Search (38 results, page 1 of 2)

  • × theme_ss:"Visualisierung"
  • × type_ss:"a"
  • × year_i:[2010 TO 2020}
  1. Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F.: Science mapping software tools : review, analysis, and cooperative study among tools (2011) 0.03
    0.030965447 = product of:
      0.07741362 = sum of:
        0.035981435 = weight(_text_:technology in 4486) [ClassicSimilarity], result of:
          0.035981435 = score(doc=4486,freq=2.0), product of:
            0.13667917 = queryWeight, product of:
              2.978387 = idf(docFreq=6114, maxDocs=44218)
              0.04589033 = queryNorm
            0.2632547 = fieldWeight in 4486, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.978387 = idf(docFreq=6114, maxDocs=44218)
              0.0625 = fieldNorm(doc=4486)
        0.04143218 = product of:
          0.08286436 = sum of:
            0.08286436 = weight(_text_:aspects in 4486) [ClassicSimilarity], result of:
              0.08286436 = score(doc=4486,freq=2.0), product of:
                0.20741826 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.04589033 = queryNorm
                0.39950368 = fieldWeight in 4486, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4486)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Science mapping aims to build bibliometric maps that describe how specific disciplines, scientific domains, or research fields are conceptually, intellectually, and socially structured. Different techniques and software tools have been proposed to carry out science mapping analysis. The aim of this article is to review, analyze, and compare some of these software tools, taking into account aspects such as the bibliometric techniques available and the different kinds of analysis.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.7, S.1382-1402
  2. Lin, F.-T.: Drawing a knowledge map of smart city knowledge in academia (2019) 0.03
    0.02511943 = product of:
      0.062798575 = sum of:
        0.022488397 = weight(_text_:technology in 5454) [ClassicSimilarity], result of:
          0.022488397 = score(doc=5454,freq=2.0), product of:
            0.13667917 = queryWeight, product of:
              2.978387 = idf(docFreq=6114, maxDocs=44218)
              0.04589033 = queryNorm
            0.16453418 = fieldWeight in 5454, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.978387 = idf(docFreq=6114, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5454)
        0.04031018 = weight(_text_:social in 5454) [ClassicSimilarity], result of:
          0.04031018 = score(doc=5454,freq=2.0), product of:
            0.18299131 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.04589033 = queryNorm
            0.22028469 = fieldWeight in 5454, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5454)
      0.4 = coord(2/5)
    
