Search (35 results, page 1 of 2)

  • × theme_ss:"Suchmaschinen"
  • × year_i:[2010 TO 2020}
  1. Schaat, S.: Von der automatisierten Manipulation zur Manipulation der Automatisierung (2019) 0.02
    0.021395644 = product of:
      0.12837386 = sum of:
        0.12837386 = sum of:
          0.09053302 = weight(_text_:etc in 4996) [ClassicSimilarity], result of:
            0.09053302 = score(doc=4996,freq=2.0), product of:
              0.18910104 = queryWeight, product of:
                5.4164915 = idf(docFreq=533, maxDocs=44218)
                0.03491209 = queryNorm
              0.47875473 = fieldWeight in 4996, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.4164915 = idf(docFreq=533, maxDocs=44218)
                0.0625 = fieldNorm(doc=4996)
          0.03784085 = weight(_text_:22 in 4996) [ClassicSimilarity], result of:
            0.03784085 = score(doc=4996,freq=2.0), product of:
              0.1222562 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03491209 = queryNorm
              0.30952093 = fieldWeight in 4996, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=4996)
      0.16666667 = coord(1/6)
    
    Content
    "Wir kennen das bereits von Google, Facebook und Amazon: Unser Internet-Verhalten wird automatisch erfasst, damit uns angepasste Inhalte präsentiert werden können. Ob uns diese Inhalte gefallen oder nicht, melden wir direkt oder indirekt zurück (Kauf, Klick etc.). Durch diese Feedbackschleife lernen solche Systeme immer besser, was sie uns präsentieren müssen, um unsere Bedürfnisse anzusprechen, und wissen implizit dadurch auch immer besser, wie sie unsere Bedürfniserfüllung - zur Konsumtion - manipulieren können."
    Date
    19. 2.2019 17:22:00
  2. Rieh, S.Y.; Kim, Y.-M.; Markey, K.: Amount of invested mental effort (AIME) in online searching (2012) 0.01
    0.014877992 = product of:
      0.08926795 = sum of:
        0.08926795 = weight(_text_:searching in 2726) [ClassicSimilarity], result of:
          0.08926795 = score(doc=2726,freq=16.0), product of:
            0.14122958 = queryWeight, product of:
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.03491209 = queryNorm
            0.6320768 = fieldWeight in 2726, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2726)
      0.16666667 = coord(1/6)
    
    Abstract
    This research investigates how people's perceptions of information retrieval (IR) systems, their perceptions of search tasks, and their perceptions of self-efficacy influence the amount of invested mental effort (AIME) they put into using two different IR systems: a Web search engine and a library system. It also explores the impact of mental effort on an end user's search experience. To assess AIME in online searching, two experiments were conducted using these methods: Experiment 1 relied on self-reports and Experiment 2 employed the dual-task technique. In both experiments, data were collected through search transaction logs, a pre-search background questionnaire, a post-search questionnaire and an interview. Important findings are these: (1) subjects invested greater mental effort searching a library system than searching the Web; (2) subjects put little effort into Web searching because of their high sense of self-efficacy in their searching ability and their perception of the easiness of the Web; (3) subjects did not recognize that putting mental effort into searching was something needed to improve the search results; and (4) data collected from multiple sources proved to be effective for assessing mental effort in online searching.
