Search (86 results, page 1 of 5)

  • × theme_ss:"Suchmaschinen"
  • × year_i:[2010 TO 2020}
  1. Lewandowski, D.; Spree, U.: Ranking of Wikipedia articles in search engines revisited : fair ranking for reasonable quality? (2011) 0.06
    0.057392165 = product of:
      0.08608825 = sum of:
        0.030730115 = weight(_text_:of in 444) [ClassicSimilarity], result of:
          0.030730115 = score(doc=444,freq=38.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.37654874 = fieldWeight in 444, product of:
              6.164414 = tf(freq=38.0), with freq of:
                38.0 = termFreq=38.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=444)
        0.055358134 = sum of:
          0.020004123 = weight(_text_:science in 444) [ClassicSimilarity], result of:
            0.020004123 = score(doc=444,freq=2.0), product of:
              0.13747036 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.05218836 = queryNorm
              0.1455159 = fieldWeight in 444, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.0390625 = fieldNorm(doc=444)
          0.03535401 = weight(_text_:22 in 444) [ClassicSimilarity], result of:
            0.03535401 = score(doc=444,freq=2.0), product of:
              0.18275474 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05218836 = queryNorm
              0.19345059 = fieldWeight in 444, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=444)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper aims to review the fiercely discussed question of whether the ranking of Wikipedia articles in search engines is justified by the quality of the articles. After an overview of current research on information quality in Wikipedia, a summary of the extended discussion on the quality of encyclopedic entries in general is given. On this basis, a heuristic method for evaluating Wikipedia entries is developed and applied to Wikipedia articles that scored highly in a search engine retrieval effectiveness test and compared with the relevance judgment of jurors. In all search engines tested, Wikipedia results are unanimously judged better by the jurors than other results on the corresponding results position. Relevance judgments often roughly correspond with the results from the heuristic evaluation. Cases in which high relevance judgments are not in accordance with the comparatively low score from the heuristic evaluation are interpreted as an indicator of a high degree of trust in Wikipedia. One of the systemic shortcomings of Wikipedia lies in its necessarily incoherent user model. A further tuning of the suggested criteria catalog, for instance, the different weighing of the supplied criteria, could serve as a starting point for a user model differentiated evaluation of Wikipedia articles. Approved methods of quality evaluation of reference works are applied to Wikipedia articles and integrated with the question of search engine evaluation.
    Date
    30. 9.2012 19:27:22
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.1, S.117-132
  2. Chaudiron, S.; Ihadjadene, M.: Studying Web search engines from a user perspective : key concepts and main approaches (2012) 0.05
    0.053186636 = product of:
      0.07977995 = sum of:
        0.02442182 = weight(_text_:of in 109) [ClassicSimilarity], result of:
          0.02442182 = score(doc=109,freq=24.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.2992506 = fieldWeight in 109, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=109)
        0.055358134 = sum of:
          0.020004123 = weight(_text_:science in 109) [ClassicSimilarity], result of:
            0.020004123 = score(doc=109,freq=2.0), product of:
              0.13747036 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.05218836 = queryNorm
              0.1455159 = fieldWeight in 109, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.0390625 = fieldNorm(doc=109)
          0.03535401 = weight(_text_:22 in 109) [ClassicSimilarity], result of:
            0.03535401 = score(doc=109,freq=2.0), product of:
              0.18275474 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05218836 = queryNorm
              0.19345059 = fieldWeight in 109, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=109)
      0.6666667 = coord(2/3)
    
    Abstract
    This chapter shows that the wider use of Web search engines, reconsidering the theoretical and methodological frameworks to grasp new information practices. Beginning with an overview of the recent challenges implied by the dynamic nature of the Web, this chapter then traces the information behavior related concepts in order to present the different approaches from the user perspective. The authors pay special attention to the concept of "information practice" and other related concepts such as "use", "activity", and "behavior" largely used in the literature but not always strictly defined. The authors provide an overview of user-oriented studies that are meaningful to understand the different contexts of use of electronic information access systems, focusing on five approaches: the system-oriented approaches, the theories of information seeking, the cognitive and psychological approaches, the management science approaches, and the marketing approaches. Future directions of work are then shaped, including social searching and the ethical, cultural, and political dimensions of Web search engines. The authors conclude considering the importance of Critical theory to better understand the role of Web Search engines in our modern society.