    Abstract
    This research takes the academic articles in the Web of Science's core collection database as a corpus to draw a series of knowledge maps, to explore the relationships, connectivity, dis-tribution, and evolution among their keywords with respect to smart cities in the last decade. Beyond just drawing a text cloud or measuring their sizes, we further explore their texture by iden-tifying the hottest keywords in academic articles, construct links between and among them that share common keywords, identify islands, rocks, reefs that are formed by connected articles-a metaphor inspired by Ong et al. (2005)-and analyze trends in their evolution. We found the following phenomena: 1) "Internet of Things" is the most frequently mentioned keyword in recent research articles; 2) the numbers of islands and reefs are increas-ing; 3) the evolutions of the numbers of weighted links have frac-tal-like structure; and, 4) the coverage of the largest rock, formed by articles that share a common keyword, in the largest island is converging into around 10% to 20%. These phenomena imply that a common interest in the technology of smart cities has been emerging among researchers. However, the administrative, social, economic, and cultural issues need more attention in academia in the future.
  3. Cao, N.; Sun, J.; Lin, Y.-R.; Gotz, D.; Liu, S.; Qu, H.: FacetAtlas : Multifaceted visualization for rich text corpora (2010) 0.02
    0.019353405 = product of:
      0.04838351 = sum of:
        0.022488397 = weight(_text_:technology in 3366) [ClassicSimilarity], result of:
          0.022488397 = score(doc=3366,freq=2.0), product of:
            0.13667917 = queryWeight, product of:
              2.978387 = idf(docFreq=6114, maxDocs=44218)
              0.04589033 = queryNorm
            0.16453418 = fieldWeight in 3366, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.978387 = idf(docFreq=6114, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3366)
        0.025895113 = product of:
          0.051790226 = sum of:
            0.051790226 = weight(_text_:aspects in 3366) [ClassicSimilarity], result of:
              0.051790226 = score(doc=3366,freq=2.0), product of:
                0.20741826 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.04589033 = queryNorm
                0.2496898 = fieldWeight in 3366, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3366)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Documents in rich text corpora usually contain multiple facets of information. For example, an article about a specific disease often consists of different facets such as symptom, treatment, cause, diagnosis, prognosis, and prevention. Thus, documents may have different relations based on different facets. Powerful search tools have been developed to help users locate lists of individual documents that are most related to specific keywords. However, there is a lack of effective analysis tools that reveal the multifaceted relations of documents within or cross the document clusters. In this paper, we present FacetAtlas, a multifaceted visualization technique for visually analyzing rich text corpora. FacetAtlas combines search technology with advanced visual analytical tools to convey both global and local patterns simultaneously. We describe several unique aspects of FacetAtlas, including (1) node cliques and multifaceted edges, (2) an optimized density map, and (3) automated opacity pattern enhancement for highlighting visual patterns, (4) interactive context switch between facets. In addition, we demonstrate the power of FacetAtlas through a case study that targets patient education in the health care domain. Our evaluation shows the benefits of this work, especially in support of complex multifaceted data analysis.
  4. Minkov, E.; Kahanov, K.; Kuflik, T.: Graph-based recommendation integrating rating history and domain knowledge : application to on-site guidance of museum visitors (2017) 0.02
    0.019353405 = product of:
      0.04838351 = sum of:
        0.022488397 = weight(_text_:technology in 3756) [ClassicSimilarity], result of:
          0.022488397 = score(doc=3756,freq=2.0), product of:
            0.13667917 = queryWeight, product of:
              2.978387 = idf(docFreq=6114, maxDocs=44218)
              0.04589033 = queryNorm
            0.16453418 = fieldWeight in 3756, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.978387 = idf(docFreq=6114, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3756)
        0.025895113 = product of:
          0.051790226 = sum of:
            0.051790226 = weight(_text_:aspects in 3756) [ClassicSimilarity], result of:
              0.051790226 = score(doc=3756,freq=2.0), product of:
                0.20741826 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.04589033 = queryNorm
                0.2496898 = fieldWeight in 3756, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3756)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Visitors to museums and other cultural heritage sites encounter a wealth of exhibits in a variety of subject areas, but can explore only a small number of them. Moreover, there typically exists rich complementary information that can be delivered to the visitor about exhibits of interest, but only a fraction of this information can be consumed during the limited time of the visit. Recommender systems may help visitors to cope with this information overload. Ideally, the recommender system of choice should model user preferences, as well as background knowledge about the museum's environment, considering aspects of physical and thematic relevancy. We propose a personalized graph-based recommender framework, representing rating history and background multi-facet information jointly as a relational graph. A random walk measure is applied to rank available complementary multimedia presentations by their relevancy to a visitor's profile, integrating the various dimensions. We report the results of experiments conducted using authentic data collected at the Hecht museum. An evaluation of multiple graph variants, compared with several popular and state-of-the-art recommendation methods, indicates on advantages of the graph-based approach.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.8, S.1911-1924
  5. Osinska, V.; Bala, P.: New methods for visualization and improvement of classification schemes : the case of computer science (2010) 0.02
    0.018255439 = product of:
      0.045638595 = sum of:
        0.026986076 = weight(_text_:technology in 3693) [ClassicSimilarity], result of:
          0.026986076 = score(doc=3693,freq=2.0), product of:
            0.13667917 = queryWeight, product of:
              2.978387 = idf(docFreq=6114, maxDocs=44218)
              0.04589033 = queryNorm
            0.19744103 = fieldWeight in 3693, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.978387 = idf(docFreq=6114, maxDocs=44218)
              0.046875 = fieldNorm(doc=3693)
        0.01865252 = product of:
          0.03730504 = sum of:
            0.03730504 = weight(_text_:22 in 3693) [ClassicSimilarity], result of:
              0.03730504 = score(doc=3693,freq=2.0), product of:
                0.16070013 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04589033 = queryNorm
                0.23214069 = fieldWeight in 3693, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3693)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Generally, Computer Science (CS) classifications are inconsistent in taxonomy strategies. t is necessary to develop CS taxonomy research to combine its historical perspective, its current knowledge and its predicted future trends - including all breakthroughs in information and communication technology. In this paper we have analyzed the ACM Computing Classification System (CCS) by means of visualization maps. The important achievement of current work is an effective visualization of classified documents from the ACM Digital Library. From the technical point of view, the innovation lies in the parallel use of analysis units: (sub)classes and keywords as well as a spherical 3D information surface. We have compared both the thematic and semantic maps of classified documents and results presented in Table 1. Furthermore, the proposed new method is used for content-related evaluation of the original scheme. Summing up: we improved an original ACM classification in the Computer Science domain by means of visualization.
    Date
    22. 7.2010 19:36:46
  6. Wu, I.-C.; Vakkari, P.: Effects of subject-oriented visualization tools on search by novices and intermediates (2018) 0.02
    0.015212866 = product of:
      0.038032163 = sum of:
        0.022488397 = weight(_text_:technology in 4573) [ClassicSimilarity], result of:
          0.022488397 = score(doc=4573,freq=2.0), product of:
            0.13667917 = queryWeight, product of:
              2.978387 = idf(docFreq=6114, maxDocs=44218)
              0.04589033 = queryNorm
            0.16453418 = fieldWeight in 4573, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.978387 = idf(docFreq=6114, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4573)
        0.015543767 = product of:
          0.031087535 = sum of:
            0.031087535 = weight(_text_:22 in 4573) [ClassicSimilarity], result of:
              0.031087535 = score(doc=4573,freq=2.0), product of:
                0.16070013 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04589033 = queryNorm
                0.19345059 = fieldWeight in 4573, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4573)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Date
    9.12.2018 16:22:25
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.12, S.1428-1445
  7. Zhang, J.; Zhao, Y.: ¬A user term visualization analysis based on a social question and answer log (2013) 0.01
    0.013963858 = product of:
      0.06981929 = sum of:
        0.06981929 = weight(_text_:social in 2715) [ClassicSimilarity], result of:
          0.06981929 = score(doc=2715,freq=6.0), product of:
            0.18299131 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.04589033 = queryNorm
            0.3815443 = fieldWeight in 2715, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2715)
      0.2 = coord(1/5)
    