  3. Chaudiron, S.; Ihadjadene, M.: Studying Web search engines from a user perspective : key concepts and main approaches (2012) 0.01
    0.014462084 = product of:
      0.04338625 = sum of:
        0.031560984 = weight(_text_:searching in 109) [ClassicSimilarity], result of:
          0.031560984 = score(doc=109,freq=2.0), product of:
            0.14122958 = queryWeight, product of:
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.03491209 = queryNorm
            0.22347288 = fieldWeight in 109, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.0390625 = fieldNorm(doc=109)
        0.011825266 = product of:
          0.023650533 = sum of:
            0.023650533 = weight(_text_:22 in 109) [ClassicSimilarity], result of:
              0.023650533 = score(doc=109,freq=2.0), product of:
                0.1222562 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03491209 = queryNorm
                0.19345059 = fieldWeight in 109, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=109)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    This chapter shows that the wider use of Web search engines, reconsidering the theoretical and methodological frameworks to grasp new information practices. Beginning with an overview of the recent challenges implied by the dynamic nature of the Web, this chapter then traces the information behavior related concepts in order to present the different approaches from the user perspective. The authors pay special attention to the concept of "information practice" and other related concepts such as "use", "activity", and "behavior" largely used in the literature but not always strictly defined. The authors provide an overview of user-oriented studies that are meaningful to understand the different contexts of use of electronic information access systems, focusing on five approaches: the system-oriented approaches, the theories of information seeking, the cognitive and psychological approaches, the management science approaches, and the marketing approaches. Future directions of work are then shaped, including social searching and the ethical, cultural, and political dimensions of Web search engines. The authors conclude considering the importance of Critical theory to better understand the role of Web Search engines in our modern society.
    Date
    20. 4.2012 13:22:37
  4. Gossen, T.: Search engines for children : search user interfaces and information-seeking behaviour (2016) 0.01
    0.010123459 = product of:
      0.030370375 = sum of:
        0.022092689 = weight(_text_:searching in 2752) [ClassicSimilarity], result of:
          0.022092689 = score(doc=2752,freq=2.0), product of:
            0.14122958 = queryWeight, product of:
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.03491209 = queryNorm
            0.15643102 = fieldWeight in 2752, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2752)
        0.008277686 = product of:
          0.016555373 = sum of:
            0.016555373 = weight(_text_:22 in 2752) [ClassicSimilarity], result of:
              0.016555373 = score(doc=2752,freq=2.0), product of:
                0.1222562 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03491209 = queryNorm
                0.1354154 = fieldWeight in 2752, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=2752)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Content
    Inhalt: Acknowledgments; Abstract; Zusammenfassung; Contents; List of Figures; List of Tables; List of Acronyms; Chapter 1 Introduction ; 1.1 Research Questions; 1.2 Thesis Outline; Part I Fundamentals ; Chapter 2 Information Retrieval for Young Users ; 2.1 Basics of Information Retrieval; 2.1.1 Architecture of an IR System; 2.1.2 Relevance Ranking; 2.1.3 Search User Interfaces; 2.1.4 Targeted Search Engines; 2.2 Aspects of Child Development Relevant for Information Retrieval Tasks; 2.2.1 Human Cognitive Development; 2.2.2 Information Processing Theory; 2.2.3 Psychosocial Development 2.3 User Studies and Evaluation2.3.1 Methods in User Studies; 