    Date
    20. 4.2012 13:22:37
  3. Vaughan, L.; Chen, Y.: Data mining from web search queries : a comparison of Google trends and Baidu index (2015) 0.05
    0.053186636 = product of:
      0.07977995 = sum of:
        0.02442182 = weight(_text_:of in 1605) [ClassicSimilarity], result of:
          0.02442182 = score(doc=1605,freq=24.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.2992506 = fieldWeight in 1605, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1605)
        0.055358134 = sum of:
          0.020004123 = weight(_text_:science in 1605) [ClassicSimilarity], result of:
            0.020004123 = score(doc=1605,freq=2.0), product of:
              0.13747036 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.05218836 = queryNorm
              0.1455159 = fieldWeight in 1605, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1605)
          0.03535401 = weight(_text_:22 in 1605) [ClassicSimilarity], result of:
            0.03535401 = score(doc=1605,freq=2.0), product of:
              0.18275474 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05218836 = queryNorm
              0.19345059 = fieldWeight in 1605, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1605)
      0.6666667 = coord(2/3)
    
    Abstract
    Numerous studies have explored the possibility of uncovering information from web search queries but few have examined the factors that affect web query data sources. We conducted a study that investigated this issue by comparing Google Trends and Baidu Index. Data from these two services are based on queries entered by users into Google and Baidu, two of the largest search engines in the world. We first compared the features and functions of the two services based on documents and extensive testing. We then carried out an empirical study that collected query volume data from the two sources. We found that data from both sources could be used to predict the quality of Chinese universities and companies. Despite the differences between the two services in terms of technology, such as differing methods of language processing, the search volume data from the two were highly correlated and combining the two data sources did not improve the predictive power of the data. However, there was a major difference between the two in terms of data availability. Baidu Index was able to provide more search volume data than Google Trends did. Our analysis showed that the disadvantage of Google Trends in this regard was due to Google's smaller user base in China. The implication of this finding goes beyond China. Google's user bases in many countries are smaller than that in China, so the search volume data related to those countries could result in the same issue as that related to China.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.1, S.13-22
  4. Lewandowski, D.; Sünkler, S.: What does Google recommend when you want to compare insurance offerings? (2019) 0.05
    0.051768064 = product of:
      0.0776521 = sum of:
        0.022293966 = weight(_text_:of in 5288) [ClassicSimilarity], result of:
          0.022293966 = score(doc=5288,freq=20.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.27317715 = fieldWeight in 5288, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5288)
        0.055358134 = sum of:
          0.020004123 = weight(_text_:science in 5288) [ClassicSimilarity], result of:
            0.020004123 = score(doc=5288,freq=2.0), product of:
              0.13747036 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.05218836 = queryNorm
              0.1455159 = fieldWeight in 5288, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5288)
          0.03535401 = weight(_text_:22 in 5288) [ClassicSimilarity], result of:
            0.03535401 = score(doc=5288,freq=2.0), product of:
              0.18275474 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05218836 = queryNorm
              0.19345059 = fieldWeight in 5288, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5288)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose The purpose of this paper is to describe a new method to improve the analysis of search engine results by considering the provider level as well as the domain level. This approach is tested by conducting a study using queries on the topic of insurance comparisons. Design/methodology/approach The authors conducted an empirical study that analyses the results of search queries aimed at comparing insurance companies. The authors used a self-developed software system that automatically queries commercial search engines and automatically extracts the content of the returned result pages for further data analysis. The data analysis was carried out using the KNIME Analytics Platform. Findings Google's top search results are served by only a few providers that frequently appear in these results. The authors show that some providers operate several domains on the same topic and that these domains appear for the same queries in the result lists. Research limitations/implications The authors demonstrate the feasibility of this approach and draw conclusions for further investigations from the empirical study. However, the study is a limited use case based on a limited number of search queries. Originality/value The proposed method allows large-scale analysis of the composition of the top results from commercial search engines. It allows using valid empirical data to determine what users actually see on the search engine result pages.
