(2/14)
    
    Abstract
    This study employed benchmarking and intellectual relevance judgment in evaluating Google, Yahoo!, Bing, Yahoo! Kids, and Ask Kids on 30 queries that children formulated to find information for specific tasks. Retrieved hits on given queries were benchmarked to Google's and Yahoo! Kids' top-five ranked hits retrieved. Relevancy of hits was judged on a graded scale; precision was calculated using the precision-at-ten metric (P@10). Yahoo! and Bing produced a similar percentage in hit overlap with Google (nearly 30%), but differed in the ranking of hits. Ask Kids retrieved 11% in hit overlap with Google versus 3% by Yahoo! Kids. The engines retrieved 26 hits across query clusters that overlapped with Yahoo! Kids' top-five ranked hits. Precision (P) that the engines produced across the queries was P = 0.48 for relevant hits, and P = 0.28 for partially relevant hits. Precision by Ask Kids was P = 0.44 for relevant hits versus P = 0.21 by Yahoo! Kids. Bing produced the highest total precision (TP) of relevant hits (TP = 0.86) across the queries, and Yahoo! Kids yielded the lowest (TP = 0.47). Average precision (AP) of relevant hits was AP = 0.56 by leading engines versus AP = 0.29 by small engines. In contrast, average precision of partially relevant hits was AP = 0.83 by small engines versus AP = 0.33 by leading engines. Average precision of relevant hits across the engines was highest on two-word queries and lowest on one-word queries. Google performed best on natural language queries; Bing did the same (P = 0.69) on two-word queries. The findings have implications for search engine ranking algorithms, relevance theory, search engine design, research design, and information literacy.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.9, S.1879-1896
  5. He, J.; Meij, E.; Rijke, M. de: Result diversification based on query-specific cluster ranking (2011) 0.00
    0.0028605436 = product of:
      0.020023804 = sum of:
        0.0050448296 = weight(_text_:information in 4355) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=4355,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 4355, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4355)
        0.014978974 = weight(_text_:retrieval in 4355) [ClassicSimilarity], result of:
          0.014978974 = score(doc=4355,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.16710453 = fieldWeight in 4355, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4355)
      0.14285715 = coord(2/14)
    
    Abstract
    Result diversification is a retrieval strategy for dealing with ambiguous or multi-faceted queries by providing documents that cover as many facets of the query as possible. We propose a result diversification framework based on query-specific clustering and cluster ranking, in which diversification is restricted to documents belonging to clusters that potentially contain a high percentage of relevant documents. Empirical results show that the proposed framework improves the performance of several existing diversification methods. The framework also gives rise to a simple yet effective cluster-based approach to result diversification that selects documents from different clusters to be included in a ranked list in a round robin fashion. We describe a set of experiments aimed at thoroughly analyzing the behavior of the two main components of the proposed diversification framework, ranking and selecting clusters for diversification. Both components have a crucial impact on the overall performance of our framework, but ranking clusters plays a more important role than selecting clusters. We also examine properties that clusters should have in order for our diversification framework to be effective. Most relevant documents should be contained in a small number of high-quality clusters, while there should be no dominantly large clusters. Also, documents from these high-quality clusters should have a diverse content. These properties are strongly correlated with the overall performance of the proposed diversification framework.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.3, S.550-571
  6. Bornmann, L.; Mutz, R.: From P100 to P100' : a new citation-rank approach (2014) 0.00
    0.0026825934 = product of:
      0.018778153 = sum of:
        0.008071727 = weight(_text_:information in 1431) [ClassicSimilarity], result of:
          0.008071727 = score(doc=1431,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.1551638 = fieldWeight in 1431, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=1431)
        0.010706427 = product of:
          0.032119278 = sum of:
            0.032119278 = weight(_text_:22 in 1431) [ClassicSimilarity], result of:
              0.032119278 = score(doc=1431,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.30952093 = fieldWeight in 1431, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1431)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Date
    22. 8.2014 17:05:18
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.9, S.1939-1943
  7. Walz, J.: Analyse der Übertragbarkeit allgemeiner Rankingfaktoren von Web-Suchmaschinen auf Discovery-Systeme (2018) 0.00
    0.002588449 = product of:
      0.036238287 = sum of:
        0.036238287 = weight(_text_:web in 5744) [ClassicSimilarity], result of:
          0.036238287 = score(doc=5744,freq=6.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.37471575 = fieldWeight in 5744, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=5744)
      0.071428575 = coord(1/14)
    