2.3.2 Types of Evaluation; 2.3.3 Evaluation with Children; 2.4 Discussion; Chapter 3 State of the Art ; 3.1 Children's Information-Seeking Behaviour; 3.1.1 Querying Behaviour; 3.1.2 Search Strategy; 3.1.3 Navigation Style; 3.1.4 User Interface; 3.1.5 Relevance Judgement; 3.2 Existing Algorithms and User Interface Concepts for Children; 3.2.1 Query; 3.2.2 Content; 3.2.3 Ranking; 3.2.4 Search Result Visualisation; 3.3 Existing Information Retrieval Systems for Children; 3.3.1 Digital Book Libraries; 3.3.2 Web Search Engines 3.4 Summary and DiscussionPart II Studying Open Issues ; Chapter 4 Usability of Existing Search Engines for Young Users ; 4.1 Assessment Criteria; 4.1.1 Criteria for Matching the Motor Skills; 4.1.2 Criteria for Matching the Cognitive Skills; 4.2 Results; 4.2.1 Conformance with Motor Skills; 4.2.2 Conformance with the Cognitive Skills; 4.2.3 Presentation of Search Results; 4.2.4 Browsing versus Searching; 4.2.5 Navigational Style; 4.3 Summary and Discussion; Chapter 5 Large-scale Analysis of Children's Queries and Search Interactions; 5.1 Dataset; 5.2 Results; 5.3 Summary and Discussion Chapter 6 Differences in Usability and Perception of Targeted Web Search Engines between Children and Adults 6.1 Related Work; 6.2 User Study; 6.3 Study Results; 6.4 Summary and Discussion; Part III Tackling the Challenges ; Chapter 7 Search User Interface Design for Children ; 7.1 Conceptual Challenges and Possible Solutions; 7.2 Knowledge Journey Design; 7.3 Evaluation; 7.3.1 Study Design; 7.3.2 Study Results; 7.4 Voice-Controlled Search: Initial Study; 7.4.1 User Study; 7.5 Summary and Discussion; Chapter 8 Addressing User Diversity ; 8.1 Evolving Search User Interface 8.1.1 Mapping Function8.1.2 Evolving Skills; 8.1.3 Detection of User Abilities; 8.1.4 Design Concepts; 8.2 Adaptation of a Search User Interface towards User Needs; 8.2.1 Design & Implementation; 8.2.2 Search Input; 8.2.3 Result Output; 8.2.4 General Properties; 8.2.5 Configuration and Further Details; 8.3 Evaluation; 8.3.1 Study Design; 8.3.2 Study Results; 8.3.3 Preferred UI Settings; 8.3.4 User satisfaction; 8.4 Knowledge Journey Exhibit; 8.4.1 Hardware; 8.4.2 Frontend; 8.4.3 Backend; 8.5 Summary and Discussion; Chapter 9 Supporting Visual Searchers in Processing Search Results 9.1 Related Work
    Date
    1. 2.2016 18:25:22
  5. Berget, G.; Sandnes, F.E.: Do autocomplete functions reduce the impact of dyslexia on information-searching behavior? : the case of Google (2016) 0.01
    0.008926794 = product of:
      0.053560764 = sum of:
        0.053560764 = weight(_text_:searching in 3112) [ClassicSimilarity], result of:
          0.053560764 = score(doc=3112,freq=4.0), product of:
            0.14122958 = queryWeight, product of:
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.03491209 = queryNorm
            0.37924606 = fieldWeight in 3112, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.046875 = fieldNorm(doc=3112)
      0.16666667 = coord(1/6)
    
    Abstract
    Dyslexic users often do not exhibit spelling and reading skills at a level required to perform effective search. To explore whether autocomplete functions reduce the impact of dyslexia on information searching, 20 participants with dyslexia and 20 controls solved 10 predefined tasks in the search engine Google. Eye-tracking and screen-capture documented the searches. There were no significant differences between the dyslexic students and the controls in time usage, number of queries, query lengths, or the use of the autocomplete function. However, participants with dyslexia made more misspellings and looked less at the screen and the autocomplete suggestions lists while entering the queries. The results indicate that although the autocomplete function supported the participants in the search process, a more extensive use of the autocomplete function would have reduced misspellings. Further, the high tolerance for spelling errors considerably reduced the effect of dyslexia, and may be as important as the autocomplete function.