    Date
    20. 1.2015 18:30:22
    Footnote
    Beitrag in einem Special Issue: Information Science in the German-speaking Countries
    Source
    Aslib journal of information management. 71(2019) no.3, S.310-324
  5. Sachse, J.: ¬The influence of snippet length on user behavior in mobile web search (2019) 0.05
    0.051768064 = product of:
      0.0776521 = sum of:
        0.022293966 = weight(_text_:of in 5493) [ClassicSimilarity], result of:
          0.022293966 = score(doc=5493,freq=20.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.27317715 = fieldWeight in 5493, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5493)
        0.055358134 = sum of:
          0.020004123 = weight(_text_:science in 5493) [ClassicSimilarity], result of:
            0.020004123 = score(doc=5493,freq=2.0), product of:
              0.13747036 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.05218836 = queryNorm
              0.1455159 = fieldWeight in 5493, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5493)
          0.03535401 = weight(_text_:22 in 5493) [ClassicSimilarity], result of:
            0.03535401 = score(doc=5493,freq=2.0), product of:
              0.18275474 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05218836 = queryNorm
              0.19345059 = fieldWeight in 5493, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5493)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose Web search is more and more moving into mobile contexts. However, screen size of mobile devices is limited and search engine result pages face a trade-off between offering informative snippets and optimal use of space. One factor clearly influencing this trade-off is snippet length. The purpose of this paper is to find out what snippet size to use in mobile web search. Design/methodology/approach For this purpose, an eye-tracking experiment was conducted showing participants search interfaces with snippets of one, three or five lines on a mobile device to analyze 17 dependent variables. In total, 31 participants took part in the study. Each of the participants solved informational and navigational tasks. Findings Results indicate a strong influence of page fold on scrolling behavior and attention distribution across search results. Regardless of query type, short snippets seem to provide too little information about the result, so that search performance and subjective measures are negatively affected. Long snippets of five lines lead to better performance than medium snippets for navigational queries, but to worse performance for informational queries. Originality/value Although space in mobile search is limited, this study shows that longer snippets improve usability and user experience. It further emphasizes that page fold plays a stronger role in mobile than in desktop search for attention distribution.
    Date
    20. 1.2015 18:30:22
    Footnote
    Beitag in einem Special Issue: Information Science in the German-speaking Countries
    Source
    Aslib journal of information management. 71(2019) no.3, S.325-343
  6. Aloteibi, S.; Sanderson, M.: Analyzing geographic query reformulation : an exploratory study (2014) 0.05
    0.051005363 = product of:
      0.076508045 = sum of:
        0.021149913 = weight(_text_:of in 1177) [ClassicSimilarity], result of:
          0.021149913 = score(doc=1177,freq=18.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.25915858 = fieldWeight in 1177, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1177)
        0.055358134 = sum of:
          0.020004123 = weight(_text_:science in 1177) [ClassicSimilarity], result of:
            0.020004123 = score(doc=1177,freq=2.0), product of:
              0.13747036 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.05218836 = queryNorm
              0.1455159 = fieldWeight in 1177, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1177)
          0.03535401 = weight(_text_:22 in 1177) [ClassicSimilarity], result of:
            0.03535401 = score(doc=1177,freq=2.0), product of:
              0.18275474 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05218836 = queryNorm
              0.19345059 = fieldWeight in 1177, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1177)
      0.6666667 = coord(2/3)
    
    Abstract
    Search engine users typically engage in multiquery sessions in their quest to fulfill their information needs. Despite a plethora of research findings suggesting that a significant group of users look for information within a specific geographical scope, existing reformulation studies lack a focused analysis of how users reformulate geographic queries. This study comprehensively investigates the ways in which users reformulate such needs in an attempt to fill this gap in the literature. Reformulated sessions were sampled from a query log of a major search engine to extract 2,400 entries that were manually inspected to filter geo sessions. This filter identified 471 search sessions that included geographical intent, and these sessions were analyzed quantitatively and qualitatively. The results revealed that one in five of the users who reformulated their queries were looking for geographically related information. They reformulated their queries by changing the content of the query rather than the structure. Users were not following a unified sequence of modifications and instead performed a single reformulation action. However, in some cases it was possible to anticipate their next move. A number of tasks in geo modifications were identified, including standard, multi-needs, multi-places, and hybrid approaches. The research concludes that it is important to specialize query reformulation studies to focus on particular query types rather than generically analyzing them, as it is apparent that geographic queries have their special reformulation characteristics.