    Abstract
    The authors of this paper investigate terms of consumers' diabetes based on a log from the Yahoo!Answers social question and answers (Q&A) forum, ascertain characteristics and relationships among terms related to diabetes from the consumers' perspective, and reveal users' diabetes information seeking patterns. In this study, the log analysis method, data coding method, and visualization multiple-dimensional scaling analysis method were used for analysis. The visual analyses were conducted at two levels: terms analysis within a category and category analysis among the categories in the schema. The findings show that the average number of words per question was 128.63, the average number of sentences per question was 8.23, the average number of words per response was 254.83, and the average number of sentences per response was 16.01. There were 12 categories (Cause & Pathophysiology, Sign & Symptom, Diagnosis & Test, Organ & Body Part, Complication & Related Disease, Medication, Treatment, Education & Info Resource, Affect, Social & Culture, Lifestyle, and Nutrient) in the diabetes related schema which emerged from the data coding analysis. The analyses at the two levels show that terms and categories were clustered and patterns were revealed. Future research directions are also included.
  8. Wu, Y.; Bai, R.: ¬An event relationship model for knowledge organization and visualization (2017) 0.01
    0.009674444 = product of:
      0.04837222 = sum of:
        0.04837222 = weight(_text_:social in 3867) [ClassicSimilarity], result of:
          0.04837222 = score(doc=3867,freq=2.0), product of:
            0.18299131 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.04589033 = queryNorm
            0.26434162 = fieldWeight in 3867, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=3867)
      0.2 = coord(1/5)
    