    Abstract
    Ziel: Ziel dieser Bachelorarbeit war es, die Übertragbarkeit der allgemeinen Rankingfaktoren, wie sie von Web-Suchmaschinen verwendet werden, auf Discovery-Systeme zu analysieren. Dadurch könnte das bisher hauptsächlich auf dem textuellen Abgleich zwischen Suchanfrage und Dokumenten basierende bibliothekarische Ranking verbessert werden. Methode: Hierfür wurden Faktoren aus den Gruppen Popularität, Aktualität, Lokalität, Technische Faktoren, sowie dem personalisierten Ranking diskutiert. Die entsprechenden Rankingfaktoren wurden nach ihrer Vorkommenshäufigkeit in der analysierten Literatur und der daraus abgeleiteten Wichtigkeit, ausgewählt. Ergebnis: Von den 23 untersuchten Rankingfaktoren sind 14 (61 %) direkt vom Ranking der Web-Suchmaschinen auf das Ranking der Discovery-Systeme übertragbar. Zu diesen zählen unter anderem das Klickverhalten, das Erstellungsdatum, der Nutzerstandort, sowie die Sprache. Sechs (26%) der untersuchten Faktoren sind dagegen nicht übertragbar (z.B. Aktualisierungsfrequenz und Ladegeschwindigkeit). Die Linktopologie, die Nutzungshäufigkeit, sowie die Aktualisierungsfrequenz sind mit entsprechenden Modifikationen übertragbar.
  8. Van der Veer Martens, B.; Fleet, C. van: Opening the black box of "relevance work" : a domain analysis (2012) 0.00
    8.64828E-4 = product of:
      0.012107591 = sum of:
        0.012107591 = weight(_text_:information in 247) [ClassicSimilarity], result of:
          0.012107591 = score(doc=247,freq=8.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.23274569 = fieldWeight in 247, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=247)
      0.071428575 = coord(1/14)
    
    Abstract
    In response to Hjørland's recent call for a reconceptualization of the foundations of relevance, we suggest that the sociocognitive aspects of intermediation by information agencies, such as archives and libraries, are a necessary and unexplored part of the infrastructure of the subject knowledge domains central to his recommended "view of relevance informed by a social paradigm" (2010, p. 217). From a comparative analysis of documents from 39 graduate-level introductory courses in archives, reference, and strategic/competitive intelligence taught in 13 American Library Association-accredited library and information science (LIS) programs, we identify four defining sociocognitive dimensions of "relevance work" in information agencies within Hjørland's proposed framework for relevance: tasks, time, systems, and assessors. This study is intended to supply sociocognitive content from within the relevance work domain to support further domain analytic research, and to emphasize the importance of intermediary relevance work for all subject knowledge domains.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.5, S.936-947
  9. Tober, M.; Hennig, L.; Furch, D.: SEO Ranking-Faktoren und Rang-Korrelationen 2014 : Google Deutschland (2014) 0.00
    7.6474476E-4 = product of:
      0.010706427 = sum of:
        0.010706427 = product of:
          0.032119278 = sum of:
            0.032119278 = weight(_text_:22 in 1484) [ClassicSimilarity], result of:
              0.032119278 = score(doc=1484,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.30952093 = fieldWeight in 1484, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1484)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Date
    13. 9.2014 14:45:22
  10. Yan, E.; Ding, Y.; Sugimoto, C.R.: P-Rank: an indicator measuring prestige in heterogeneous scholarly networks (2011) 0.00
    6.115257E-4 = product of:
      0.00856136 = sum of:
        0.00856136 = weight(_text_:information in 4349) [ClassicSimilarity], result of:
          0.00856136 = score(doc=4349,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.16457605 = fieldWeight in 4349, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4349)
      0.071428575 = coord(1/14)
    
    Abstract
    Ranking scientific productivity and prestige are often limited to homogeneous networks. These networks are unable to account for the multiple factors that constitute the scholarly communication and reward system. This study proposes a new informetric indicator, P-Rank, for measuring prestige in heterogeneous scholarly networks containing articles, authors, and journals. P-Rank differentiates the weight of each citation based on its citing papers, citing journals, and citing authors. Articles from 16 representative library and information science journals are selected as the dataset. Principle Component Analysis is conducted to examine the relationship between P-Rank and other bibliometric indicators. We also compare the correlation and rank variances between citation counts and P-Rank scores. This work provides a new approach to examining prestige in scholarly communication networks in a more comprehensive and nuanced way.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.3, S.467-477
  11. Li, H.; Wu, H.; Li, D.; Lin, S.; Su, Z.; Luo, X.: PSI: A probabilistic semantic interpretable framework for fine-grained image ranking (2018) 0.00
    6.115257E-4 = product of:
      0.00856136 = sum of:
        0.00856136 = weight(_text_:information in 4577) [ClassicSimilarity], result of:
          0.00856136 = score(doc=4577,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.16457605 = fieldWeight in 4577, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4577)
      0.071428575 = coord(1/14)
    
    Abstract
    Image Ranking is one of the key problems in information science research area. However, most current methods focus on increasing the performance, leaving the semantic gap problem, which refers to the learned ranking models are hard to be understood, remaining intact. Therefore, in this article, we aim at learning an interpretable ranking model to tackle the semantic gap in fine-grained image ranking. We propose to combine attribute-based representation and online passive-aggressive (PA) learning based ranking models to achieve this goal. Besides, considering the highly localized instances in fine-grained image ranking, we introduce a supervised constrained clustering method to gather class-balanced training instances for local PA-based models, and incorporate the learned local models into a unified probabilistic framework. Extensive experiments on the benchmark demonstrate that the proposed framework outperforms state-of-the-art methods in terms of accuracy and speed.
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.12, S.1488-1501
  12. Costa Carvalho, A. da; Rossi, C.; Moura, E.S. de; Silva, A.S. da; Fernandes, D.: LePrEF: Learn to precompute evidence fusion for efficient query evaluation (2012) 0.00
    5.0960475E-4 = product of:
      0.0071344664 = sum of:
        0.0071344664 = weight(_text_:information in 278) [ClassicSimilarity], result of:
          0.0071344664 = score(doc=278,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13714671 = fieldWeight in 278, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=278)
      0.071428575 = coord(1/14)
    