    Date
    26. 1.2014 18:48:22
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.1, S.13-24
  7. Gossen, T.: Search engines for children : search user interfaces and information-seeking behaviour (2016) 0.05
    0.047008403 = product of:
      0.0705126 = sum of:
        0.02151108 = weight(_text_:of in 2752) [ClassicSimilarity], result of:
          0.02151108 = score(doc=2752,freq=38.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.2635841 = fieldWeight in 2752, product of:
              6.164414 = tf(freq=38.0), with freq of:
                38.0 = termFreq=38.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2752)
        0.049001522 = sum of:
          0.024253715 = weight(_text_:science in 2752) [ClassicSimilarity], result of:
            0.024253715 = score(doc=2752,freq=6.0), product of:
              0.13747036 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.05218836 = queryNorm
              0.17642868 = fieldWeight in 2752, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.02734375 = fieldNorm(doc=2752)
          0.024747808 = weight(_text_:22 in 2752) [ClassicSimilarity], result of:
            0.024747808 = score(doc=2752,freq=2.0), product of:
              0.18275474 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05218836 = queryNorm
              0.1354154 = fieldWeight in 2752, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.02734375 = fieldNorm(doc=2752)
      0.6666667 = coord(2/3)
    
    Abstract
    The doctoral thesis of Tatiana Gossen formulates criteria and guidelines on how to design the user interfaces of search engines for children. In her work, the author identifies the conceptual challenges based on own and previous user studies and addresses the changing characteristics of the users by providing a means of adaptation. Additionally, a novel type of search result visualisation for children with cartoon style characters is developed taking children's preference for visual information into account.
    Content
    Inhalt: Acknowledgments; Abstract; Zusammenfassung; Contents; List of Figures; List of Tables; List of Acronyms; Chapter 1 Introduction ; 1.1 Research Questions; 1.2 Thesis Outline; Part I Fundamentals ; Chapter 2 Information Retrieval for Young Users ; 2.1 Basics of Information Retrieval; 2.1.1 Architecture of an IR System; 2.1.2 Relevance Ranking; 2.1.3 Search User Interfaces; 2.1.4 Targeted Search Engines; 2.2 Aspects of Child Development Relevant for Information Retrieval Tasks; 2.2.1 Human Cognitive Development; 2.2.2 Information Processing Theory; 2.2.3 Psychosocial Development 2.3 User Studies and Evaluation2.3.1 Methods in User Studies; 2.3.2 Types of Evaluation; 2.3.3 Evaluation with Children; 2.4 Discussion; Chapter 3 State of the Art ; 3.1 Children's Information-Seeking Behaviour; 3.1.1 Querying Behaviour; 3.1.2 Search Strategy; 3.1.3 Navigation Style; 3.1.4 User Interface; 3.1.5 Relevance Judgement; 3.2 Existing Algorithms and User Interface Concepts for Children; 3.2.1 Query; 3.2.2 Content; 3.2.3 Ranking; 3.2.4 Search Result Visualisation; 3.3 Existing Information Retrieval Systems for Children; 3.3.1 Digital Book Libraries; 3.3.2 Web Search Engines 3.4 Summary and DiscussionPart II Studying Open Issues ; Chapter 4 Usability of Existing Search Engines for Young Users ; 4.1 Assessment Criteria; 4.1.1 Criteria for Matching the Motor Skills; 4.1.2 Criteria for Matching the Cognitive Skills; 4.2 Results; 4.2.1 Conformance with Motor Skills; 4.2.2 Conformance with the Cognitive Skills; 4.2.3 Presentation of Search Results; 4.2.4 Browsing versus Searching; 4.2.5 Navigational Style; 4.3 Summary and Discussion; Chapter 5 Large-scale Analysis of Children's Queries and Search Interactions; 5.1 Dataset; 5.2 Results; 5.3 Summary and Discussion Chapter 6 Differences in Usability and Perception of Targeted Web Search Engines between Children and Adults 6.1 Related Work; 6.2 User Study; 6.3 Study Results; 6.4 Summary and Discussion; Part III Tackling the Challenges ; Chapter 7 Search User Interface Design for Children ; 7.1 Conceptual Challenges and Possible Solutions; 7.2 Knowledge Journey Design; 7.3 Evaluation; 7.3.1 Study Design; 7.3.2 Study Results; 7.4 Voice-Controlled Search: Initial Study; 7.4.1 User Study; 7.5 Summary and Discussion; Chapter 8 Addressing User Diversity ; 8.1 Evolving Search User Interface 8.1.1 Mapping Function8.1.2 Evolving Skills; 8.1.3 Detection of User Abilities; 8.1.4 Design Concepts; 8.2 Adaptation of a Search User Interface towards User Needs; 8.2.1 Design & Implementation; 8.2.2 Search Input; 8.2.3 Result Output; 8.2.4 General Properties; 8.2.5 Configuration and Further Details; 8.3 Evaluation; 8.3.1 Study Design; 8.3.2 Study Results; 8.3.3 Preferred UI Settings; 8.3.4 User satisfaction; 8.4 Knowledge Journey Exhibit; 8.4.1 Hardware; 8.4.2 Frontend; 8.4.3 Backend; 8.5 Summary and Discussion; Chapter 9 Supporting Visual Searchers in Processing Search Results 9.1 Related Work
    Date
    1. 2.2016 18:25:22
    LCSH
    Computer science
    Series
    Study in computer science and media design
    Subject
    Computer science
  8. Bensman, S.J.: Eugene Garfield, Francis Narin, and PageRank : the theoretical bases of the Google search engine (2013) 0.04
    0.038751446 = product of:
      0.058127165 = sum of:
        0.029843956 = weight(_text_:of in 1149) [ClassicSimilarity], result of:
          0.029843956 = score(doc=1149,freq=14.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.36569026 = fieldWeight in 1149, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=1149)
        0.028283209 = product of:
          0.056566417 = sum of:
            0.056566417 = weight(_text_:22 in 1149) [ClassicSimilarity], result of:
              0.056566417 = score(doc=1149,freq=2.0), product of:
                0.18275474 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05218836 = queryNorm
                0.30952093 = fieldWeight in 1149, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1149)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper presents a test of the validity of using Google Scholar to evaluate the publications of researchers by comparing the premises on which its search engine, PageRank, is based, to those of Garfield's theory of citation indexing. It finds that the premises are identical and that PageRank and Garfield's theory of citation indexing validate each other.