    Abstract
    An event is a specific occurrence involving participants, which is a typed, n-ary association of entities or other events, each identified as a participant in a specific semantic role in the event (Pyysalo et al. 2012; Linguistic Data Consortium 2005). Event types may vary across domains. Representing relationships between events can facilitate the understanding of knowledge in complex systems (such as economic systems, human body, social systems). In the simplest form, an event can be represented as Entity A <Relation> Entity B. This paper evaluates several knowledge organization and visualization models and tools, such as concept maps (Cmap), topic maps (Ontopia), network analysis models (Gephi), and ontology (Protégé), then proposes an event relationship model that aims to integrate the strengths of these models, and can represent complex knowledge expressed in events and their relationships.
  9. Graphic details : a scientific study of the importance of diagrams to science (2016) 0.01
    0.009127719 = product of:
      0.022819297 = sum of:
        0.013493038 = weight(_text_:technology in 3035) [ClassicSimilarity], result of:
          0.013493038 = score(doc=3035,freq=2.0), product of:
            0.13667917 = queryWeight, product of:
              2.978387 = idf(docFreq=6114, maxDocs=44218)
              0.04589033 = queryNorm
            0.09872051 = fieldWeight in 3035, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.978387 = idf(docFreq=6114, maxDocs=44218)
              0.0234375 = fieldNorm(doc=3035)
        0.00932626 = product of:
          0.01865252 = sum of:
            0.01865252 = weight(_text_:22 in 3035) [ClassicSimilarity], result of:
              0.01865252 = score(doc=3035,freq=2.0), product of:
                0.16070013 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04589033 = queryNorm
                0.116070345 = fieldWeight in 3035, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3035)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Content
    As the team describe in a paper posted (http://arxiv.org/abs/1605.04951) on arXiv, they found that figures did indeed matter-but not all in the same way. An average paper in PubMed Central has about one diagram for every three pages and gets 1.67 citations. Papers with more diagrams per page and, to a lesser extent, plots per page tended to be more influential (on average, a paper accrued two more citations for every extra diagram per page, and one more for every extra plot per page). By contrast, including photographs and equations seemed to decrease the chances of a paper being cited by others. That agrees with a study from 2012, whose authors counted (by hand) the number of mathematical expressions in over 600 biology papers and found that each additional equation per page reduced the number of citations a paper received by 22%. This does not mean that researchers should rush to include more diagrams in their next paper. Dr Howe has not shown what is behind the effect, which may merely be one of correlation, rather than causation. It could, for example, be that papers with lots of diagrams tend to be those that illustrate new concepts, and thus start a whole new field of inquiry. Such papers will certainly be cited a lot. On the other hand, the presence of equations really might reduce citations. Biologists (as are most of those who write and read the papers in PubMed Central) are notoriously mathsaverse. If that is the case, looking in a physics archive would probably produce a different result.
    Footnote
    Vgl.: http://www.economist.com/news/science-and-technology/21700620-surprisingly-simple-test-check-research-papers-errors-come-again.
  10. Yan, B.; Luo, J.: Filtering patent maps for visualization of diversification paths of inventors and organizations (2017) 0.01
    0.008995359 = product of:
      0.044976793 = sum of:
        0.044976793 = weight(_text_:technology in 3651) [ClassicSimilarity], result of:
          0.044976793 = score(doc=3651,freq=8.0), product of:
            0.13667917 = queryWeight, product of:
              2.978387 = idf(docFreq=6114, maxDocs=44218)
              0.04589033 = queryNorm
            0.32906836 = fieldWeight in 3651, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.978387 = idf(docFreq=6114, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3651)
      0.2 = coord(1/5)
    