  6. Averesch, D.: Googeln ohne Google : Mit alternativen Suchmaschinen gelingt ein neutraler Überblick (2010) 0.01
    0.008023367 = product of:
      0.0481402 = sum of:
        0.0481402 = sum of:
          0.03394988 = weight(_text_:etc in 3374) [ClassicSimilarity], result of:
            0.03394988 = score(doc=3374,freq=2.0), product of:
              0.18910104 = queryWeight, product of:
                5.4164915 = idf(docFreq=533, maxDocs=44218)
                0.03491209 = queryNorm
              0.17953302 = fieldWeight in 3374, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.4164915 = idf(docFreq=533, maxDocs=44218)
                0.0234375 = fieldNorm(doc=3374)
          0.014190319 = weight(_text_:22 in 3374) [ClassicSimilarity], result of:
            0.014190319 = score(doc=3374,freq=2.0), product of:
              0.1222562 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03491209 = queryNorm
              0.116070345 = fieldWeight in 3374, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0234375 = fieldNorm(doc=3374)
      0.16666667 = coord(1/6)
    
    Content
    Wer den großen Google-Konkurrenten erst einmal im Blindtest auf den Zahn fühlen will, kann das unter http://blindsearch.fejus.com tun. Die Suchergebnisse werden im gleichen Design in drei Spal- ten nebeneinander dargestellt. Erst, wenn der Nutzer sein Votum abgegeben hat, in welcher Spalte die seiner Meinung nach besten Ergebnisse stehen, lüftet die Seite das Geheimnis und zeigt die Logos von Bing, Yahoo und Google an. Der Verein Suma zieht das Fazit, dass "The Big Three" qualitativ gleichwertig seien. Am Tempo gibt es bei den großen Suchmaschinen nichts zu bemängeln. Alle drei spucken ihre Ergebnisse zügig aus. Google und Yahoo zeigen beim Tippen Suchvorschläge an und verfügen über einen Kinder- und Jugendschutzfilter. Letzterer lässt sich auch bei Bing einschalten. Auf die Booleschen Operatoren ("AND", "OR" etc.), die Suchbegriffe logisch verknüpfen, verstehen sich die meisten Suchmaschinen. Yahoo bietet zusätzlich die Suche mit haus- gemachten Abkürzungen an. Shortcuts für die fixe Suche nach Aktienkursen, Call-byCall-Vorwahlen, dem Wetter oder eine Taschenrechnerfunktion finden sich unter http://de.search.yahoo.com/info/shortcuts. Vergleichbar ist das Funktionsangebot von Google, das unter www.google.com/intl/de/help/features.html aufgelistet ist. Das Unternehmen bietet auch die Volltextsuche in Büchern, eine Suche in wissenschaftlichen Veröffentlichungen oder die Recherche nach öffentlich verfügbarem Programmiercodes an. Bei den großen Maschinen lassen sich in der erweiterten Suche auch Parameter wie Sprachraum, Region, Dateityp, Position des Suchbegriffs auf der Seite, Zeitraum der letzten Aktualisierung und Nutzungsrechte einbeziehen. Ganz so weit ist die deutsche Suche von Ask, die sich noch im Betastudium befindet, noch nicht (http://de.ask.com). Praktisch ist aber die Voran-sicht der Seiten in einem Popup-Fenster beim Mouseover über das Fernglas-Symbol vor den Suchbegriffen. Die globale Ask-Suche (www.ask.com) ist schon weiter und zeigt wie Google direkt auch Bilder zu den relevantesten Foto- und Video-Suchergebnissen an.
    Date
    3. 5.1997 8:44:22
  7. Bhansali, D.; Desai, H.; Deulkar, K.: ¬A study of different ranking approaches for semantic search (2015) 0.01
    0.007438996 = product of:
      0.044633973 = sum of:
        0.044633973 = weight(_text_:searching in 2696) [ClassicSimilarity], result of:
          0.044633973 = score(doc=2696,freq=4.0), product of:
            0.14122958 = queryWeight, product of:
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.03491209 = queryNorm
            0.3160384 = fieldWeight in 2696, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2696)
      0.16666667 = coord(1/6)
    
    Abstract
    Search Engines have become an integral part of our day to day life. Our reliance on search engines increases with every passing day. With the amount of data available on Internet increasing exponentially, it becomes important to develop new methods and tools that help to return results relevant to the queries and reduce the time spent on searching. The results should be diverse but at the same time should return results focused on the queries asked. Relation Based Page Rank [4] algorithms are considered to be the next frontier in improvement of Semantic Web Search. The probability of finding relevance in the search results as posited by the user while entering the query is used to measure the relevance. However, its application is limited by the complexity of determining relation between the terms and assigning explicit meaning to each term. Trust Rank is one of the most widely used ranking algorithms for semantic web search. Few other ranking algorithms like HITS algorithm, PageRank algorithm are also used for Semantic Web Searching. In this paper, we will provide a comparison of few ranking approaches.