    Abstract
    State-of-the-art search engine ranking methods combine several distinct sources of relevance evidence to produce a high-quality ranking of results for each query. The fusion of information is currently done at query-processing time, which has a direct effect on the response time of search systems. Previous research also shows that an alternative to improve search efficiency in textual databases is to precompute term impacts at indexing time. In this article, we propose a novel alternative to precompute term impacts, providing a generic framework for combining any distinct set of sources of evidence by using a machine-learning technique. This method retains the advantages of producing high-quality results, but avoids the costs of combining evidence at query-processing time. Our method, called Learn to Precompute Evidence Fusion (LePrEF), uses genetic programming to compute a unified precomputed impact value for each term found in each document prior to query processing, at indexing time. Compared with previous research on precomputing term impacts, our method offers the advantage of providing a generic framework to precompute impact using any set of relevance evidence at any text collection, whereas previous research articles do not. The precomputed impact values are indexed and used later for computing document ranking at query-processing time. By doing so, our method effectively reduces the query processing to simple additions of such impacts. We show that this approach, while leading to results comparable to state-of-the-art ranking methods, also can lead to a significant decrease in computational costs during query processing.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.7, S.1383-1397
  13. Jiang, X.; Sun, X.; Yang, Z.; Zhuge, H.; Lapshinova-Koltunski, E.; Yao, J.: Exploiting heterogeneous scientific literature networks to combat ranking bias : evidence from the computational linguistics area (2016) 0.00
    5.0960475E-4 = product of:
      0.0071344664 = sum of:
        0.0071344664 = weight(_text_:information in 3017) [ClassicSimilarity], result of:
          0.0071344664 = score(doc=3017,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13714671 = fieldWeight in 3017, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3017)
      0.071428575 = coord(1/14)
    
    Abstract
    It is important to help researchers find valuable papers from a large literature collection. To this end, many graph-based ranking algorithms have been proposed. However, most of these algorithms suffer from the problem of ranking bias. Ranking bias hurts the usefulness of a ranking algorithm because it returns a ranking list with an undesirable time distribution. This paper is a focused study on how to alleviate ranking bias by leveraging the heterogeneous network structure of the literature collection. We propose a new graph-based ranking algorithm, MutualRank, that integrates mutual reinforcement relationships among networks of papers, researchers, and venues to achieve a more synthetic, accurate, and less-biased ranking than previous methods. MutualRank provides a unified model that involves both intra- and inter-network information for ranking papers, researchers, and venues simultaneously. We use the ACL Anthology Network as the benchmark data set and construct the gold standard from computer linguistics course websites of well-known universities and two well-known textbooks. The experimental results show that MutualRank greatly outperforms the state-of-the-art competitors, including PageRank, HITS, CoRank, Future Rank, and P-Rank, in ranking papers in both improving ranking effectiveness and alleviating ranking bias. Rankings of researchers and venues by MutualRank are also quite reasonable.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.7, S.1679-1702
  14. Cecchini, R.L.; Lorenzetti, C.M.; Maguitman, A.G.; Brignole, N.B.: Multiobjective evolutionary algorithms for context-based search (2010) 0.00
    4.32414E-4 = product of:
      0.0060537956 = sum of:
        0.0060537956 = weight(_text_:information in 3482) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=3482,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 3482, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3482)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.6, S.1258-1274
  15. Mayr, P.: Bradfordizing als Re-Ranking-Ansatz in Literaturinformationssystemen (2011) 0.00
    4.32414E-4 = product of:
      0.0060537956 = sum of:
        0.0060537956 = weight(_text_:information in 4292) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=4292,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 4292, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4292)
      0.071428575 = coord(1/14)
    
    Source
    Information - Wissenschaft und Praxis. 62(2011) H.1, S.3-10
  16. Wei, F.; Li, W.; Liu, S.: iRANK: a rank-learn-combine framework for unsupervised ensemble ranking (2010) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 3472) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=3472,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 3472, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3472)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.6, S.1232-1243
  17. Silva, R.M.; Gonçalves, M.A.; Veloso, A.: ¬A Two-stage active learning method for learning to rank (2014) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 1184) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=1184,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 1184, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1184)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.1, S.109-128
  18. Zhu, J.; Han, L.; Gou, Z.; Yuan, X.: ¬A fuzzy clustering-based denoising model for evaluating uncertainty in collaborative filtering recommender systems (2018) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 4460) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=4460,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 4460, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4460)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.9, S.1109-1121

Languages

  • e 50
  • d 8

Types

  • a 56
  • el 1
  • r 1
  • x 1
  • More… Less…