    Abstract
    In the information science literature, recent studies have used patent databases and patent classification information to construct network maps of patent technology classes. In such a patent technology map, almost all pairs of technology classes are connected, whereas most of the connections between them are extremely weak. This observation suggests the possibility of filtering the patent network map by removing weak links. However, removing links may reduce the explanatory power of the network on inventor or organization diversification. The network links may explain the patent portfolio diversification paths of inventors and inventing organizations. We measure the diversification explanatory power of the patent network map, and present a method to objectively choose an optimal tradeoff between explanatory power and removing weak links. We show that this method can remove a degree of arbitrariness compared with previous filtering methods based on arbitrary thresholds, and also identify previous filtering methods that created filters outside the optimal tradeoff. The filtered map aims to aid in network visualization analyses of the technological diversification of inventors, organizations, and other innovation agents, and potential foresight analysis. Such applications to a prolific inventor (Leonard Forbes) and company (Google) are demonstrated.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.6, S.1551-1563
  11. Denton, W.: On dentographs, a new method of visualizing library collections (2012) 0.01
    0.008286436 = product of:
      0.04143218 = sum of:
        0.04143218 = product of:
          0.08286436 = sum of:
            0.08286436 = weight(_text_:aspects in 580) [ClassicSimilarity], result of:
              0.08286436 = score(doc=580,freq=2.0), product of:
                0.20741826 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.04589033 = queryNorm
                0.39950368 = fieldWeight in 580, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0625 = fieldNorm(doc=580)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    A dentograph is a visualization of a library's collection built on the idea that a classification scheme is a mathematical function mapping one set of things (books or the universe of knowledge) onto another (a set of numbers and letters). Dentographs can visualize aspects of just one collection or can be used to compare two or more collections. This article describes how to build them, with examples and code using Ruby and R, and discusses some problems and future directions.
  12. Xiaoyue M.; Cahier, J.-P.: Iconic categorization with knowledge-based "icon systems" can improve collaborative KM (2011) 0.01
    0.008062037 = product of:
      0.04031018 = sum of:
        0.04031018 = weight(_text_:social in 4837) [ClassicSimilarity], result of:
          0.04031018 = score(doc=4837,freq=2.0), product of:
            0.18299131 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.04589033 = queryNorm
            0.22028469 = fieldWeight in 4837, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4837)
      0.2 = coord(1/5)
    
    Abstract
    Icon system could represent an efficient solution for collective iconic categorization of knowledge by providing graphical interpretation. Their pictorial characters assist visualizing the structure of text to become more understandable beyond vocabulary obstacle. In this paper we are proposing a Knowledge Engineering (KM) based iconic representation approach. We assume that these systematic icons improve collective knowledge management. Meanwhile, text (constructed under our knowledge management model - Hypertopic) helps to reduce the diversity of graphical understanding belonging to different users. This "position paper" also prepares to demonstrate our hypothesis by an "iconic social tagging" experiment which is to be accomplished in 2011 with UTT students. We describe the "socio semantic web" information portal involved in this project, and a part of the icons already designed for this experiment in Sustainability field. We have reviewed existing theoretical works on icons from various origins, which can be used to lay the foundation of robust "icons systems".
  13. Rafols, I.; Porter, A.L.; Leydesdorff, L.: Science overlay maps : a new tool for research policy and library management (2010) 0.01
    0.0076328157 = product of:
      0.03816408 = sum of:
        0.03816408 = weight(_text_:technology in 3987) [ClassicSimilarity], result of:
          0.03816408 = score(doc=3987,freq=4.0), product of:
            0.13667917 = queryWeight, product of:
              2.978387 = idf(docFreq=6114, maxDocs=44218)
              0.04589033 = queryNorm
            0.2792238 = fieldWeight in 3987, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.978387 = idf(docFreq=6114, maxDocs=44218)
              0.046875 = fieldNorm(doc=3987)
      0.2 = coord(1/5)
    
    Abstract
    We present a novel approach to visually locate bodies of research within the sciences, both at each moment of time and dynamically. This article describes how this approach fits with other efforts to locally and globally map scientific outputs. We then show how these science overlay maps help benchmarking, explore collaborations, and track temporal changes, using examples of universities, corporations, funding agencies, and research topics. We address their conditions of application and discuss advantages, downsides, and limitations. Overlay maps especially help investigate the increasing number of scientific developments and organizations that do not fit within traditional disciplinary categories. We make these tools available online to enable researchers to explore the ongoing sociocognitive transformations of science and technology systems.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.9, S.1871-1887
  14. Su, H.-N.: Visualization of global science and technology policy research structure (2012) 0.01
    0.0076328157 = product of:
      0.03816408 = sum of:
        0.03816408 = weight(_text_:technology in 4969) [ClassicSimilarity], result of:
          0.03816408 = score(doc=4969,freq=4.0), product of:
            0.13667917 = queryWeight, product of:
              2.978387 = idf(docFreq=6114, maxDocs=44218)
              0.04589033 = queryNorm
            0.2792238 = fieldWeight in 4969, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.978387 = idf(docFreq=6114, maxDocs=44218)
              0.046875 = fieldNorm(doc=4969)
      0.2 = coord(1/5)
    