  8. Truran, M.; Schmakeit, J.-F.; Ashman, H.: ¬The effect of user intent on the stability of search engine results (2011) 0.01
    0.0073642298 = product of:
      0.044185378 = sum of:
        0.044185378 = weight(_text_:searching in 4478) [ClassicSimilarity], result of:
          0.044185378 = score(doc=4478,freq=2.0), product of:
            0.14122958 = queryWeight, product of:
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.03491209 = queryNorm
            0.31286204 = fieldWeight in 4478, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4478)
      0.16666667 = coord(1/6)
    
    Abstract
    Previous work has established that search engine queries can be classified according to the intent of the searcher (i.e., why is the user searching, what specifically do they intend to do). In this article, we describe an experiment in which four sets of queries, each set representing a different user intent, are repeatedly submitted to three search engines over a period of 60 days. Using a variety of measurements, we describe the overall stability of the search engine results recorded for each group. Our findings suggest that search engine results for informational queries are significantly more stable than the results obtained using transactional, navigational, or commercial queries.
  9. Hoeber, O.: Human-centred Web search (2012) 0.01
    0.0063121966 = product of:
      0.03787318 = sum of:
        0.03787318 = weight(_text_:searching in 102) [ClassicSimilarity], result of:
          0.03787318 = score(doc=102,freq=2.0), product of:
            0.14122958 = queryWeight, product of:
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.03491209 = queryNorm
            0.26816747 = fieldWeight in 102, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.046875 = fieldNorm(doc=102)
      0.16666667 = coord(1/6)
    
    Abstract
    People commonly experience difficulties when searching the Web, arising from an incomplete knowledge regarding their information needs, an inability to formulate accurate queries, and a low tolerance for considering the relevance of the search results. While simple and easy to use interfaces have made Web search universally accessible, they provide little assistance for people to overcome the difficulties they experience when their information needs are more complex than simple fact-verification. In human-centred Web search, the purpose of the search engine expands from a simple information retrieval engine to a decision support system. People are empowered to take an active role in the search process, with the search engine supporting them in developing a deeper understanding of their information needs, assisting them in crafting and refining their queries, and aiding them in evaluating and exploring the search results. In this chapter, recent research in this domain is outlined and discussed.
  10. Luo, M.M.; Nahl, D.: Let's Google : uncertainty and bilingual search (2019) 0.01
    0.0063121966 = product of:
      0.03787318 = sum of:
        0.03787318 = weight(_text_:searching in 5363) [ClassicSimilarity], result of:
          0.03787318 = score(doc=5363,freq=2.0), product of:
            0.14122958 = queryWeight, product of:
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.03491209 = queryNorm
            0.26816747 = fieldWeight in 5363, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.046875 = fieldNorm(doc=5363)
      0.16666667 = coord(1/6)
    
    Abstract
    This study applies Kuhlthau's Information Search Process stage (ISP) model to understand bilingual users' Internet search experience. We conduct a quasi-field experiment with 30 bilingual searchers and the results suggested that the ISP model was applicable in studying searchers' information retrieval behavior in search tasks. The ISP model was applicable in studying searchers' information retrieval behavior in simple tasks. However, searchers' emotional responses differed from those of the ISP model for a complex task. By testing searchers using different search strategies, the results suggested that search engines with multilanguage search functions provide an advantage for bilingual searchers in the Internet's multilingual environment. The findings showed that when searchers used a search engine as a tool for problem solving, they might experience different feelings in each ISP stage than in searching for information for a term paper using a library. The results echo other research findings that indicate that information seeking is a multifaceted phenomenon.