    Date
    17.12.2013 11:02:22
  9. Huvila, I.: Affective capitalism of knowing and the society of search engine (2016) 0.04
    0.03807 = product of:
      0.057105 = sum of:
        0.035892595 = weight(_text_:of in 3246) [ClassicSimilarity], result of:
          0.035892595 = score(doc=3246,freq=36.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.43980673 = fieldWeight in 3246, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3246)
        0.021212406 = product of:
          0.042424813 = sum of:
            0.042424813 = weight(_text_:22 in 3246) [ClassicSimilarity], result of:
              0.042424813 = score(doc=3246,freq=2.0), product of:
                0.18275474 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05218836 = queryNorm
                0.23214069 = fieldWeight in 3246, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3246)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose The purpose of this paper is to discuss the affective premises and economics of the influence of search engines on knowing and informing in the contemporary society. Design/methodology/approach A conceptual discussion of the affective premises and framings of the capitalist economics of knowing is presented. Findings The main proposition of this text is that the exploitation of affects is entwined in the competing market and emancipatory discourses and counter-discourses both as intentional interventions, and perhaps even more significantly, as unintentional influences that shape the ways of knowing in the peripheries of the regime that shape cultural constellations of their own. Affective capitalism bounds and frames our ways of knowing in ways that are difficult to anticipate and read even from the context of the regime itself. Originality/value In the relatively extensive discussion on the role of affects in the contemporary capitalism, influence of affects on knowing and their relation to search engine use has received little explicit attention so far.
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 68(2016) no.5, S.566-588
  10. Web search engine research (2012) 0.03
    0.034812167 = product of:
      0.052218247 = sum of:
        0.025379896 = weight(_text_:of in 478) [ClassicSimilarity], result of:
          0.025379896 = score(doc=478,freq=18.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.3109903 = fieldWeight in 478, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=478)
        0.026838351 = product of:
          0.053676702 = sum of:
            0.053676702 = weight(_text_:science in 478) [ClassicSimilarity], result of:
              0.053676702 = score(doc=478,freq=10.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.39046016 = fieldWeight in 478, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=478)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    "Web Search Engine Research", edited by Dirk Lewandowski, provides an understanding of Web search engines from the unique perspective of Library and Information Science. The book explores a range of topics including retrieval effectiveness, user satisfaction, the evaluation of search interfaces, the impact of search on society, reliability of search results, query log analysis, user guidance in the search process, and the influence of search engine optimization (SEO) on results quality. While research in computer science has mainly focused on technical aspects of search engines, LIS research is centred on users' behaviour when using search engines and how this interaction can be evaluated. LIS research provides a unique perspective in intermediating between the technical aspects, user aspects and their impact on their role in knowledge acquisition. This book is directly relevant to researchers and practitioners in library and information science, computer science, including Web researchers.