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.2, S.242-255
  15. Stodola, J.T.: ¬The concept of information and questions of users with visual disabilities : an epistemological approach (2014) 0.01
    0.0064496296 = product of:
      0.032248147 = sum of:
        0.032248147 = weight(_text_:social in 1783) [ClassicSimilarity], result of:
          0.032248147 = score(doc=1783,freq=2.0), product of:
            0.18299131 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.04589033 = queryNorm
            0.17622775 = fieldWeight in 1783, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.03125 = fieldNorm(doc=1783)
      0.2 = coord(1/5)
    
    Abstract
    Purpose - The purpose of this paper is to evaluate the functionality of the particular epistemological schools with regard to the issues of users with visual impairment, to offer a theoretical answer to the question why these issues are not in the center of the interest of information science, and to try to find an epistemological approach that has ambitions to create the theoretical basis for the analysis of the relationship between information and visually impaired users. Design/methodology/approach - The methodological basis of the paper is determined by the selection of the epistemological approach. In order to think about the concept of information and to put it in relation to issues associated with users with visual impairment, a conceptual analysis is applied. Findings - Most of information science theories are based on empiricism and rationalism; this is the reason for their low interest in the questions of visually impaired users. Users with visual disabilities are out of the interest of rationalistic epistemology because it underestimates sensory perception; empiricism is not interested in them paradoxically because it overestimates sensory perception. Realism which fairly reflects such issues is an approach which allows the providing of information to persons with visual disabilities to be dealt with properly. Research limitations/implications - The paper has a speculative character. Its findings should be supported by empirical research in the future. Practical implications - Theoretical questions solved in the paper come from the practice of providing information to visually impaired users. Because practice has an influence on theory and vice versa, the author hopes that the findings included in the paper can serve to improve practice in the field. Social implications - The paper provides theoretical anchoring of the issues which are related to the inclusion of people with disabilities into society and its findings have a potential to support such efforts. Originality/value - This is first study linking questions of users with visual disabilities to highly abstract issues connected to the concept of information.
  16. Parsons, P.; Sedig, K.: Adjustable properties of visual representations : improving the quality of human-information interaction (2014) 0.01
    0.0063606794 = product of:
      0.031803396 = sum of:
        0.031803396 = weight(_text_:technology in 1214) [ClassicSimilarity], result of:
          0.031803396 = score(doc=1214,freq=4.0), product of:
            0.13667917 = queryWeight, product of:
              2.978387 = idf(docFreq=6114, maxDocs=44218)
              0.04589033 = queryNorm
            0.23268649 = fieldWeight in 1214, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.978387 = idf(docFreq=6114, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1214)
      0.2 = coord(1/5)
    
    Abstract
    Complex cognitive activities, such as analytical reasoning, problem solving, and sense making, are often performed through the mediation of interactive computational tools. Examples include visual analytics, decision support, and educational tools. Through interaction with visual representations of information at the visual interface of these tools, a joint, coordinated cognitive system is formed. This partnership results in a number of relational properties-those depending on both humans and tools-that researchers and designers must be aware of if such tools are to effectively support the performance of complex cognitive activities. This article presents 10 properties of interactive visual representations that are essential and relational and whose values can be adjusted through interaction. By adjusting the values of these properties, better coordination between humans and tools can be effected, leading to higher quality performance of complex cognitive activities. This article examines how the values of these properties affect cognitive processing and visual reasoning and demonstrates the necessity of making their values adjustable-all of which is situated within a broader theoretical framework concerned with human-information interaction in complex cognitive activities. This framework can facilitate systematic research, design, and evaluation in numerous fields including information visualization, health informatics, visual analytics, and educational technology.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.3, S.455-482
  17. Zhang, Y.; Zhang, G.; Zhu, D.; Lu, J.: Scientific evolutionary pathways : identifying and visualizing relationships for scientific topics (2017) 0.01
    0.0063606794 = product of:
      0.031803396 = sum of:
        0.031803396 = weight(_text_:technology in 3758) [ClassicSimilarity], result of:
          0.031803396 = score(doc=3758,freq=4.0), product of:
            0.13667917 = queryWeight, product of:
              2.978387 = idf(docFreq=6114, maxDocs=44218)
              0.04589033 = queryNorm
            0.23268649 = fieldWeight in 3758, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.978387 = idf(docFreq=6114, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3758)
      0.2 = coord(1/5)
    