  11. Clewley, N.; Chen, S.Y.; Liu, X.: Cognitive styles and search engine preferences : field dependence/independence vs holism/serialism (2010) 0.01
    0.005260164 = product of:
      0.031560984 = sum of:
        0.031560984 = weight(_text_:searching in 3961) [ClassicSimilarity], result of:
          0.031560984 = score(doc=3961,freq=2.0), product of:
            0.14122958 = queryWeight, product of:
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.03491209 = queryNorm
            0.22347288 = fieldWeight in 3961, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3961)
      0.16666667 = coord(1/6)
    
    Abstract
    Purpose - Cognitive style has been identified to be significantly influential in deciding users' preferences of search engines. In particular, Witkin's field dependence/independence has been widely studied in the area of web searching. It has been suggested that this cognitive style has conceptual links with the holism/serialism. This study aims to investigate the differences between the field dependence/independence and holism/serialism. Design/methodology/approach - An empirical study was conducted with 120 students from a UK university. Riding's cognitive style analysis (CSA) and Ford's study preference questionnaire (SPQ) were used to identify the students' cognitive styles. A questionnaire was designed to identify users' preferences for the design of search engines. Data mining techniques were applied to analyse the data obtained from the empirical study. Findings - The results highlight three findings. First, a fundamental link is confirmed between the two cognitive styles. Second, the relationship between field dependent users and holists is suggested to be more prominent than that of field independent users and serialists. Third, the interface design preferences of field dependent and field independent users can be split more clearly than those of holists and serialists. Originality/value - The contributions of this study include a deeper understanding of the similarities and differences between field dependence/independence and holists/serialists as well as proposing a novel methodology for data analyses.
  12. Joint, N.: ¬The one-stop shop search engine : a transformational library technology? ANTAEUS (2010) 0.01
    0.005260164 = product of:
      0.031560984 = sum of:
        0.031560984 = weight(_text_:searching in 4201) [ClassicSimilarity], result of:
          0.031560984 = score(doc=4201,freq=2.0), product of:
            0.14122958 = queryWeight, product of:
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.03491209 = queryNorm
            0.22347288 = fieldWeight in 4201, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4201)
      0.16666667 = coord(1/6)
    
    Abstract
    Purpose - The purpose of this paper is to form one of a series which will give an overview of so-called "transformational" areas of digital library technology. The aim will be to assess how much real transformation these applications are bringing about, in terms of creating genuine user benefit and also changing everyday library practice. Design/methodology/approach - An overview of the present state of development of the one-stop shop library search engine, with particular reference to its relationship with the underlying bibliographic databases to which it provides a simplified single interface. Findings - The paper finds that the success of federated searching has proved valuable but limited to date in creating a one-stop shop search engine to rival Google Scholar; but the persistent value of the bibliographic databases sitting underneath a federated search system means that a harvesting search engine could well answer the need for a true one-stop search engine for academic and scholarly information. Research limitations/implications - This paper is based on the hypothesis that Google's success in providing such an apparently high degree of access to electronic journal services is not what it seems, and that it does not render library discovery tools obsolete. It argues that Google has not diminished the pre-eminent role of library bibliographic databases in mediating access to e-journal text, although this hypothesis needs further research to validate or disprove it. Practical implications - The paper affirms the value of bibliographic databases to practitioner librarians and the potential of single interface discovery tools in library practice. Originality/value - The paper uses statistics from US LIS sources to shed light on UK discovery tool issues.
  13. Hogan, A.; Harth, A.; Umbrich, J.; Kinsella, S.; Polleres, A.; Decker, S.: Searching and browsing Linked Data with SWSE : the Semantic Web Search Engine (2011) 0.01
    0.005260164 = product of:
      0.031560984 = sum of:
        0.031560984 = weight(_text_:searching in 438) [ClassicSimilarity], result of:
          0.031560984 = score(doc=438,freq=2.0), product of:
            0.14122958 = queryWeight, product of:
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.03491209 = queryNorm
            0.22347288 = fieldWeight in 438, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.0390625 = fieldNorm(doc=438)
      0.16666667 = coord(1/6)
    
  14. Bilal, D.; Gwizdka, J.: Children's query types and reformulations in Google search (2018) 0.01
    0.005260164 = product of:
      0.031560984 = sum of:
        0.031560984 = weight(_text_:searching in 5047) [ClassicSimilarity], result of:
          0.031560984 = score(doc=5047,freq=2.0), product of:
            0.14122958 = queryWeight, product of:
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.03491209 = queryNorm
            0.22347288 = fieldWeight in 5047, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5047)
      0.16666667 = coord(1/6)
    
    Abstract
    We investigated the searching behaviors of twenty-four children in grades 6, 7, and 8 (ages 11-13) in finding information on three types of search tasks in Google. Children conducted 72 search sessions and issued 150 queries. Children's phrase- and question-like queries combined were much more prevalent than keyword queries (70% vs. 30%, respectively). Fifty two percent of the queries were reformulations (33 sessions). We classified children's query reformulation types into five classes based on the taxonomy by Liu et al. (2010). We found that most query reformulations were by Substitution and Specialization, and that children hardly repeated queries. We categorized children's queries by task facets and examined the way they expressed these facets in their query formulations and reformulations. Oldest children tended to target the general topic of search tasks in their queries most frequently, whereas younger children expressed one of the two facets more often. We assessed children's achieved task outcomes using the search task outcomes measure we developed. Children were mostly more successful on the fact-finding and fully self-generated task and partially successful on the research-oriented task. Query type, reformulation type, achieved task outcomes, and expressing task facets varied by task type and grade level. There was no significant effect of query length in words or of the number of queries issued on search task outcomes. The study findings have implications for human intervention, digital literacy, search task literacy, as well as for system intervention to support children's query formulation and reformulation during interaction with Google.