    Footnote
    Weitere Rez. in: Journal of Documentation, 69(2013) no.4, S.594-596 (A. MacFarlane)
    Series
    Library and information science; vol. 4
  11. Fluhr, C.: Crosslingual access to photo databases (2012) 0.03
    0.03009387 = product of:
      0.045140803 = sum of:
        0.023928396 = weight(_text_:of in 93) [ClassicSimilarity], result of:
          0.023928396 = score(doc=93,freq=16.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.2932045 = fieldWeight in 93, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=93)
        0.021212406 = product of:
          0.042424813 = sum of:
            0.042424813 = weight(_text_:22 in 93) [ClassicSimilarity], result of:
              0.042424813 = score(doc=93,freq=2.0), product of:
                0.18275474 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05218836 = queryNorm
                0.23214069 = fieldWeight in 93, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=93)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper is about search of photos in photo databases of agencies which sell photos over the Internet. The problem is far from the behavior of photo databases managed by librarians and also far from the corpora generally used for research purposes. The descriptions use mainly single words and it is well known that it is not the best way to have a good search. This increases the problem of semantic ambiguity. This problem of semantic ambiguity is crucial for cross-language querying. On the other hand, users are not aware of documentation techniques and use generally very simple queries but want to get precise answers. This paper gives the experience gained in a 3 year use (2006-2008) of a cross-language access to several of the main international commercial photo databases. The languages used were French, English, and German.
    Date
    17. 4.2012 14:25:22
  12. Waller, V.: Not just information : who searches for what on the search engine Google? (2011) 0.03
    0.028336879 = product of:
      0.042505316 = sum of:
        0.03050284 = weight(_text_:of in 4373) [ClassicSimilarity], result of:
          0.03050284 = score(doc=4373,freq=26.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.37376386 = fieldWeight in 4373, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4373)
        0.012002475 = product of:
          0.02400495 = sum of:
            0.02400495 = weight(_text_:science in 4373) [ClassicSimilarity], result of:
              0.02400495 = score(doc=4373,freq=2.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.17461908 = fieldWeight in 4373, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4373)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper reports on a transaction log analysis of the type and topic of search queries entered into the search engine Google (Australia). Two aspects, in particular, set this apart from previous studies: the sampling and analysis take account of the distribution of search queries, and lifestyle information of the searcher was matched with each search query. A surprising finding was that there was no observed statistically significant difference in search type or topics for different segments of the online population. It was found that queries about popular culture and Ecommerce accounted for almost half of all search engine queries and that half of the queries were entered with a particular Website in mind. The findings of this study also suggest that the Internet search engine is not only an interface to information or a shortcut to Websites, it is equally a site of leisure. This study has implications for the design and evaluation of search engines as well as our understanding of search engine use.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.4, S.761-775
  13. Chen, L.-C.: Next generation search engine for the result clustering technology (2012) 0.03
    0.02795667 = product of:
      0.041935004 = sum of:
        0.020722598 = weight(_text_:of in 105) [ClassicSimilarity], result of:
          0.020722598 = score(doc=105,freq=12.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.25392252 = fieldWeight in 105, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=105)
        0.021212406 = product of:
          0.042424813 = sum of:
            0.042424813 = weight(_text_:22 in 105) [ClassicSimilarity], result of:
              0.042424813 = score(doc=105,freq=2.0), product of:
                0.18275474 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05218836 = queryNorm
                0.23214069 = fieldWeight in 105, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=105)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Result clustering has recently attracted a lot of attention to provide the users with a succinct overview of relevant search results than traditional search engines. This chapter proposes a mixed clustering method to organize all returned search results into a hierarchical tree structure. The clustering method accomplishes two main tasks, one is label construction and the other is tree building. This chapter uses precision to measure the quality of clustering results. According to the results of experiments, the author preliminarily concluded that the performance of the system is better than many other well-known commercial and academic systems. This chapter makes several contributions. First, it presents a high performance system based on the clustering method. Second, it develops a divisive hierarchical clustering algorithm to organize all returned snippets into hierarchical tree structure. Third, it performs a wide range of experimental analyses to show that almost all commercial systems are significantly better than most current academic systems.
    Date
    17. 4.2012 15:22:11
  14. Bouidghaghen, O.; Tamine, L.: Spatio-temporal based personalization for mobile search (2012) 0.03
    0.02795667 = product of:
      0.041935004 = sum of:
        0.020722598 = weight(_text_:of in 108) [ClassicSimilarity], result of:
          0.020722598 = score(doc=108,freq=12.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.25392252 = fieldWeight in 108, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=108)
        0.021212406 = product of:
          0.042424813 = sum of:
            0.042424813 = weight(_text_:22 in 108) [ClassicSimilarity], result of:
              0.042424813 = score(doc=108,freq=2.0), product of:
                0.18275474 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05218836 = queryNorm
                0.23214069 = fieldWeight in 108, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=108)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The explosion of the information available on the Internet has made traditional information retrieval systems, characterized by one size fits all approaches, less effective. Indeed, users are overwhelmed by the information delivered by such systems in response to their queries, particularly when the latter are ambiguous. In order to tackle this problem, the state-of-the-art reveals that there is a growing interest towards contextual information retrieval (CIR) which relies on various sources of evidence issued from the user's search background and environment, in order to improve the retrieval accuracy. This chapter focuses on mobile context, highlights challenges they present for IR, and gives an overview of CIR approaches applied in this environment. Then, the authors present an approach to personalize search results for mobile users by exploiting both cognitive and spatio-temporal contexts. The experimental evaluation undertaken in front of Yahoo search shows that the approach improves the quality of top search result lists and enhances search result precision.