    Abstract
    Whereas traditional science maps emphasize citation statistics and static relationships, this paper presents a term-based method to identify and visualize the evolutionary pathways of scientific topics in a series of time slices. First, we create a data preprocessing model for accurate term cleaning, consolidating, and clustering. Then we construct a simulated data streaming function and introduce a learning process to train a relationship identification function to adapt to changing environments in real time, where relationships of topic evolution, fusion, death, and novelty are identified. The main result of the method is a map of scientific evolutionary pathways. The visual routines provide a way to indicate the interactions among scientific subjects and a version in a series of time slices helps further illustrate such evolutionary pathways in detail. The detailed outline offers sufficient statistical information to delve into scientific topics and routines and then helps address meaningful insights with the assistance of expert knowledge. This empirical study focuses on scientific proposals granted by the United States National Science Foundation, and demonstrates the feasibility and reliability. Our method could be widely applied to a range of science, technology, and innovation policy research, and offer insight into the evolutionary pathways of scientific activities.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.8, S.1925-1939
  18. Platis, N. et al.: Visualization of uncertainty in tag clouds (2016) 0.01
    0.006217507 = product of:
      0.031087535 = sum of:
        0.031087535 = product of:
          0.06217507 = sum of:
            0.06217507 = weight(_text_:22 in 2755) [ClassicSimilarity], result of:
              0.06217507 = score(doc=2755,freq=2.0), product of:
                0.16070013 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04589033 = queryNorm
                0.38690117 = fieldWeight in 2755, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2755)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Date
    1. 2.2016 18:25:22
  19. Braun, S.: Manifold: a custom analytics platform to visualize research impact (2015) 0.01
    0.006214827 = product of:
      0.031074135 = sum of:
        0.031074135 = product of:
          0.06214827 = sum of:
            0.06214827 = weight(_text_:aspects in 2906) [ClassicSimilarity], result of:
              0.06214827 = score(doc=2906,freq=2.0), product of:
                0.20741826 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.04589033 = queryNorm
                0.29962775 = fieldWeight in 2906, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2906)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    The use of research impact metrics and analytics has become an integral component to many aspects of institutional assessment. Many platforms currently exist to provide such analytics, both proprietary and open source; however, the functionality of these systems may not always overlap to serve uniquely specific needs. In this paper, I describe a novel web-based platform, named Manifold, that I built to serve custom research impact assessment needs in the University of Minnesota Medical School. Built on a standard LAMP architecture, Manifold automatically pulls publication data for faculty from Scopus through APIs, calculates impact metrics through automated analytics, and dynamically generates report-like profiles that visualize those metrics. Work on this project has resulted in many lessons learned about challenges to sustainability and scalability in developing a system of such magnitude.
  20. Leydesdorff, L.; Persson, O.: Mapping the geography of science : distribution patterns and networks of relations among cities and institutes (2010) 0.01
    0.005397215 = product of:
      0.026986076 = sum of:
        0.026986076 = weight(_text_:technology in 3704) [ClassicSimilarity], result of:
          0.026986076 = score(doc=3704,freq=2.0), product of:
            0.13667917 = queryWeight, product of:
              2.978387 = idf(docFreq=6114, maxDocs=44218)
              0.04589033 = queryNorm
            0.19744103 = fieldWeight in 3704, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.978387 = idf(docFreq=6114, maxDocs=44218)
              0.046875 = fieldNorm(doc=3704)
      0.2 = coord(1/5)
    
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.8, S.1622-1634

Languages

  • e 37
  • a 1
  • More… Less…