  15. Unkel, J.; Haas, A.: ¬The effects of credibility cues on the selection of search engine results (2017) 0.00
    0.004715261 = product of:
      0.028291566 = sum of:
        0.028291566 = product of:
          0.056583133 = sum of:
            0.056583133 = weight(_text_:etc in 3752) [ClassicSimilarity], result of:
              0.056583133 = score(doc=3752,freq=2.0), product of:
                0.18910104 = queryWeight, product of:
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.03491209 = queryNorm
                0.2992217 = fieldWeight in 3752, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3752)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    Web search engines act as gatekeepers when people search for information online. Research has shown that search engine users seem to trust the search engines' ranking uncritically and mostly select top-ranked results. This study further examines search engine users' selection behavior. Drawing from the credibility and information research literature, we test whether the presence or absence of certain credibility cues influences the selection probability of search engine results. In an observational study, participants (N?=?247) completed two information research tasks on preset search engine results pages, on which three credibility cues (source reputation, message neutrality, and social recommendations) as well as the search result ranking were systematically varied. The results of our study confirm the significance of the ranking. Of the three credibility cues, only reputation had an additional effect on selection probabilities. Personal characteristics (prior knowledge about the researched issues, search engine usage patterns, etc.) did not influence the preference for search results linked with certain credibility cues. These findings are discussed in light of situational and contextual characteristics (e.g., involvement, low-cost scenarios).
  16. Zhao, Y.; Ma, F.; Xia, X.: Evaluating the coverage of entities in knowledge graphs behind general web search engines : Poster (2017) 0.00
    0.004715261 = product of:
      0.028291566 = sum of:
        0.028291566 = product of:
          0.056583133 = sum of:
            0.056583133 = weight(_text_:etc in 3854) [ClassicSimilarity], result of:
              0.056583133 = score(doc=3854,freq=2.0), product of:
                0.18910104 = queryWeight, product of:
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.03491209 = queryNorm
                0.2992217 = fieldWeight in 3854, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3854)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    Web search engines, such as Google and Bing, are constantly employing results from knowledge organization and various visualization features to improve their search services. Knowledge graph, a large repository of structured knowledge represented by formal languages such as RDF (Resource Description Framework), is used to support entity search feature of Google and Bing (Demartini, 2016). When a user searchs for an entity, such as a person, an organization, or a place in Google or Bing, it is likely that a knowledge cardwill be presented on the right side bar of the search engine result pages (SERPs). For example, when a user searches the entity Benedict Cumberbatch on Google, the knowledge card will show the basic structured information about this person, including his date of birth, height, spouse, parents, and his movies, etc. The knowledge card, which is used to present the result of entity search, is generated from knowledge graphs. Therefore, the quality of knowledge graphs is essential to the performance of entity search. However, studies on the quality of knowledge graphs from the angle of entity coverage are scant in the literature. This study aims to investigate the coverage of entities of knowledge graphs behind Google and Bing.