    Date
    20. 4.2012 13:19:22
  15. Truran, M.; Schmakeit, J.-F.; Ashman, H.: ¬The effect of user intent on the stability of search engine results (2011) 0.03
    0.027946234 = product of:
      0.04191935 = sum of:
        0.027916465 = weight(_text_:of in 4478) [ClassicSimilarity], result of:
          0.027916465 = score(doc=4478,freq=16.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.34207192 = fieldWeight in 4478, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4478)
        0.0140028875 = product of:
          0.028005775 = sum of:
            0.028005775 = weight(_text_:science in 4478) [ClassicSimilarity], result of:
              0.028005775 = score(doc=4478,freq=2.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.20372227 = fieldWeight in 4478, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4478)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Previous work has established that search engine queries can be classified according to the intent of the searcher (i.e., why is the user searching, what specifically do they intend to do). In this article, we describe an experiment in which four sets of queries, each set representing a different user intent, are repeatedly submitted to three search engines over a period of 60 days. Using a variety of measurements, we describe the overall stability of the search engine results recorded for each group. Our findings suggest that search engine results for informational queries are significantly more stable than the results obtained using transactional, navigational, or commercial queries.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.7, S.1276-1287
  16. Zhitomirsky-Geffet, M.; Bar-Ilan, J.; Levene, M.: Analysis of change in users' assessment of search results over time (2017) 0.03
    0.027686996 = product of:
      0.041530494 = sum of:
        0.031528432 = weight(_text_:of in 3593) [ClassicSimilarity], result of:
          0.031528432 = score(doc=3593,freq=40.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.38633084 = fieldWeight in 3593, product of:
              6.3245554 = tf(freq=40.0), with freq of:
                40.0 = termFreq=40.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3593)
        0.010002062 = product of:
          0.020004123 = sum of:
            0.020004123 = weight(_text_:science in 3593) [ClassicSimilarity], result of:
              0.020004123 = score(doc=3593,freq=2.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.1455159 = fieldWeight in 3593, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3593)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    We present the first systematic study of the influence of time on user judgements for rankings and relevance grades of web search engine results. The goal of this study is to evaluate the change in user assessment of search results and explore how users' judgements change. To this end, we conducted a large-scale user study with 86 participants who evaluated 2 different queries and 4 diverse result sets twice with an interval of 2 months. To analyze the results we investigate whether 2 types of patterns of user behavior from the theory of categorical thinking hold for the case of evaluation of search results: (a) coarseness and (b) locality. To quantify these patterns we devised 2 new measures of change in user judgements and distinguish between local (when users swap between close ranks and relevance values) and nonlocal changes. Two types of judgements were considered in this study: (a) relevance on a 4-point scale, and (b) ranking on a 10-point scale without ties. We found that users tend to change their judgements of the results over time in about 50% of cases for relevance and in 85% of cases for ranking. However, the majority of these changes were local.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.5, S.1137-1148
  17. Vaughan, L.; Romero-Frías, E.: Web search volume as a predictor of academic fame : an exploration of Google trends (2014) 0.03
    0.027539104 = product of:
      0.041308656 = sum of:
        0.029306183 = weight(_text_:of in 1233) [ClassicSimilarity], result of:
          0.029306183 = score(doc=1233,freq=24.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.3591007 = fieldWeight in 1233, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1233)
        0.012002475 = product of:
          0.02400495 = sum of:
            0.02400495 = weight(_text_:science in 1233) [ClassicSimilarity], result of:
              0.02400495 = score(doc=1233,freq=2.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.17461908 = fieldWeight in 1233, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1233)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Searches conducted on web search engines reflect the interests of users and society. Google Trends, which provides information about the queries searched by users of the Google web search engine, is a rich data source from which a wealth of information can be mined. We investigated the possibility of using web search volume data from Google Trends to predict academic fame. As queries are language-dependent, we studied universities from two countries with different languages, the United States and Spain. We found a significant correlation between the search volume of a university name and the university's academic reputation or fame. We also examined the effect of some Google Trends features, namely, limiting the search to a specific country or topic category on the search volume data. Finally, we examined the effect of university sizes on the correlations found to gain a deeper understanding of the nature of the relationships.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.4, S.707-720
  18. Johnson, F.; Rowley, J.; Sbaffi, L.: Exploring information interactions in the context of Google (2016) 0.03
    0.02670734 = product of:
      0.04006101 = sum of:
        0.028058534 = weight(_text_:of in 2885) [ClassicSimilarity], result of:
          0.028058534 = score(doc=2885,freq=22.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.34381276 = fieldWeight in 2885, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2885)
        0.012002475 = product of:
          0.02400495 = sum of:
            0.02400495 = weight(_text_:science in 2885) [ClassicSimilarity], result of:
              0.02400495 = score(doc=2885,freq=2.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.17461908 = fieldWeight in 2885, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2885)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The study sets out to explore the factors that influence the evaluation of information and the judgments made in the process of finding useful information in web search contexts. Based on a diary study of 2 assigned tasks to search on Google and Google Scholar, factor analysis identified the core constructs of content, relevance, scope, and style, as well as informational and system "ease of use" as influencing the judgment that useful information had been found. Differences were found in the participants' evaluation of information across the search tasks on Google and on Google Scholar when identified by the factors related to both content and ease of use. The findings from this study suggest how searchers might critically evaluate information, and the study identifies a relation between the user's involvement in the information interaction and the influences of the perceived system ease of use and information design.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.4, S.824-840
  19. Ortiz-Cordova, A.; Jansen, B.J.: Classifying web search queries to identify high revenue generating customers (2012) 0.03
    0.025836824 = product of:
      0.038755234 = sum of:
        0.02675276 = weight(_text_:of in 279) [ClassicSimilarity], result of:
          0.02675276 = score(doc=279,freq=20.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.32781258 = fieldWeight in 279, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=279)
        0.012002475 = product of:
          0.02400495 = sum of:
            0.02400495 = weight(_text_:science in 279) [ClassicSimilarity], result of:
              0.02400495 = score(doc=279,freq=2.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.17461908 = fieldWeight in 279, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=279)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Traffic from search engines is important for most online businesses, with the majority of visitors to many websites being referred by search engines. Therefore, an understanding of this search engine traffic is critical to the success of these websites. Understanding search engine traffic means understanding the underlying intent of the query terms and the corresponding user behaviors of searchers submitting keywords. In this research, using 712,643 query keywords from a popular Spanish music website relying on contextual advertising as its business model, we use a k-means clustering algorithm to categorize the referral keywords with similar characteristics of onsite customer behavior, including attributes such as clickthrough rate and revenue. We identified 6 clusters of consumer keywords. Clusters range from a large number of users who are low impact to a small number of high impact users. We demonstrate how online businesses can leverage this segmentation clustering approach to provide a more tailored consumer experience. Implications are that businesses can effectively segment customers to develop better business models to increase advertising conversion rates.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.7, S.1426-1441
  20. Lewandowski, D.; Kerkmann, F.; Rümmele, S.; Sünkler, S.: ¬An empirical investigation on search engine ad disclosure (2018) 0.03
    0.025452837 = product of:
      0.038179256 = sum of:
        0.024176367 = weight(_text_:of in 4115) [ClassicSimilarity], result of:
          0.024176367 = score(doc=4115,freq=12.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.29624295 = fieldWeight in 4115, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4115)
        0.0140028875 = product of:
          0.028005775 = sum of:
            0.028005775 = weight(_text_:science in 4115) [ClassicSimilarity], result of:
              0.028005775 = score(doc=4115,freq=2.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.20372227 = fieldWeight in 4115, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4115)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This representative study of German search engine users (N?=?1,000) focuses on the ability of users to distinguish between organic results and advertisements on Google results pages. We combine questions about Google's business with task-based studies in which users were asked to distinguish between ads and organic results in screenshots of results pages. We find that only a small percentage of users can reliably distinguish between ads and organic results, and that user knowledge of Google's business model is very limited. We conclude that ads are insufficiently labelled as such, and that many users may click on ads assuming that they are selecting organic results.
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.3, S.420-437

Languages

  • e 72
  • d 13

Types

  • a 72
  • el 13
  • m 7
  • s 3
  • r 1
  • x 1
  • More… Less…