  17. Next generation search engines : advanced models for information retrieval (2012) 0.00
    0.003719498 = product of:
      0.022316987 = sum of:
        0.022316987 = weight(_text_:searching in 357) [ClassicSimilarity], result of:
          0.022316987 = score(doc=357,freq=4.0), product of:
            0.14122958 = queryWeight, product of:
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.03491209 = queryNorm
            0.1580192 = fieldWeight in 357, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.0452914 = idf(docFreq=2103, maxDocs=44218)
              0.01953125 = fieldNorm(doc=357)
      0.16666667 = coord(1/6)
    
    Abstract
    The main goal of this book is to transfer new research results from the fields of advanced computer sciences and information science to the design of new search engines. The readers will have a better idea of the new trends in applied research. The achievement of relevant, organized, sorted, and workable answers- to name but a few - from a search is becoming a daily need for enterprises and organizations, and, to a greater extent, for anyone. It does not consist of getting access to structural information as in standard databases; nor does it consist of searching information strictly by way of a combination of key words. It goes far beyond that. Whatever its modality, the information sought should be identified by the topics it contains, that is to say by its textual, audio, video or graphical contents. This is not a new issue. However, recent technological advances have completely changed the techniques being used. New Web technologies, the emergence of Intranet systems and the abundance of information on the Internet have created the need for efficient search and information access tools.
    Content
    Enthält die Beiträge: Das, A., A. Jain: Indexing the World Wide Web: the journey so far. Ke, W.: Decentralized search and the clustering paradox in large scale information networks. Roux, M.: Metadata for search engines: what can be learned from e-Sciences? Fluhr, C.: Crosslingual access to photo databases. Djioua, B., J.-P. Desclés u. M. Alrahabi: Searching and mining with semantic categories. Ghorbel, H., A. Bahri u. R. Bouaziz: Fuzzy ontologies building platform for Semantic Web: FOB platform. Lassalle, E., E. Lassalle: Semantic models in information retrieval. Berry, M.W., R. Esau u. B. Kiefer: The use of text mining techniques in electronic discovery for legal matters. Sleem-Amer, M., I. Bigorgne u. S. Brizard u.a.: Intelligent semantic search engines for opinion and sentiment mining. Hoeber, O.: Human-centred Web search.
  18. Lewandowski, D.: Query understanding (2011) 0.00
    0.0031534042 = product of:
      0.018920425 = sum of:
        0.018920425 = product of:
          0.03784085 = sum of:
            0.03784085 = weight(_text_:22 in 344) [ClassicSimilarity], result of:
              0.03784085 = score(doc=344,freq=2.0), product of:
                0.1222562 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03491209 = queryNorm
                0.30952093 = fieldWeight in 344, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=344)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    18. 9.2018 18:22:18
  19. Bensman, S.J.: Eugene Garfield, Francis Narin, and PageRank : the theoretical bases of the Google search engine (2013) 0.00
    0.0031534042 = product of:
      0.018920425 = sum of:
        0.018920425 = product of:
          0.03784085 = sum of:
            0.03784085 = weight(_text_:22 in 1149) [ClassicSimilarity], result of:
              0.03784085 = score(doc=1149,freq=2.0), product of:
                0.1222562 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03491209 = queryNorm
                0.30952093 = fieldWeight in 1149, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1149)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    17.12.2013 11:02:22
  20. Tober, M.; Hennig, L.; Furch, D.: SEO Ranking-Faktoren und Rang-Korrelationen 2014 : Google Deutschland (2014) 0.00
    0.0031534042 = product of:
      0.018920425 = sum of:
        0.018920425 = product of:
          0.03784085 = sum of:
            0.03784085 = weight(_text_:22 in 1484) [ClassicSimilarity], result of:
              0.03784085 = score(doc=1484,freq=2.0), product of:
                0.1222562 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03491209 = queryNorm
                0.30952093 = fieldWeight in 1484, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1484)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    13. 9.2014 14:45:22